1
|
Wu C, Huang Z, Chen J, Li N, Cai Y, Chen J, Ruan G, Han W, Ding C, Lu Y. Efficiently directing differentiation and homing of mesenchymal stem cells to boost cartilage repair in osteoarthritis via a nanoparticle and peptide dual-engineering strategy. Biomaterials 2025; 312:122720. [PMID: 39084098 DOI: 10.1016/j.biomaterials.2024.122720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 07/07/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Mesenchymal stem cells (MSCs) are expected to be useful therapeutics in osteoarthritis (OA), the most common joint disorder characterized by cartilage degradation. However, evidence is limited with regard to cartilage repair in clinical trials because of the uncontrolled differentiation and weak cartilage-targeting ability of MSCs after injection. To overcome these drawbacks, here we synthesized CuO@MSN nanoparticles (NPs) to deliver Sox9 plasmid DNA (favoring chondrogenesis) and recombinant protein Bmp7 (inhibiting hypertrophy). After taking up CuO@MSN/Sox9/Bmp7 (CSB NPs), the expressions of chondrogenic markers were enhanced while hypertrophic markers were decreased in response to these CSB-engineered MSCs. Moreover, a cartilage-targeted peptide (designated as peptide W) was conjugated onto the surface of MSCs via a click chemistry reaction, thereby prolonging the residence time of MSCs in both the knee joint cavity of mice and human-derived cartilage. In a surgery-induced OA mouse model, the NP and peptide dual-modified W-CSB-MSCs showed an enhancing therapeutic effect on cartilage repair in knee joints compared with other engineered MSCs after intra-articular injection. Most importantly, W-CSB-MSCs accelerated cartilage regeneration in damaged cartilage explants derived from OA patients. Thus, this new peptide and NPs dual engineering strategy shows potential for clinical applications to boost cartilage repair in OA using MSC therapy.
Collapse
Affiliation(s)
- Cuixi Wu
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhenwen Huang
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianmao Chen
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Nan Li
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yu Cai
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands
| | - Jieli Chen
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Guangfeng Ruan
- Clinical Research Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Weiyu Han
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Changhai Ding
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia.
| | - Yao Lu
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Han Z, Wang K, Ding S, Zhang M. Cross-talk of inflammation and cellular senescence: a new insight into the occurrence and progression of osteoarthritis. Bone Res 2024; 12:69. [PMID: 39627227 PMCID: PMC11615234 DOI: 10.1038/s41413-024-00375-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 12/06/2024] Open
Abstract
Osteoarthritis (OA) poses a significant challenge in orthopedics. Inflammatory pathways are regarded as central mechanisms in the onset and progression of OA. Growing evidence suggests that senescence acts as a mediator in inflammation-induced OA. Given the lack of effective treatments for OA, there is an urgent need for a clearer understanding of its pathogenesis. In this review, we systematically summarize the cross-talk between cellular senescence and inflammation in OA. We begin by focusing on the mechanisms and hallmarks of cellular senescence, summarizing evidence that supports the relationship between cellular senescence and inflammation. We then discuss the mechanisms of interaction between cellular senescence and inflammation, including senescence-associated secretory phenotypes (SASP) and the effects of pro- and anti-inflammatory interventions on cellular senescence. Additionally, we focus on various types of cellular senescence in OA, including senescence in cartilage, subchondral bone, synovium, infrapatellar fat pad, stem cells, and immune cells, elucidating their mechanisms and impacts on OA. Finally, we highlight the potential of therapies targeting senescent cells in OA as a strategy for promoting cartilage regeneration.
Collapse
Affiliation(s)
- Zeyu Han
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, PR China
| | - Ketao Wang
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, PR China
| | - Shenglong Ding
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, PR China
| | - Mingzhu Zhang
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, PR China.
