1
|
Sorrentino C, Ciummo SL, Fieni C, Di Carlo E. Nanomedicine for cancer patient-centered care. MedComm (Beijing) 2024; 5:e767. [PMID: 39434967 PMCID: PMC11491554 DOI: 10.1002/mco2.767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 10/23/2024] Open
Abstract
Cancer is a leading cause of morbidity and mortality worldwide, and an increase in incidence is estimated in the next future, due to population aging, which requires the development of highly tolerable and low-toxicity cancer treatment strategies. The use of nanotechnology to tailor treatments according to the genetic and immunophenotypic characteristics of a patient's tumor, and to allow its targeted release, can meet this need, improving the efficacy of treatment and minimizing side effects. Nanomedicine-based approach for the diagnosis and treatment of cancer is a rapidly evolving field. Several nanoformulations are currently in clinical trials, and some have been approved and marketed. However, their large-scale production and use are still hindered by an in-depth debate involving ethics, intellectual property, safety and health concerns, technical issues, and costs. Here, we survey the key approaches, with specific reference to organ-on chip technology, and cutting-edge tools, such as CRISPR/Cas9 genome editing, through which nanosystems can meet the needs for personalized diagnostics and therapy in cancer patients. An update is provided on the nanopharmaceuticals approved and marketed for cancer therapy and those currently undergoing clinical trials. Finally, we discuss the emerging avenues in the field and the challenges to be overcome for the transfer of nano-based precision oncology into clinical daily life.
Collapse
Affiliation(s)
- Carlo Sorrentino
- Department of Medicine and Sciences of Aging“G. d'Annunzio” University” of Chieti‐PescaraChietiItaly
- Anatomic Pathology and Immuno‐Oncology Unit, Center for Advanced Studies and Technology (CAST)“G. d'Annunzio” University of Chieti‐PescaraChietiItaly
| | - Stefania Livia Ciummo
- Department of Medicine and Sciences of Aging“G. d'Annunzio” University” of Chieti‐PescaraChietiItaly
- Anatomic Pathology and Immuno‐Oncology Unit, Center for Advanced Studies and Technology (CAST)“G. d'Annunzio” University of Chieti‐PescaraChietiItaly
| | - Cristiano Fieni
- Department of Medicine and Sciences of Aging“G. d'Annunzio” University” of Chieti‐PescaraChietiItaly
- Anatomic Pathology and Immuno‐Oncology Unit, Center for Advanced Studies and Technology (CAST)“G. d'Annunzio” University of Chieti‐PescaraChietiItaly
| | - Emma Di Carlo
- Department of Medicine and Sciences of Aging“G. d'Annunzio” University” of Chieti‐PescaraChietiItaly
- Anatomic Pathology and Immuno‐Oncology Unit, Center for Advanced Studies and Technology (CAST)“G. d'Annunzio” University of Chieti‐PescaraChietiItaly
| |
Collapse
|
2
|
Rebaudi F, De Franco F, Goda R, Obino V, Vita G, Baronti C, Iannone E, Pitto F, Massa B, Fenoglio D, Jandus C, Poggio F, Fregatti P, Melaiu O, Bozzo M, Candiani S, Papaccio F, Greppi M, Pesce S, Marcenaro E. The landscape of combining immune checkpoint inhibitors with novel Therapies: Secret alliances against breast cancer. Cancer Treat Rev 2024; 130:102831. [PMID: 39342797 DOI: 10.1016/j.ctrv.2024.102831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/04/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
This review focuses on the immune checkpoint inhibitors (ICIs) in the context of breast cancer (BC) management. These innovative treatments, by targeting proteins expressed on both tumor and immune cells, aim to overcome tumor-induced immune suppression and reactivate the immune system. The potential of this approach is the subject of numerous clinical studies. Here, we explore the key studies and emerging therapies related to ICIs providing a detailed analysis of their specific and combined use in BC treatment.
Collapse
Affiliation(s)
- Federico Rebaudi
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Fabiana De Franco
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Rayan Goda
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Valentina Obino
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Giorgio Vita
- Department of Internal Medicine (DIMI), University of Genoa, Genoa, Italy
| | - Camilla Baronti
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Eleonora Iannone
- Breast Surgery Clinic, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesca Pitto
- Department of Pathology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Barbara Massa
- Department of Pathology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Daniela Fenoglio
- Department of Internal Medicine (DIMI), University of Genoa, Genoa, Italy; Biotherapy Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Camilla Jandus
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland; Geneva Center for Inflammation Research, Geneva, Switzerland
| | - Francesca Poggio
- Department of Medical Oncology, Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Piero Fregatti
- Breast Surgery Clinic, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Integrated Surgical and Diagnostic Sciences (DISC), University of Genoa, Genoa, Italy
| | - Ombretta Melaiu
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Matteo Bozzo
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Simona Candiani
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Federica Papaccio
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Marco Greppi
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy.
