1
|
Hao M, Chu J, Zhang T, Yin T, Gu Y, Liang W, Ji W, Zhuang J, Liu Y, Gao J, Yin Y. Nanomaterials-mediated lysosomal regulation: a robust protein-clearance approach for the treatment of Alzheimer's disease. Neural Regen Res 2025; 20:424-439. [PMID: 38819046 PMCID: PMC11317947 DOI: 10.4103/nrr.nrr-d-23-01736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/04/2024] [Accepted: 02/20/2024] [Indexed: 06/01/2024] Open
Abstract
Alzheimer's disease is a debilitating, progressive neurodegenerative disorder characterized by the progressive accumulation of abnormal proteins, including amyloid plaques and intracellular tau tangles, primarily within the brain. Lysosomes, crucial intracellular organelles responsible for protein degradation, play a key role in maintaining cellular homeostasis. Some studies have suggested a link between the dysregulation of the lysosomal system and pathogenesis of neurodegenerative diseases, including Alzheimer's disease. Restoring the normal physiological function of lysosomes hold the potential to reduce the pathological burden and improve the symptoms of Alzheimer's disease. Currently, the efficacy of drugs in treating Alzheimer's disease is limited, with major challenges in drug delivery efficiency and targeting. Recently, nanomaterials have gained widespread use in Alzheimer's disease drug research owing to their favorable physical and chemical properties. This review aims to provide a comprehensive overview of recent advances in using nanomaterials (polymeric nanomaterials, nanoemulsions, and carbon-based nanomaterials) to enhance lysosomal function in treating Alzheimer's disease. This review also explores new concepts and potential therapeutic strategies for Alzheimer's disease through the integration of nanomaterials and modulation of lysosomal function. In conclusion, this review emphasizes the potential of nanomaterials in modulating lysosomal function to improve the pathological features of Alzheimer's disease. The application of nanotechnology to the development of Alzheimer's disease drugs brings new ideas and approaches for future treatment of this disease.
Collapse
Affiliation(s)
- Mengqi Hao
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jianjian Chu
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
| | - Tinglin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Tong Yin
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
| | - Yuankai Gu
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
| | - Wendanqi Liang
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Wenbo Ji
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
| | - Jianhua Zhuang
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
| | - Yan Liu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - You Yin
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Zhang J, Yin YJ, Wang XW, Lu WQ, Chen ZY, Yu CH, Ren KF, Xu CF. Adhesive polyelectrolyte coating through UV-triggered polymerization on PLGA particles for enhanced drug delivery to inflammatory intestinal mucosa. J Nanobiotechnology 2025; 23:32. [PMID: 39844269 PMCID: PMC11753032 DOI: 10.1186/s12951-024-03066-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/09/2024] [Indexed: 01/24/2025] Open
Abstract
Administering medication precisely to the inflamed intestinal sites to treat ulcerative colitis (UC), with minimized side effects, is of urgent need. In UC, the inflammation damaged mucosa contains a large number of amino groups which are positively charged, providing new opportunities for drug delivery system design. Here, we report an oral drug delivery system utilizing the tacrolimus-loaded poly (lactic-co-glycolic acid) (TAC/PLGA) particles with an adhesion coating by in situ UV-triggered polymerization of polyacrylic acid and N-hydroxysuccinimide (PAA-NHS). The negatively charged carboxyl groups effectively interact with the positively charged focal mucosa, and the NHS ester groups form the covalent bonds with the amino groups, thereby synergically enhancing the adhesion of the PLGA particles to the focal mucosa. Our findings reveal that, compared to the naked particles, the PAA-NHS coating increases the adhesion of particles to the inflammatory intestine. In a dextran sulfate sodium-induced acute colitis mouse model, the TAC/PLGA particles with PAA-NHS coating exhibits substantial retention of TAC within the inflammatory intestine, enhancing drug delivery efficiency and therapeutic effects. This approach holds promise for UC management, minimizing systemic side effects and optimizing therapeutic outcomes.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yi-Jing Yin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xing-Wang Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wei-Qi Lu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhao-Yang Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312099, China
| | - Chao-Hui Yu
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Ke-Feng Ren
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Cheng-Fu Xu
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
3
|
Toader C, Dumitru AV, Eva L, Serban M, Covache-Busuioc RA, Ciurea AV. Nanoparticle Strategies for Treating CNS Disorders: A Comprehensive Review of Drug Delivery and Theranostic Applications. Int J Mol Sci 2024; 25:13302. [PMID: 39769066 PMCID: PMC11676454 DOI: 10.3390/ijms252413302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
This review aims to address the significant challenges of treating central nervous system (CNS) disorders such as neurodegenerative diseases, strokes, spinal cord injuries, and brain tumors. These disorders are difficult to manage due to the complexity of disease mechanisms and the protective blood-brain barrier (BBB), which restricts drug delivery. Recent advancements in nanoparticle (NP) technologies offer promising solutions, with potential applications in drug delivery, neuroprotection, and neuroregeneration. By examining current research, we explore how NPs can cross the BBB, deliver medications directly to targeted CNS regions, and enhance both diagnostics and treatment. Key NP strategies, such as passive targeting, receptor-mediated transport, and stimuli-responsive systems, demonstrate encouraging results. Studies show that NPs may improve drug delivery, minimize side effects, and increase therapeutic effectiveness in models of Alzheimer's, Parkinson's, stroke, and glioblastoma. NP technologies thus represent a promising approach for CNS disorder management, combining drug delivery and diagnostic capabilities to enable more precise and effective treatments that could significantly benefit patient outcomes.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Adrian Vasile Dumitru