| |
Collapse
|
3
|
Pan B, Yao P, Ma J, Lin X, Zhou L, Lin C, Zhang Y, Lin B, Lin C. Identification of key biomarkers related to fibrocartilage chondrocytes for osteoarthritis based on bulk, single-cell transcriptomic data. Front Immunol 2024; 15:1482361. [PMID: 39640258 PMCID: PMC11617364 DOI: 10.3389/fimmu.2024.1482361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction Osteoarthritis (OA) is a prevalent joint disease that severely impacts patients' quality of life. Due to its unclear pathogenesis and lack of effective therapeutic targets, discovering new biomarkers for OA is essential. Recently, the role of chondrocyte subpopulations in OA progression has gained significant attention, offering potential insights into the disease. This study aimed to explore the role of fibrocartilage chondrocytes (FC) in the progression of OA and identify key biomarkers related to FC. Methods We analyzed single-cell ribonucleic acid sequencing (scRNA-seq) data from samples of OA and normal cartilage, focusing on FC. Microarray data were integrated to identify differentially expressed genes (DEGs). We conducted functional-enrichment analyses, including Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO), and used weighted gene co-expression network analysis (WGCNA) and the least absolute shrinkage and selection operator (LASSO) algorithm to select biomarkers. A novel risk model for OA was constructed using these biomarkers. We then built a transcription factor (TF)-gene interaction network and performed immunohistochemistry (IHC) to validate protein expression levels of these biomarkers in cartilage samples. Results The study identified 545 marker genes associated with FC in OA. GO and KEGG analyses revealed their biological functions; microarray analysis identified 243 DEGs on which functional-enrichment analysis were conducted. Using WGCNA and LASSO, we identified six hub genes, on the basis of which we constructed a risk model for OA. In addition, correlation analysis revealed a close association between Forkhead Box (FoxO)-mediated transcription and these these biomarkers. IHC showed significantly lower protein levels of ABCA5, ABCA6 and SLC7A8 in OA samples than in normal samples. Conclusion This study used a multi-omics approach to identify six FC-related OA biomarkers (BCL6, ABCA5, ABCA6, CITED2, NR1D1, and SLC7A8) and developed an exploratory risk model. Functional enrichment analysis revealed that the FoxO pathway may be linked to these markers, particularly implicating ABCA5 and ABCA6 in cholesterol homeostasis within chondrocytes. These findings highlight ABCA family members as novel contributors to OA pathogenesis and suggest new therapeutic targets.
Collapse
Affiliation(s)
- Bailin Pan
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Orthopedic Surgery, Shantou Central Hospital, Shantou, Guangdong, China
| | - Peixiu Yao
- Department of Biobank, Shantou Central Hospital, Shantou, Guangdong, China
| | - Jinjin Ma
- Institute of Future Health, South China University of Technology, Guangzhou, China
| | - Xuanhao Lin
- Department of Biobank, Shantou Central Hospital, Shantou, Guangdong, China
| | - Laixi Zhou
- Department of Orthopedic Surgery, Shantou Central Hospital, Shantou, Guangdong, China
| | - Canzhen Lin
- Department of Orthopedic Surgery, Shantou Central Hospital, Shantou, Guangdong, China
- Department of Graduate Student, Shantou University Medical College, Shantou, Guangdong, China
| | - Yufeng Zhang
- Department of Orthopedic Surgery, Shantou Central Hospital, Shantou, Guangdong, China
| | - Bendan Lin
- Department of Orthopedic Surgery, Shantou Central Hospital, Shantou, Guangdong, China
| | - Chuangxin Lin
- Department of Orthopedic Surgery, Shantou Central Hospital, Shantou, Guangdong, China
| |
Collapse
|
4
|
Han C, Feng Z, Wang Y, Hu M, Xu S, Jiang F, Han Y, Liu Z, Li Y. Copper metabolism-related signature for prognosis prediction and MMP13 served as malignant factor for breast cancer. Heliyon 2024; 10:e36445. [PMID: 39315182 PMCID: PMC11417231 DOI: 10.1016/j.heliyon.2024.e36445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
Objectives To comprehensively analyze the copper metabolism in Breast cancer, we established a prognostic signature for breast cancer (BC) related to copper metabolism. Methods Copper metabolism-related genes were sourced from previous literatures and were selected by the Univariate Cox regression. Cu-enrichment scores were calculated via ssGSEA. Differentially expressed genes were identified with limma between high and low Cu-enrichment scores group, then we used the Random Survival Forest and LASSO to build the CuScore for BC. Kaplan-Meier analysis, ROC curves, and Cox regression were used to evaluate CuScore. Genomic mutations were analyzed with GISTIC. Immune cells were examined using ESTIMATE, ssGSEA and TIMER. Enrichment analysis used clusterProfiler and GSVA. The GDSC database and oncoPredict package analyzed chemotherapeutic sensitivity. MMP13 was selected for in vitro assays. Results Four copper metabolism-related genes (UBE2D2, SLC31A1, ATP7A, and MAPK1) with prognostic value were identified. Higher expression levels of these genes were associated with higher Cu-enrichment scores, a factor of malignancy in breast cancer. Among 115 differentially expressed genes, 19 prognostic genes were identified, with three (CEACAM5, MMP13, and CRISP3) highlighted by Random Survival Forest and LASSO. Higher CuScores correlated with worse prognoses and were effective in predicting breast cancer outcomes. CuScore and metastasis were independent prognostic factors. Tumor-infiltrating immune cells were associated with lower CuScores. GO-GSEA analysis indicated six immune-related pathways might be regulated by CuScore. Patients with higher CuScores had lower TMB and were more sensitive to Sapitinib and LCL161, while those with lower CuScores might respond better to anti-PD1 therapy. High MMP13 expression in breast cancer was linked to malignancy, affecting cell proliferation and migration. Conclusion The identified copper metabolism-related gene signature has the potential to predict prognosis and guide clinical treatment for BC. Among these genes, MMP13 may act as a malignant factor in BC.