| | - Silvia Pesce
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| | - Emanuela Marcenaro
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
3
|
Li Y, Xu Z, Qi Z, Huang X, Li M, Liu S, Yan Y, Gao M. Application of Carbon Nanomaterials to Enhancing Tumor Immunotherapy: Current Advances and Prospects. Int J Nanomedicine 2024; 19:10899-10915. [PMID: 39479174 PMCID: PMC11524014 DOI: 10.2147/ijn.s480799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/15/2024] [Indexed: 11/02/2024] Open
Abstract
Recent advances in tumor immunotherapy have highlighted the pivotal role of carbon nanomaterials, such as carbon dots, graphene quantum dots, and carbon nanotubes. This review examines the unique benefits of these materials in cancer treatment, focusing on their mechanisms of action within immunotherapy. These include applications in immunoregulation, recognition, and enhancement. We explore how these nanomaterials when combined with specific biomolecules, can form immunosensors. These sensors are engineered for highly sensitive and specific detection of tumor markers, offering crucial support for early diagnosis and timely therapeutic interventions. This review also addresses significant challenges facing carbon nanomaterials in clinical settings, such as issues related to long-term biocompatibility and the hurdles of clinical translation. These challenges require extensive ongoing research and discussion. This review is of both theoretical and practical importance, aiming to promote using carbon nanomaterials in tumor immunotherapy, potentially transforming clinical outcomes and enhancing patient care.
Collapse
Affiliation(s)
- Yun Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Zijuan Qi
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
| | - Xiaofeng Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Mingyu Li
- Mudanjiang Medical University, Mu Danjiang, Hei Longjiang, People’s Republic of China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yuanliang Yan
- Department of Pharmacy, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Ming Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
4
|
Li X, Wu C, Li J, Yu J, Yang X, Yu L, Wang C, Kuai R. An immunostimulatory liponanogel reveals immune activation-enhanced drug delivery and therapeutic efficacy in cancer. J Control Release 2024; 376:167-183. [PMID: 39384154 DOI: 10.1016/j.jconrel.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
The clinical use of immunostimulatory polyinosinic:polycytidylic acid (pIC) for cancer therapy has been notably limited by its low tumor accumulation and poor cytosolic delivery to activate innate immune sensors. Here, we report a liponanogel (LNG)-based platform to address these challenges. The immunostimulatory LNG consists of an ionizable lipid shell coating a nanogel made of hyaluronic acid (HA), Mn2+ and pIC, which is denoted as LNG-Mn-pIC (LMP). The protonation of internal HA within acidic endosomes increases the endosomal membrane permeability and facilitates the cytosolic delivery of pIC. Moreover, Mn2+, previously reported to activate the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, synergizes with pIC to activate innate immune cells. Remarkably, intravenously injected LMP significantly induces tumor vasculature disruption and tumor cell apoptosis in an innate immune activation-dependent manner, facilitating the LMP delivery into tumors and leading to enhanced antitumor immunity that potently inhibits or even completely regresses the established tumors. In summary, this immunostimulatory LNG platform not only serves as a useful tool to uncover the immune activation-enhanced drug delivery profile but also represents a broadly applicable platform for effective cancer immunotherapy.
Collapse
Affiliation(s)
- Xinyan Li
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Chengcheng Wu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Junyao Li
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Jinchao Yu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Xiuxiu Yang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Lvshan Yu
- School of Basic Medical Sciences, Tsinghua University, Beijing 10084, China; Peking University-Tsinghua University-National Institute Biological Science Joint Graduate Program, Beijing 100084, China
| | - Chaoyu Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Rui Kuai
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
5
|
Xu X, Zhang Y, Meng C, Zheng W, Wang L, Zhao C, Luo F. Nanozymes in cancer immunotherapy: metabolic disruption and therapeutic synergy. J Mater Chem B 2024; 12:9111-9143. [PMID: 39177061 DOI: 10.1039/d4tb00769g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Over the past decade, there has been a growing emphasis on investigating the role of immunotherapy in cancer treatment. However, it faces challenges such as limited efficacy, a diminished response rate, and serious adverse effects. Nanozymes, a subset of nanomaterials, demonstrate boundless potential in cancer catalytic therapy for their tunable activity, enhanced stability, and cost-effectiveness. By selectively targeting the metabolic vulnerabilities of tumors, they can effectively intensify the destruction of tumor cells and promote the release of antigenic substances, thereby eliciting immune clearance responses and impeding tumor progression. Combined with other therapies, they synergistically enhance the efficacy of immunotherapy. Hence, a large number of metabolism-regulating nanozymes with synergistic immunotherapeutic effects have been developed. This review summarizes recent advancements in cancer immunotherapy facilitated by nanozymes, focusing on engineering nanozymes to potentiate antitumor immune responses by disturbing tumor metabolism and performing synergistic treatment. The challenges and prospects in this field are outlined. We aim to provide guidance for nanozyme-mediated immunotherapy and pave the way for achieving durable tumor eradication.