- Department of Pathology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Pathology, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Lucian Eva
- Department of Neurosurgery, Dunarea de Jos University, 800010 Galati, Romania
- Department of Neurosurgery, Clinical Emergency Hospital “Prof. Dr. Nicolae Oblu”, 700309 Iasi, Romania
| | - Matei Serban
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
- Medical Section Within the Romanian Academy, 010071 Bucharest, Romania
| |
Collapse
|
4
|
Dong N, Ali-Khiavi P, Ghavamikia N, Pakmehr S, Sotoudegan F, Hjazi A, Gargari MK, Gargari HK, Behnamrad P, Rajabi M, Elhami A, Saffarfar H, Nourizadeh M. Nanomedicine in the treatment of Alzheimer's disease: bypassing the blood-brain barrier with cutting-edge nanotechnology. Neurol Sci 2024:10.1007/s10072-024-07871-4. [PMID: 39638950 DOI: 10.1007/s10072-024-07871-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
Alzheimer's disease (AD) remains a formidable challenge in the field of neurodegenerative disorders, necessitating innovative therapeutic strategies. Nanomedicine, leveraging nanomaterials, has emerged as a promising avenue for AD treatment, with a key emphasis on overcoming the blood-brain barrier (BBB) to enhance drug delivery efficiency. This review provides a comprehensive analysis of recent advancements in the application of nanomaterials for AD therapy, highlighting their unique properties and functions. The blood-brain barrier, a complex physiological barrier, poses a significant hurdle for traditional drug delivery to the brain. Nanomedicine addresses this challenge by utilizing various nanomaterials such as liposomes, polymeric nanoparticles, and metal nanoparticles. These nanocarriers enable improved drug bioavailability, sustained release, and targeted delivery to specific brain regions affected by AD pathology. The review discusses the diverse range of nanomaterials employed in AD treatment, exploring their capacity to encapsulate therapeutic agents, modulate drug release kinetics, and enhance drug stability. Additionally, the multifunctionality of nanomaterials allows for simultaneous imaging and therapy, facilitating early diagnosis and intervention. Key aspects covered include the interaction of nanomaterials with Aβ aggregates, the role of antioxidants in mitigating oxidative stress, and the potential of nanomedicine in alleviating neuroinflammation associated with AD. Furthermore, the safety, biocompatibility, and toxicity profiles of various nanomaterials are scrutinized to ensure their clinical applicability. In conclusion, this review underscores the pivotal role of nanomedicine and nanomaterials in revolutionizing AD treatment strategies. By specifically addressing BBB challenges, these innovative approaches offer new avenues for targeted drug delivery and improved therapeutic outcomes in the complex landscape of Alzheimer's disease.
Collapse
Affiliation(s)
- Nana Dong
- College of Basic Medical Sciences, China Three Gorges University, 443000, Yichang, Hubei Province, China
| | - Payam Ali-Khiavi
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Nima Ghavamikia
- Cardiovascular Research Institute, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Farzaneh Sotoudegan
- Quality Control of Medicines and Supplements Group, Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | | | | | - Parisa Behnamrad
- Department of Pharmaceutics, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Anis Elhami
- Faculty of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Saffarfar
- Cardiovascular Research Institute, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Nourizadeh
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Arınmış K, Kıyan HT, Öztürk AA. Preparation, Characterization, Antioxidant Activities, and Determination of Anti-Alzheimer Effects of PLGA-Based DDSs Containing Ferulic Acid. ACS OMEGA 2024; 9:11321-11338. [PMID: 38497027 PMCID: PMC10938454 DOI: 10.1021/acsomega.3c07289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 03/19/2024]
Abstract
Nanoparticle (NP) systems have attracted the attention of researchers in recent years due to their advantages, such as modified release features, increased therapeutic efficacy, and reduced side effects. Ferulic acid (FA) has therapeutic effects such as anti-inflammatory, anti-Alzheimer's, antioxidant, antimicrobial, anticancer, antihyperlipidemic, and antidiabetic. In this study, FA-loaded PLGA-based NPs were prepared by a nanoprecipitation method and the effect of varying concentrations of Poloxamer 188 and Span 60 on NP properties was investigated. FA-loaded A-FA coded formulation was chosen as optimum. High encapsulation efficiency has been achieved due to the low affinity of FA to the water phase and, therefore, its lipophilic nature, which tends to migrate to the organic phase. It was determined that the release of FA from the A-FA was slower than pure FA and prolonged release in 24 h. Antioxidant and anti-Alzheimer's effects of A-FA coded NP formulation were investigated by biological activity studies. A-FA coded NP formulation showed strong DPPH free radical scavenging, ABTS cation decolorizing, and reducing antioxidant activity. Since it has both AChE inhibitor and antioxidant properties according to the results of its anti-Alzheimer activity, it was concluded that the formulation prepared in this study shows promise in the treatment of both oxidative stress-related diseases and Alzheimer's.