Collapse
Affiliation(s)
- Chaojie Han
- Institutes of Biology and Medical Sciences, Soochow University, 333 East Ganjiang Road, Suzhou, Jiangsu, 215127, China
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, China
- Zhejiang Zhenyuan Biotech Co., LTD, 61 Yuedongbei Road, Shaoxing, Zhejiang, 312000, China
| | - Zhangyang Feng
- Institutes of Biology and Medical Sciences, Soochow University, 333 East Ganjiang Road, Suzhou, Jiangsu, 215127, China
| | - Yingjian Wang
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, China
| | - Mengsi Hu
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, China
| | - Shoufang Xu
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, China
| | - Feiyu Jiang
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, China
| | - Yetao Han
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, China
| | - Zhiwei Liu
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, China
| | - Yunsen Li
- Institutes of Biology and Medical Sciences, Soochow University, 333 East Ganjiang Road, Suzhou, Jiangsu, 215127, China
| |
Collapse
|
5
|
Yu Q, Xiao Y, Guan M, Zhang X, Yu J, Han M, Li Z. Copper metabolism in osteoarthritis and its relation to oxidative stress and ferroptosis in chondrocytes. Front Mol Biosci 2024; 11:1472492. [PMID: 39329090 PMCID: PMC11425083 DOI: 10.3389/fmolb.2024.1472492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
Ferroptosis, an iron-ion-dependent process of lipid peroxidation, damages the plasma membrane, leading to non-programmed cell death. Osteoarthritis (OA), a prevalent chronic degenerative joint disease among middle-aged and older adults, is characterized by chondrocyte damage or loss. Emerging evidence indicates that chondrocyte ferroptosis plays a role in OA development. However, most research has concentrated on ferroptosis regulation involving typical iron ions, potentially neglecting the significance of elevated copper ions in both serum and joint fluid of patients with OA. This review aims to fill this gap by systematically examining the interplay between copper metabolism, oxidative stress, ferroptosis, and copper-associated cell death in OA. It will provide a comprehensive overview of copper ions' role in regulating ferroptosis and their dual role in OA. This approach seeks to offer new insights for further research, prevention, and treatment of OA.