Collapse
Affiliation(s)
- Xiangrui Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yaowen Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chijun Meng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wenzhuo Zheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lingfeng Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chenyi Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Feng Luo
- Department of Prosthodontics, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu 610041, China.
| |
Collapse
|
6
|
Lin Q, Ma W, Xu M, Xu Z, Wang J, Liang Z, Zhu L, Wu M, Luo J, Liu H, Liu J, Jin Y. A clinical prognostic model related to T cells based on machine learning for predicting the prognosis and immune response of ovarian cancer. Heliyon 2024; 10:e36898. [PMID: 39296051 PMCID: PMC11409031 DOI: 10.1016/j.heliyon.2024.e36898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/21/2024] Open
Abstract
Background Ovarian cancer (OV) is regarded as one of the most lethal malignancies affecting the female reproductive system, with individuals diagnosed with OV often facing a dismal prognosis due to resistance to chemotherapy and the presence of an immunosuppressive environment. T cells serve as a crucial mediator for immune surveillance and cancer elimination. This study aims to analyze the mechanism of T cell-associated markers in OV and create a prognostic model for clinical use in enhancing outcomes for OV patients. Methods Based on the single-cell dataset GSE184880, this study used single-cell data analysis to identify characteristic T cell subsets. Analysis of high dimensional weighted gene co-expression network analysis (hdWGCNA) is utilized to identify crucial gene modules along with their corresponding hub genes. A grand total of 113 predictive models were formed utilizing ten distinct machine learning algorithms along with the combination of the cancer genome atlas (TCGA)-OV dataset and the GSE140082 dataset. The most dependable clinical prognostic model was created utilizing the leave one out cross validation (LOOCV) framework. The validation process for the models was achieved by conducting survival curve analysis and receiver operating characteristic (ROC) analysis. The relationship between risk scores and immune cells was explored through the utilization of the Cibersort algorithm. Additionally, an analysis of drug sensitivity was carried out to anticipate chemotherapy responses across various risk groups. The genes implicated in the model were authenticated utilizing qRT-PCR, cell viability experiments, and EdU assay. Results This study developed a clinical prognostic model that includes ten risk genes. The results obtained from the training set of the study indicate that patients classified in the low-risk group experience a significant survival advantage compared to those in the high-risk group. The ROC analysis demonstrates that the model holds significant clinical utility. These results were verified using an independent dataset, strengthening the model's precision and dependability. The risk assessment provided by the model also serves as an independent prognostic factor for OV patients. The study also unveiled a noteworthy relationship between the risk scores calculated by the model and various immune cells, suggesting that the model may potentially serve as a valuable tool in forecasting responses to both immune therapy and chemotherapy in ovarian cancer patients. Notably, experimental evidence suggests that PFN1, one of the genes included in the model, is upregulated in human OV cell lines and has the capacity to promote cancer progression in in vitro models. Conclusion We have created an accurate and dependable clinical prognostic model for OV capable of predicting clinical outcomes and categorizing patients. This model effectively forecasts responses to both immune therapy and chemotherapy. By regulating the immune microenvironment and targeting the key gene PFN1, it may improve the prognosis for high-risk patients.
Collapse
Affiliation(s)
- Qiwang Lin
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong Hong Kong Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, China
| | - Weixu Ma
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Mengchang Xu
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Provincial First-class Applied Discipline (pharmacy), Changsha, China
| | - Zijin Xu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong Hong Kong Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong Hong Kong Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhu Liang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong Hong Kong Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lin Zhu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong Hong Kong Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Menglu Wu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong Hong Kong Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiejun Luo
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong Hong Kong Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Haiying Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong Hong Kong Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jianqiao Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong Hong Kong Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yunfeng Jin
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Jiang H, Liu D, Wang J, Li J, Pang X, Shan H, Zhang K. Injectable and NIR-responsive CDN-POM hydrogels for combined non-inflammatory photo-immunotherapy. J Mater Chem B 2024; 12:8616-8625. [PMID: 39140256 DOI: 10.1039/d4tb01343c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Similar to clinically applied thermal ablation techniques, the cellular necrosis that occurs during photothermal tumor therapy (PTT) can induce inflammatory response, severely compromising the therapeutic efficacy and clinical translation of the PTT. Inspired by the remarkable ROS-scavenging activity and high photothermal efficiency of molybdenum-based polyoxometalate (POM) and the immunostimulatory effect of cyclic dinucleotides (CDNs), a NIR-responsive and injectable DNA-mediated hybrid hydrogel (CDN-POM) has been developed. The hydrogels have superior photothermal efficiency (43.41%) to POM, impressive anti-inflammatory capability and prolonged intratumoral CDN-releasing behavior, thus enabling synergistic anti-tumor therapeutic outcomes. Meanwhile, local treatment induced by CDN-POM hydrogels displays minimal side effects on normal tissue. Taking advantage of the high phototherapeutic effect, ROS-scavenging activity and sustained CDN release of CDN-POM hydrogels, a novel combined approach that integrates photothermal therapy and immunotherapy of breast tumor is successfully pioneered.