Collapse
Affiliation(s)
- Kübra
Nur Arınmış
- Graduate
School of Health Sciences, Faculty of Pharmacy, Department of Pharmaceutical
Technology, Anadolu University, Eskişehir 26470, Türkiye
| | - H. Tuba Kıyan
- Faculty
of Pharmacy, Department of Pharmacognosy, Anadolu University, Eskişehir 26470, Türkiye
| | - A. Alper Öztürk
- Faculty
of Pharmacy, Department of Pharmaceutical Technology, Anadolu University, Eskişehir 26470, Türkiye
| |
Collapse
|
6
|
Alamri OA, Qusti S, Balgoon M, Ageeli AA, Al-Marhaby FA, Alosaimi AM, Jowhari MA, Saeed A. The role of MoS 2 QDs coated with DSPE-PEG-TPP in the protection of protein secondary structure of the brain tissues in an Alzheimer's disease model. Int J Biol Macromol 2024; 255:128522. [PMID: 38040141 DOI: 10.1016/j.ijbiomac.2023.128522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/12/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
In this investigation, we have explored the protective capacity of MoS2 QDs coated with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethyleneglycol) -2000] (DSPE-PEG) linked with (3-carboxypropyl) triphenylphosphonium-bromide (TPP), on the secondary structure of proteins in Alzheimer's disease (AD)-affected brain tissues. Using a cohort of fifteen male SWR/J mice, we establish three groups: a control group, a second group induced with AD through daily doses of AlCl3 and D-galactose for 49 consecutive days, and a third group receiving the same AD-inducing doses but treated with DSPE-PEG-TPP-MoS2 QDs. Brain tissues are meticulously separated from the skull, and their molecular structures are analyzed via FTIR spectroscopy. Employing the curve fitting method on the amide I peak, we delve into the nuances of protein secondary structure. The FTIR analysis reveals a marked increase in β-sheet structures and a concurrent decline in turn and α-helix structures in the AD group in comparison to the control group. Notably, no statistically significant differences emerge between the treated and control mice. Furthermore, multivariate analysis of the FTIR spectral region, encompassing protein amide molecular structures, underscores a remarkable similarity between the treated and normal mice. This study elucidates the potential of DSPE-PEG-TPP-MoS2 QDs in shielding brain tissue proteins against the pathogenic influences of AD.
Collapse
Affiliation(s)
- Ohoud Abdulaziz Alamri
- Department of Medical Laboratory, King Fahad Armed Forces Hospital, Jeddah 23311, Saudi Arabia; Department of Biochemistry Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Safaa Qusti
- Department of Biochemistry Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maha Balgoon
- Department of Biochemistry Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abeer A Ageeli
- Department of Chemistry, Faculty of Science, Jazan University, Jazan 45142, Saudi Arabia
| | - F A Al-Marhaby
- Department of Physics, Al-Qunfudhah University College, Umm Al-Qura University, Makkah 24230, Saudi Arabia
| | - Abeer M Alosaimi
- Department of Chemistry, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Mohammed A Jowhari
- Medical Physics Department, Jazan Specialized Hospital, Ministry of Health, Jazan Health Affairs, Jazan 45142, Saudi Arabia
| | - Abdu Saeed
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Physics, Thamar University, Thamar 87246, Yemen.
| |
Collapse
|
7
|
Govindarajan K, Kar S. Correction: Detection of β-amyloid aggregates/plaques in 5xFAD mice by labelled native PLGA nanoparticles: implication in the diagnosis of Alzheimer's disease. J Nanobiotechnology 2023; 21:251. [PMID: 37537574 PMCID: PMC10398950 DOI: 10.1186/s12951-023-02009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023] Open
Affiliation(s)
- Karthivashan Govindarajan
- Departments of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2M8, Canada
| | - Satyabrata Kar
- Departments of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2M8, Canada.
| |
Collapse
|