Collapse
Affiliation(s)
- Qingyuan Yu
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Yanan Xiao
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Mengqi Guan
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Xianshuai Zhang
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Jianan Yu
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Mingze Han
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Zhenhua Li
- Orthopedic Center, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| |
Collapse
|
6
|
Shu M, Wang J, Xu Z, Lu T, He Y, Li R, Zhong G, Yan Y, Zhang Y, Chu X, Ke J. Targeting nanoplatform synergistic glutathione depletion-enhanced chemodynamic, microwave dynamic, and selective-microwave thermal to treat lung cancer bone metastasis. Bioact Mater 2024; 39:544-561. [PMID: 38883314 PMCID: PMC11179176 DOI: 10.1016/j.bioactmat.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/30/2024] [Accepted: 04/16/2024] [Indexed: 06/18/2024] Open
Abstract
Once bone metastasis occurs in lung cancer, the efficiency of treatment can be greatly reduced. Current mainstream treatments are focused on inhibiting cancer cell growth and preventing bone destruction. Microwave ablation (MWA) has been used to treat bone tumors. However, MWA may damage the surrounding normal tissues. Therefore, it could be beneficial to develop a nanocarrier combined with microwave to treat bone metastasis. Herein, a microwave-responsive nanoplatform (MgFe2O4@ZOL) was constructed. MgFe2O4@ZOL NPs release the cargos of Fe3+, Mg2+ and zoledronic acid (ZOL) in the acidic tumor microenvironment (TME). Fe3+ can deplete intracellular glutathione (GSH) and catalyze H2O2 to generate •OH, resulting in chemodynamic therapy (CDT). In addition, the microwave can significantly enhance the production of reactive oxygen species (ROS), thereby enabling the effective implementation of microwave dynamic therapy (MDT). Moreover, Mg2+ and ZOL promote osteoblast differentiation. In addition, MgFe2O4@ZOL NPs could target and selectively heat tumor tissue and enhance the effect of microwave thermal therapy (MTT). Both in vitro and in vivo experiments revealed that synergistic targeting, GSH depletion-enhanced CDT, MDT, and selective MTT exhibited significant antitumor efficacy and bone repair. This multimodal combination therapy provides a promising strategy for the treatment of bone metastasis in lung cancer patients.
Collapse
Affiliation(s)
- Man Shu
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
- Department of Orthopaedics, General Hospital of Southern Theater Command of PLA, Guangzhou, 510010, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong, 510080, China
| | - Jingguang Wang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Ziyang Xu
- Department of Orthopaedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong, 510080, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong, 510080, China
| | - Teliang Lu
- Department of Orthopaedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong, 510080, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong, 510080, China
| | - Yue He
- Department of Orthopaedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong, 510080, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong, 510080, China
| | - Renshan Li
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong, 510080, China
| | - Guoqing Zhong
- Department of Orthopaedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong, 510080, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong, 510080, China
| | - Yunbo Yan
- Department of Internal Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Yu Zhang
- Department of Orthopaedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong, 510080, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong, 510080, China
| | - Xiao Chu
- Department of Orthopaedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong, 510080, China
- Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong, 510080, China
| | - Jin Ke
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong, 510080, China
| |
Collapse
|
7
|
Yi X, Leng P, Wang S, Liu L, Xie B. Functional Nanomaterials for the Treatment of Osteoarthritis. Int J Nanomedicine 2024; 19:6731-6756. [PMID: 38979531 PMCID: PMC11230134 DOI: 10.2147/ijn.s465243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/15/2024] [Indexed: 07/10/2024] Open
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease, affecting more than 595 million people worldwide. Nanomaterials possess superior physicochemical properties and can influence pathological processes due to their unique structural features, such as size, surface interface, and photoelectromagnetic thermal effects. Unlike traditional OA treatments, which suffer from short half-life, low stability, poor bioavailability, and high systemic toxicity, nanotherapeutic strategies for OA offer longer half-life, enhanced targeting, improved bioavailability, and reduced systemic toxicity. These advantages effectively address the limitations of traditional therapies. This review aims to inspire researchers to develop more multifunctional nanomaterials and promote their practical application in OA treatment.
Collapse
Affiliation(s)
- Xinyue Yi
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
- Clinical Medical College, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, People’s Republic of China
| | - Pengyuan Leng
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
| | - Supeng Wang
- Clinical Medical College, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, People’s Republic of China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
| | - Bingju Xie
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
| |
Collapse
|
8
|
Chen L, Yang J, Cai Z, Huang Y, Xiao P, Wang J, Wang F, Huang W, Cui W, Hu N. Electroactive Biomaterials Regulate the Electrophysiological Microenvironment to Promote Bone and Cartilage Tissue Regeneration. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202314079] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Indexed: 01/06/2025]
Abstract
AbstractThe incidence of large bone and articular cartilage defects caused by traumatic injury is increasing worldwide; the tissue regeneration process for these injuries is lengthy due to limited self‐healing ability. Endogenous bioelectrical phenomenon has been well recognized to play an important role in bone and cartilage homeostasis and regeneration. Studies have reported that electrical stimulation (ES) can effectively regulate various biological processes and holds promise as an external intervention to enhance the synthesis of the extracellular matrix, thereby accelerating the process of bone and cartilage regeneration. Hence, electroactive biomaterials have been considered a biomimetic approach to ensure functional recovery by integrating various physiological signals, including electrical, biochemical, and mechanical signals. This review will discuss the role of endogenous bioelectricity in bone and cartilage tissue, as well as the effects of ES on cellular behaviors. Then, recent advances in electroactive materials and their applications in bone and cartilage tissue regeneration are systematically overviewed, with a focus on their advantages and disadvantages as tissue repair materials and performances in the modulation of cell fate. Finally, the significance of mimicking the electrophysiological microenvironment of target tissue is emphasized and future development challenges of electroactive biomaterials for bone and cartilage repair strategies are proposed.