Collapse
Affiliation(s)
- Hailong Jiang
- Department of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China.
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Die Liu
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Jianing Wang
- Department of Cerebrovascular Disease, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 519000, China
| | - Jingchao Li
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xinrui Pang
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Hong Shan
- Department of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China.
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Ke Zhang
- Department of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China.
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| |
Collapse
|
8
|
Liu K, Zan P, Li Z, Lu H, Liu P, Zhang L, Wang H, Ma X, Chen F, Zhao J, Sun W. Engineering Bimetallic Polyphenol for Mild Photothermal Osteosarcoma Therapy and Immune Microenvironment Remodeling by Activating Pyroptosis and cGAS-STING Pathway. Adv Healthc Mater 2024; 13:e2400623. [PMID: 38691766 DOI: 10.1002/adhm.202400623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/28/2024] [Indexed: 05/03/2024]
Abstract
The immunosuppressive tumor microenvironment (ITME) of osteosarcoma (OS) poses a significant obstacle to the efficacy of existing immunotherapies. Despite the attempt of novel immune strategies such as immune checkpoint inhibitors and tumor vaccines, their effectiveness remains suboptimal due to the inherent difficulty in mitigating ITME simultaneously from both the tumor and immune system. The promotion of anti-tumor immunity through the induction of immunogenic cell death and activation of the cGAS-STING pathway has emerged as potential strategies to counter the ITME and stimulate systemic antitumor immune responses. Here, a bimetallic polyphenol-based nanoplatform (Mn/Fe-Gallate nanoparticles coated with tumor cell membranes is presented, MFG@TCM) which combines with mild photothermal therapy (PTT) for reversing ITME via simultaneously inducing pyroptosis in OS cells and activating the cGAS-STING pathway in dendritic cells (DCs). The immunostimulatory pathways, through the syngeneic effect, exerted a substantial positive impact on promoting the secretion of damage-associated molecular patterns (DAMPs) and proinflammatory cytokines, which favors remodeling the immune microenvironment. Consequently, effector T cells led to a notable antitumor immune response, effectively inhibiting the growth of both primary and distant tumors. This study proposes a new method for treating OS using mild PTT and immune mudulation, showing promise in overcoming current treatment limitations.
Collapse
Affiliation(s)
- Kaiyuan Liu
- Department of Bone Tumor Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P. R. China
| | - Pengfei Zan
- Department of Bone Tumor Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P. R. China
| | - Zihua Li
- School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Hengli Lu
- School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Peng Liu
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, Guangdong, 518107, P. R. China
| | - Li Zhang
- School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Hongsheng Wang
- Department of Bone Tumor Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P. R. China
| | - Xiaojun Ma
- Department of Bone Tumor Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P. R. China
| | - Feng Chen
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, 200001, P. R. China
| | - Jing Zhao
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, Guangdong, 518107, P. R. China
| | - Wei Sun
- Department of Bone Tumor Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P. R. China
| |
Collapse
|
9
|
Zeng Y, Gao Y, He L, Ge W, Wang X, Ma T, Xie X. Smart delivery vehicles for cancer: categories, unique roles and therapeutic strategies. NANOSCALE ADVANCES 2024; 6:4275-4308. [PMID: 39170969 PMCID: PMC11334973 DOI: 10.1039/d4na00285g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/19/2024] [Indexed: 08/23/2024]
Abstract
Chemotherapy and surgery remain the primary treatment modalities for cancers; however, these techniques have drawbacks, such as cancer recurrence and toxic side effects, necessitating more efficient cancer treatment strategies. Recent advancements in research and medical technology have provided novel insights and expanded our understanding of cancer development; consequently, scholars have investigated several delivery vehicles for cancer therapy to improve the efficiency of cancer treatment and patient outcomes. Herein, we summarize several types of smart therapeutic carriers and elaborate on the mechanism underlying drug delivery. We reveal the advantages of smart therapeutic carriers for cancer treatment, focus on their effectiveness in cancer immunotherapy, and discuss the application of smart cancer therapy vehicles in combination with other emerging therapeutic strategies for cancer treatment. Finally, we summarize the bottlenecks encountered in the development of smart cancer therapeutic vehicles and suggest directions for future research. This review will promote progress in smart cancer therapy and facilitate related research.
Collapse
Affiliation(s)
- Yiyu Zeng
- Department of Stomatology, The Second Xiangya Hospital, Central South University Changsha 410011 P. R. China
| | - Yijun Gao
- Department of Stomatology, The Second Xiangya Hospital, Central South University Changsha 410011 P. R. China
| | - Liming He
- Department of Stomatology, Changsha Stomatological Hospital Changsha 410004 P. R. China
| | - Wenhui Ge
- Department of Stomatology, The Second Xiangya Hospital, Central South University Changsha 410011 P. R. China
| | - Xinying Wang
- Department of Stomatology, The Second Xiangya Hospital, Central South University Changsha 410011 P. R. China
| | - Tao Ma
- Department of Stomatology, The Second Xiangya Hospital, Central South University Changsha 410011 P. R. China
| | - Xiaoyan Xie
- Department of Stomatology, The Second Xiangya Hospital, Central South University Changsha 410011 P. R. China
| |
Collapse
|
10
|
Croitoru GA, Pîrvulescu DC, Niculescu AG, Epistatu D, Rădulescu M, Grumezescu AM, Nicolae CL. Nanomaterials in Immunology: Bridging Innovative Approaches in Immune Modulation, Diagnostics, and Therapy. J Funct Biomater 2024; 15:225. [PMID: 39194663 DOI: 10.3390/jfb15080225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
The intersection of immunology and nanotechnology has provided significant advancements in biomedical research and clinical applications over the years. Immunology aims to understand the immune system's defense mechanisms against pathogens. Nanotechnology has demonstrated its potential to manipulate immune responses, as nanomaterials' properties can be modified for the desired application. Research has shown that nanomaterials can be applied in diagnostics, therapy, and vaccine development. In diagnostics, nanomaterials can be used for biosensor development, accurately detecting biomarkers even at very low concentrations. Therapeutically, nanomaterials can act as efficient carriers for delivering drugs, antigens, or genetic material directly to targeted cells or tissues. This targeted delivery improves therapeutic efficacy and reduces the adverse effects on healthy cells and tissues. In vaccine development, nanoparticles can improve vaccine durability and extend immune responses by effectively delivering adjuvants and antigens to immune cells. Despite these advancements, challenges regarding the safety, biocompatibility, and scalability of nanomaterials for clinical applications are still present. This review will cover the fundamental interactions between nanomaterials and the immune system, their potential applications in immunology, and their safety and biocompatibility concerns.
Collapse
Affiliation(s)
- George-Alexandru Croitoru
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania
| | - Diana-Cristina Pîrvulescu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Dragoș Epistatu
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania
| | - Marius Rădulescu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Carmen-Larisa Nicolae
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania
| |
Collapse
|
11
|
Huang X, Zhang W. Overcoming T Cell Exhaustion in Tumor Microenvironment via Immune Checkpoint Modulation with Nano-Delivery Systems for Enhanced Immunotherapy. SMALL METHODS 2024; 8:e2301326. [PMID: 38040834 DOI: 10.1002/smtd.202301326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/12/2023] [Indexed: 12/03/2023]
Abstract
Immune checkpoint blockade (ICB) therapy for tumors has arisen in growing interest. However, the low response rate of tumors to ICB is mainly attributed to the inhibitory infiltration of immune cells in the tumor microenvironment (TME). Despite the promising benefits of ICB, the therapeutic effects of antibodies are dependent on a high dose and long-term usage in the clinic, thereby leading to immune-related adverse effects. Accordingly, ICB combined with nano-delivery systems could be used to overcome T cell exhaustion, which reduces the side effects and the usage of antibodies with higher response rates in patients. In this review, the authors aim to overcome T cell exhaustion in TME via immune checkpoint modulation with nano-delivery systems for enhanced immunotherapy. Several strategies are summarized to combine ICB and nano-delivery systems to further enhance immunotherapy: a) expressing immune checkpoint on the surface of nano-delivery systems; b) loading immune checkpoint inhibitors into nano-delivery systems; c) loading gene-editing technology into nano-delivery systems; and d) nano-delivery systems mediated immune checkpoint modulation. Taken together, ICB combined with nano-delivery systems might be a promising strategy to overcome T cell exhaustion in TME for enhanced immunotherapy.
Collapse
Affiliation(s)
- Xin Huang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weiyue Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
12
|
Kim J, Maharjan R, Park J. Current Trends and Innovative Approaches in Cancer Immunotherapy. AAPS PharmSciTech 2024; 25:168. [PMID: 39044047 DOI: 10.1208/s12249-024-02883-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024] Open
Abstract
Immunotherapy is one of the most promising therapeutic approaches in the field of cancer treatment. As a tumor progresses, tumor cells employ an array of immune-regulatory mechanisms to suppress immune responses within the tumor microenvironment. Using our understanding of these mechanisms, cancer immunotherapy has been developed to enhance the immune system's effectiveness in treating cancer. Numerous cancer immunotherapies are currently in clinical use, yet many others are either in different stages of development or undergoing clinical studies. In this paper, we briefly discuss the features and current status of cancer immunotherapies. This includes the application of monoclonal antibodies, immune checkpoint inhibitors, adoptive cell therapy, cytokine therapy, cancer vaccines, and gene therapy, all of which have gained significant recognition in clinical practice. Additionally, we discuss limitations that may hinder successful clinical utilization and promising strategies, such as combining immunotherapy with nanotechnology.