Collapse
Affiliation(s)
- Li Chen
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Jianye Yang
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Zhengwei Cai
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Yanran Huang
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Pengcheng Xiao
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Juan Wang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Fan Wang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Wei Huang
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Wenguo Cui
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Ning Hu
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| |
Collapse
|
9
|
Xiong W, Han Z, Ding S, Wang H, Du Y, Cui W, Zhang M. In Situ Remodeling of Efferocytosis via Lesion-Localized Microspheres to Reverse Cartilage Senescence. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400345. [PMID: 38477444 PMCID: PMC11109622 DOI: 10.1002/advs.202400345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/19/2024] [Indexed: 03/14/2024]
Abstract
Efferocytosis, an intrinsic regulatory mechanism to eliminate apoptotic cells, will be suppressed due to the delayed apoptosis process in aging-related diseases, such as osteoarthritis (OA). In this study, cartilage lesion-localized hydrogel microspheres are developed to remodel the in situ efferocytosis to reverse cartilage senescence and recruit endogenous stem cells to accelerate cartilage repair. Specifically, aldehyde- and methacrylic anhydride (MA)-modified hyaluronic acid hydrogel microspheres (AHM), loaded with pro-apoptotic liposomes (liposomes encapsulating ABT263, A-Lipo) and PDGF-BB, namely A-Lipo/PAHM, are prepared by microfluidic and photo-cross-linking techniques. By a degraded porcine cartilage explant OA model, the in situ cartilage lesion location experiment illustrated that aldehyde-functionalized microspheres promote affinity for degraded cartilage. In vitro data showed that A-Lipo induced apoptosis of senescent chondrocytes (Sn-chondrocytes), which can then be phagocytosed by the efferocytosis of macrophages, and remodeling efferocytosis facilitated the protection of normal chondrocytes and maintained the chondrogenic differentiation capacity of MSCs. In vivo experiments confirmed that hydrogel microspheres localized to cartilage lesion reversed cartilage senescence and promoted cartilage repair in OA. It is believed this in situ efferocytosis remodeling strategy can be of great significance for tissue regeneration in aging-related diseases.
Collapse
Affiliation(s)
- Wei Xiong
- Department of Foot and Ankle SurgeryBeijing Tongren HospitalCapital Medical UniversityBeijing100730P. R. China
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Zeyu Han
- Department of Foot and Ankle SurgeryBeijing Tongren HospitalCapital Medical UniversityBeijing100730P. R. China
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Sheng‐Long Ding
- Department of Foot and Ankle SurgeryBeijing Tongren HospitalCapital Medical UniversityBeijing100730P. R. China
| | - Haoran Wang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Yawei Du
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Ming‐Zhu Zhang
- Department of Foot and Ankle SurgeryBeijing Tongren HospitalCapital Medical UniversityBeijing100730P. R. China
| |
Collapse
|
10
|
Zhou H, Zhang Z, Mu Y, Yao H, Zhang Y, Wang DA. Harnessing Nanomedicine for Cartilage Repair: Design Considerations and Recent Advances in Biomaterials. ACS NANO 2024; 18:10667-10687. [PMID: 38592060 DOI: 10.1021/acsnano.4c00780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Cartilage injuries are escalating worldwide, particularly in aging society. Given its limited self-healing ability, the repair and regeneration of damaged articular cartilage remain formidable challenges. To address this issue, nanomaterials are leveraged to achieve desirable repair outcomes by enhancing mechanical properties, optimizing drug loading and bioavailability, enabling site-specific and targeted delivery, and orchestrating cell activities at the nanoscale. This review presents a comprehensive survey of recent research in nanomedicine for cartilage repair, with a primary focus on biomaterial design considerations and recent advances. The review commences with an introductory overview of the intricate cartilage microenvironment and further delves into key biomaterial design parameters crucial for treating cartilage damage, including microstructure, surface charge, and active targeting. The focal point of this review lies in recent advances in nano drug delivery systems and nanotechnology-enabled 3D matrices for cartilage repair. We discuss the compositions and properties of these nanomaterials and elucidate how these materials impact the regeneration of damaged cartilage. This review underscores the pivotal role of nanotechnology in improving the efficacy of biomaterials utilized for the treatment of cartilage damage.