Collapse
Affiliation(s)
- Jaechang Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone, Lexington, KY, 40506, USA
| | - Ruby Maharjan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone, Lexington, KY, 40506, USA
| | - Jonghyuck Park
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone, Lexington, KY, 40506, USA.
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, USA.
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
13
|
Chen Z, Ding YH, Shao L, Ji XM, Qian X, Zhang AQ. Qingfei mixture mitigates immunosuppression of tumor microenvironment in non-small cell lung cancer by blocking stat1/Ido1-mediated tryptophan-kynurenine pathway. Heliyon 2024; 10:e32260. [PMID: 38882349 PMCID: PMC11176930 DOI: 10.1016/j.heliyon.2024.e32260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
Programmed death-1 (PD-1) acts as a T cell checkpoint and is important in controlling T cell exhaustion. Blocking the intercommunication across PD-1 and PD-L1 is promising for advanced lung cancer treatment. However, the response rate requires being strengthened. This study aimed to determine whether the combination treatment of Qingfei mixture (QFM) and PD-1 inhibitor could improve the sensitivity of monoclonal antibody by regulating STAT1/IDO1-mediated tryptophan (Trp)-kynurenine (Kyn) pathway. The in vivo imaging system, immunofluorescence, hematoxylin-eosin staining, TUNEL, flow cytometry, HPLC, and ELISA were used to estimate the anti-tumor effects in LLC-luc tumor-bearing C57BL/6 mice treated with QFM, PD-1 inhibitor, 2-NP (enhancer of STAT1 transcription), and FICZ (AhR agonist) alone or in combination. IFN-γ-mediated A549 and LLC cells were treated with QFM-containing serum and fludarabine (FLU, STAT1 inhibitor), and cell viability, apoptosis, and Kyn content were then evaluated using CCK-8 assays, flow cytometry, and HPLC assays, respectively. Additionally, the expressions of STAT1, IDO1, AhR, NFATc1, TRIP12, PD-1, and PD-L1 were measured in vivo and in vitro. We found QFM increased the anti-cancer actions of PD-1 inhibitors by increasing the CD8+IFNγ+ T cells infiltration and decreasing the ratio of Kyn/Trp. Besides, QFM-containing serum suppressed the proliferation and promoted apoptosis in A549 and LLC cells, meanwhile, FLU boosted the effects of QFM-containing serum. Moreover, the suppression of tumor growth in the combination therapy was attenuated in the mice receiving 2-NP or FICZ. The occurrence of the above results was accompanied by a decrease in STAT1, IDO1, AhR, PD-1, and PD-L1 expressions. Collectively, the findings suggested that QFM may increase the influences of PD-1 inhibitors at least partially by blocking the STAT1/IDO1-mediated tryptophan-kynurenine pathway in lung cancer.
Collapse
Affiliation(s)
- Zhuo Chen
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yu-Heng Ding
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Lan Shao
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Xu-Ming Ji
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiang Qian
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Ai-Qin Zhang
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
Rehan F, Zhang M, Fang J, Greish K. Therapeutic Applications of Nanomedicine: Recent Developments and Future Perspectives. Molecules 2024; 29:2073. [PMID: 38731563 PMCID: PMC11085487 DOI: 10.3390/molecules29092073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The concept of nanomedicine has evolved significantly in recent decades, leveraging the unique phenomenon known as the enhanced permeability and retention (EPR) effect. This has facilitated major advancements in targeted drug delivery, imaging, and individualized therapy through the integration of nanotechnology principles into medicine. Numerous nanomedicines have been developed and applied for disease treatment, with a particular focus on cancer therapy. Recently, nanomedicine has been utilized in various advanced fields, including diagnosis, vaccines, immunotherapy, gene delivery, and tissue engineering. Multifunctional nanomedicines facilitate concurrent medication delivery, therapeutic monitoring, and imaging, allowing for immediate responses and personalized treatment plans. This review concerns the major advancement of nanomaterials and their potential applications in the biological and medical fields. Along with this, we also mention the various clinical translations of nanomedicine and the major challenges that nanomedicine is currently facing to overcome the clinical translation barrier.
Collapse
Affiliation(s)
- Farah Rehan
- Department of Molecular Medicine, Al-Jawhara Centre for Molecular Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 323, Bahrain;
| | - Mingjie Zhang
- Faculty of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Nishi-ku, Kumamoto 860-0082, Japan;
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jun Fang
- Faculty of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Nishi-ku, Kumamoto 860-0082, Japan;
| | - Khaled Greish
- Department of Molecular Medicine, Al-Jawhara Centre for Molecular Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 323, Bahrain;
| |
Collapse
|
15
|
Li XY, Li RH, Cong JZ, Liu WS, Zhang Y, Guan HL, Zhu LL, Chen K, Pang LY, Jin H. Heating tumors with tumor cell-derived nanoparticles to enhance chemoimmunotherapy for colorectal cancer. Nanomedicine (Lond) 2024; 19:561-579. [PMID: 38265008 DOI: 10.2217/nnm-2023-0332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Abstract
Aim: To investigate the mechanism of doxorubicin (DOX)-induced immunogenic cell death (ICD) and to improve immunotherapy efficacy. Materials & methods: In this study, hybrid vesicles containing DOX (HV-DOX) were prepared by thin-film hydration with extrusion, and the formulated nanoparticles were characterized physically. Furthermore, in vitro experiments and animal models were used to investigate the efficacy and new mechanisms of chemotherapy combined with immunotherapy. Results: DOX improved tumor immunogenicity by alkalinizing lysosomes, inhibiting tumor cell autophagy and inducing ICD. HVs could activate dendritic cell maturation, synergistically enhancing chemotherapeutic immunity. Conclusion: The mechanism of DOX-induced ICD was explored, and antitumor immunity was synergistically activated by HV-DOX to improve chemotherapeutic drug loading and provide relevant antigenic information.
Collapse
Affiliation(s)
- Xin-Ying Li
- Department of Clinical Laboratory, Affiliated Hongqi Hospital, Mudanjiang Medical University, Aimin District, Mudanjiang, 157011, China
- Department of Laboratory & Diagnosis, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Rong-Hui Li
- Department of Clinical Laboratory, Affiliated Hongqi Hospital, Mudanjiang Medical University, Aimin District, Mudanjiang, 157011, China
| | - Jun-Zi Cong
- Department of Scientific Research, Affiliated Hongqi Hospital, Mudanjiang Medical University, Aimin District, Mudanjiang, 157011, China
| | - Wen-Shang Liu
- Department of Laboratory & Diagnosis, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yang Zhang
- Department of Clinical Laboratory, Affiliated Hongqi Hospital, Mudanjiang Medical University, Aimin District, Mudanjiang, 157011, China
| | - Hui-Lin Guan
- Department of Scientific Research, Mudanjiang Medical University, Aimin District, Mudanjiang, 157011, China
| | - Ling-Ling Zhu
- Department of Hematology, Affiliated Hongqi Hospital, Mudanjiang Medical University, Aimin District, Mudanjiang, 157011, China
| | - Kai Chen
- Department of Clinical Laboratory, Affiliated Hongqi Hospital, Mudanjiang Medical University, Aimin District, Mudanjiang, 157011, China
| | - Li-Ying Pang
- Department of Clinical Laboratory, Affiliated Hongqi Hospital, Mudanjiang Medical University, Aimin District, Mudanjiang, 157011, China
| | - Hong Jin
- Department of Clinical Laboratory, Affiliated Hongqi Hospital, Mudanjiang Medical University, Aimin District, Mudanjiang, 157011, China
| |
Collapse
|
16
|
Pari E, Sheibani M, Sazegar MR, Mir S, Moazam A, Khalilzadeh M, Motevalian M. Comparison of neuroprotective effects of a topiramate-loaded biocomposite based on mesoporous silica nanoparticles with pure topiramate against methylphenidate-induced neurodegeneration. Mol Biol Rep 2024; 51:65. [PMID: 38170306 DOI: 10.1007/s11033-023-09011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/07/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Methylphenidate (MPH) abuse has been criticized for its role in neurodegeneration. Also, a high risk of seizure was reported in the first month of MPH treatment. Topiramate, a broad-spectrum Antiepileptic Drug (AED), has been used as a neuroprotective agent in both aforementioned complications. Nanotechnology is introduced to increase desirable neurological treatment with minimum side effects. We aimed to investigate the potential neuroprotective activity of topiramate loaded on nanoparticles. METHODS AND RESULTS MTT assay was performed to evaluate the cellular cytotoxicity of Mesoporous Silica Nanoparticles (MSN). Male rats were randomly divided into eight groups. Rats received an intraperitoneal (i.p) MPH (10 mg/kg) injection and a daily oral dose of topiramate (TPM, 30 mg/kg), MSN with Zn core (10 and 30 mg/kg), and MSN with Cu core (10 and 30 mg/kg) for three weeks. On day 21, a seizure was induced by a single injection of pentylenetetrazole (PTZ) to evaluate the protective effects of TPM-loaded nanoparticles on seizure latency and duration following MPH-induced neurotoxicity. Moreover, the hippocampal content of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), malondialdehyde (MDA), and the anti-oxidant enzymes (SOD, GPx, and GR) activities were assessed. Also, BAX and Bcl-2 as two main apoptotic markers were evaluated. RESULTS MPH neurotoxicity was observed as a raised duration and reduced latency in PTZ-induced seizure. However, TPM-loaded MSN with Zn species (NE) treatment reduced the duration and improved the latency time. Also, NE and, somewhat, TPM-loaded MSN with Cu species (NM) administration reduced inflammatory cytokines, MDA, and Bax levels and increased activities in the rat hippocampus. CONCLUSION TPM-loaded nanoparticles could be used as neuroprotective agents against MPH-induced neurodegeneration by improving seizure parameters and reducing inflammatory, oxidant, and apoptotic factors.