Collapse
Affiliation(s)
- Huiqun Zhou
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Zhen Zhang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Yulei Mu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Hang Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yi Zhang
- School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
- Center for Neuromusculoskeletal Restorative Medicine, InnoHK, HKSTP, Sha Tin, Hong Kong SAR 999077, China
| |
Collapse
|
11
|
Wang X, Li X, Zhou J, Lei Z, Yang X. Fisetin suppresses chondrocyte senescence and attenuates osteoarthritis progression by targeting sirtuin 6. Chem Biol Interact 2024; 390:110890. [PMID: 38278314 DOI: 10.1016/j.cbi.2024.110890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/07/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Osteoarthritis (OA) is the most common type of arthritis and is an age-related joint disease that is particularly prevalent in subjects over 65 years old. The chronic rise of senescent cells has a close correlation with age-related diseases such as OA, and the senescence-associated secretory phenotype (SASP) is implicated in OA cartilage degeneration pathogenesis. Sirtuin 6 (SIRT6) is likely to be a key senescence-related regulator. Fisetin (FST) is a natural flavonol of the flavonoid family that is recommended as a senolytic drug to extend health and lifespan. However, the potential chondroprotective effects of FST on OA rats are largely unclarified. The aim of this study is to investigate the ameliorative effects of FST on OA joint cartilage and the relationship with SIRT6 and the detailed mechanisms from anti-inflammatory and anti-senescent perspectives. Rats were subjected to destabilization of the medial meniscus (DMM) surgery as a means of inducing the experimental OA model in vivo. Chondrocytes treated with IL-1β were utilized for mimicking the OA cell model in vitro. Intra-articular injection of FST, OSS_128,167 (OSS, SIRT6 inhibitor), and MDL800 (MDL, SIRT6 agonist) in vivo or administering them in IL-1β-induced rat chondrocytes in vitro were performed in order to determine the effects FST has on OA and the link with SIRT6. This study found SIRT6 level to be negatively correlated with OA severity. SIRT6 downregulation was validated in the joint cartilages of DMM rats and IL-1β-treated chondrocytes. It was also notably demonstrated that FST can activate SIRT6. Both the administration of FST and activation of SIRT6 using MDL were found to rescue cartilage erosion, decrease extracellular matrix (ECM) degradation, prevent cartilage from apoptosis, and improve detrimental senescence-related phenotype. The alleviative effects of FST against inflammation, ECM degradation, apoptosis, and senescence in IL-1β-stimulated chondrocytes were also confirmed. SIRT6 loss occurs in articular cartilage in OA pathogenesis, which is linked to aging. FST attenuates injury-induced aging-related phenotype changes in chondrocytes through the targeting of SIRT6.
Collapse
Affiliation(s)
- Xuezhong Wang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xuyang Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jianlin Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zheng Lei
- Department of Emergency Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Xiaoming Yang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
12
|
Ciaffaglione V, Rizzarelli E. Carnosine, Zinc and Copper: A Menage a Trois in Bone and Cartilage Protection. Int J Mol Sci 2023; 24:16209. [PMID: 38003398 PMCID: PMC10671046 DOI: 10.3390/ijms242216209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Dysregulated metal homeostasis is associated with many pathological conditions, including arthritic diseases. Osteoarthritis and rheumatoid arthritis are the two most prevalent disorders that damage the joints and lead to cartilage and bone destruction. Recent studies show that the levels of zinc (Zn) and copper (Cu) are generally altered in the serum of arthritis patients. Therefore, metal dyshomeostasis may reflect the contribution of these trace elements to the disease's pathogenesis and manifestations, suggesting their potential for prognosis and treatment. Carnosine (Car) also emerged as a biomarker in arthritis and exerts protective and osteogenic effects in arthritic joints. Notably, its zinc(II) complex, polaprezinc, has been recently proposed as a drug-repurposing candidate for bone fracture healing. On these bases, this review article aims to provide an overview of the beneficial roles of Cu and Zn in bone and cartilage health and their potential application in tissue engineering. The effects of Car and polaprezinc in promoting cartilage and bone regeneration are also discussed. We hypothesize that polaprezinc could exchange Zn for Cu, present in the culture media, due to its higher sequestering ability towards Cu. However, future studies should unveil the potential contribution of Cu in the beneficial effects of polaprezinc.