Collapse
Affiliation(s)
- Erfan Pari
- Faculty of Chemistry, North Tehran Branch, Islamic Azad University, Hakimiyeh, Tehran, Iran
| | - Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Sazegar
- Faculty of Chemistry, North Tehran Branch, Islamic Azad University, Hakimiyeh, Tehran, Iran.
| | - Saeedeh Mir
- Faculty of Chemistry, North Tehran Branch, Islamic Azad University, Hakimiyeh, Tehran, Iran
| | - Ashrafsadat Moazam
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mina Khalilzadeh
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Manijeh Motevalian
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Pharmacology Department, Medical School & Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Dang BTN, Kwon TK, Lee S, Jeong JH, Yook S. Nanoparticle-based immunoengineering strategies for enhancing cancer immunotherapy. J Control Release 2024; 365:773-800. [PMID: 38081328 DOI: 10.1016/j.jconrel.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/27/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
Cancer immunotherapy is a groundbreaking strategy that has revolutionized the field of oncology compared to other therapeutic strategies, such as surgery, chemotherapy, or radiotherapy. However, cancer complexity, tumor heterogeneity, and immune escape have become the main hurdles to the clinical application of immunotherapy. Moreover, conventional immunotherapies cause many harmful side effects owing to hyperreactivity in patients, long treatment durations and expensive cost. Nanotechnology is considered a transformative approach that enhances the potency of immunotherapy by capitalizing on the superior physicochemical properties of nanocarriers, creating highly targeted tissue delivery systems. These advantageous features include a substantial specific surface area, which enhances the interaction with the immune system. In addition, the capability to finely modify surface chemistry enables the achievement of controlled and sustained release properties. These advances have significantly increased the potential of immunotherapy, making it more powerful than ever before. In this review, we introduce recent nanocarriers for application in cancer immunotherapy based on strategies that target different main immune cells, including T cells, dendritic cells, natural killer cells, and tumor-associated macrophages. We also provide an overview of the role and significance of nanotechnology in cancer immunotherapy.
Collapse
Affiliation(s)
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Jee-Heon Jeong
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Simmyung Yook
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
18
|
Yao L, Wang Q, Ma W. Navigating the Immune Maze: Pioneering Strategies for Unshackling Cancer Immunotherapy Resistance. Cancers (Basel) 2023; 15:5857. [PMID: 38136402 PMCID: PMC10742031 DOI: 10.3390/cancers15245857] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Cancer immunotherapy has ushered in a transformative era in oncology, offering unprecedented promise and opportunities. Despite its remarkable breakthroughs, the field continues to grapple with the persistent challenge of treatment resistance. This resistance not only undermines the widespread efficacy of these pioneering treatments, but also underscores the pressing need for further research. Our exploration into the intricate realm of cancer immunotherapy resistance reveals various mechanisms at play, from primary and secondary resistance to the significant impact of genetic and epigenetic factors, as well as the crucial role of the tumor microenvironment (TME). Furthermore, we stress the importance of devising innovative strategies to counteract this resistance, such as employing combination therapies, tailoring immune checkpoints, and implementing real-time monitoring. By championing these state-of-the-art methods, we anticipate a paradigm that blends personalized healthcare with improved treatment options and is firmly committed to patient welfare. Through a comprehensive and multifaceted approach, we strive to tackle the challenges of resistance, aspiring to elevate cancer immunotherapy as a beacon of hope for patients around the world.
Collapse
Affiliation(s)
- Liqin Yao
- Key Laboratory for Translational Medicine, The First Affiliated Hospital, Huzhou University, Huzhou 313000, China
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China;
| | - Wenxue Ma
- Department of Medicine, Moores Cancer Center, Sanford Stem Cell Institute, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
19
|
Kiaie SH, Salehi-Shadkami H, Sanaei MJ, Azizi M, Barough MS, Nasr MS, Sheibani M. Correction: Nano-immunotherapy: overcoming delivery challenge of immune checkpoint therapy. J Nanobiotechnology 2023; 21:433. [PMID: 37980526 PMCID: PMC10657613 DOI: 10.1186/s12951-023-02199-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023] Open
Affiliation(s)
- Seyed Hossein Kiaie
- Department of Formulation Development, ReNAP Therapeutics, Tehran, Iran.
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Hossein Salehi-Shadkami
- Department of Formulation Development, ReNAP Therapeutics, Tehran, Iran
- Department of Medical Science, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Sanaei
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, 8815713471, Iran
| | - Marzieh Azizi
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | | | - Mohammad Sadegh Nasr
- Department of Computer Science and Engineering Multi-Interprofessional Center for Health Informatics (MICHI), The University of Texas at Arlington, Arlington, TX, USA
| | - Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|