Collapse
Affiliation(s)
- Valeria Ciaffaglione
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy
| | - Enrico Rizzarelli
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| |
Collapse
|
13
|
Geng R, Li J, Yu C, Zhang C, Chen F, Chen J, Ni H, Wang J, Kang K, Wei Z, Xu Y, Jin T. Knee osteoarthritis: Current status and research progress in treatment (Review). Exp Ther Med 2023; 26:481. [PMID: 37745043 PMCID: PMC10515111 DOI: 10.3892/etm.2023.12180] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/11/2023] [Indexed: 09/26/2023] Open
Abstract
Knee osteoarthritis (KOA) is a common chronic articular disease worldwide. It is also the most common form of OA and is characterized by high morbidity and disability rates. With the gradual increase in life expectancy and ageing population, KOA not only affects the quality of life of patients, but also poses a burden on global public health. OA is a disease of unknown etiology and complex pathogenesis. It commonly affects joints subjected to greater loads and higher levels of activity. The knee joint, which is the most complex joint of the human body and bears the greatest load among all joints, is therefore most susceptible to development of OA. KOA lesions may involve articular cartilage, synovium, joint capsule and periarticular muscles, causing irreversible articular damage. Factors such as mechanical overload, inflammation, metabolism, hormonal changes and ageing serve key roles in the acceleration of KOA progression. The clinical diagnosis of KOA is primarily based on combined analysis of symptoms, signs, imaging and laboratory examination results. At present, there is no cure for KOA and the currently available therapies primarily focus on symptomatic treatment and delay of disease progression. Knee replacement surgery is typically performed in patients with advanced disease. The current study presents a review of epidemiological characteristics, risk factors, histopathological manifestations, pathogenesis, diagnosis, treatment modalities and progress in KOA research.
Collapse
Affiliation(s)
- Ruizhi Geng
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Institute of Traumatology and Orthopedics, 920th Hospital of Joint Logistics Support Force of The People's Liberation Army, Kunming, Yunnan 650051, P.R. China
| | - Jiayi Li
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Department of Anatomy and Histology, and Embryology, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Chen Yu
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Department of Orthopedics, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650034, P.R. China
| | - Chaoqun Zhang
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Institute of Traumatology and Orthopedics, 920th Hospital of Joint Logistics Support Force of The People's Liberation Army, Kunming, Yunnan 650051, P.R. China
| | - Fei Chen
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Institute of Traumatology and Orthopedics, 920th Hospital of Joint Logistics Support Force of The People's Liberation Army, Kunming, Yunnan 650051, P.R. China
| | - Jie Chen
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- School of Public Health, Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Haonan Ni
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Jiaxu Wang
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Institute of Traumatology and Orthopedics, 920th Hospital of Joint Logistics Support Force of The People's Liberation Army, Kunming, Yunnan 650051, P.R. China
| | - Kaiqiang Kang
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Institute of Traumatology and Orthopedics, 920th Hospital of Joint Logistics Support Force of The People's Liberation Army, Kunming, Yunnan 650051, P.R. China
| | - Ziqi Wei
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Department of Anatomy and Histology, and Embryology, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yongqing Xu
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Institute of Traumatology and Orthopedics, 920th Hospital of Joint Logistics Support Force of The People's Liberation Army, Kunming, Yunnan 650051, P.R. China
| | - Tao Jin
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Institute of Traumatology and Orthopedics, 920th Hospital of Joint Logistics Support Force of The People's Liberation Army, Kunming, Yunnan 650051, P.R. China
| |
Collapse
|