1
|
Zhang Y, Wu J, Dong E, Wang Z, Xiao H. Toll-like receptors in cardiac hypertrophy. Front Cardiovasc Med 2023; 10:1143583. [PMID: 37113698 PMCID: PMC10126280 DOI: 10.3389/fcvm.2023.1143583] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/24/2023] [Indexed: 04/29/2023] Open
Abstract
Toll-like receptors (TLRs) are a family of pattern recognition receptors (PRRs) that can identify pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). TLRs play an important role in the innate immune response, leading to acute and chronic inflammation. Cardiac hypertrophy, an important cardiac remodeling phenotype during cardiovascular disease, contributes to the development of heart failure. In previous decades, many studies have reported that TLR-mediated inflammation was involved in the induction of myocardium hypertrophic remodeling, suggesting that targeting TLR signaling might be an effective strategy against pathological cardiac hypertrophy. Thus, it is necessary to study the mechanisms underlying TLR functions in cardiac hypertrophy. In this review, we summarized key findings of TLR signaling in cardiac hypertrophy.
Collapse
Affiliation(s)
- Yanan Zhang
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University Third Hospital, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Beijing, China
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Department of Clinical Laboratory, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Jimin Wu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University Third Hospital, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Beijing, China
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Erdan Dong
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University Third Hospital, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Beijing, China
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhanli Wang
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China
- Department of Clinical Laboratory, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Correspondence: Zhanli Wang Han Xiao
| | - Han Xiao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University Third Hospital, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Beijing, China
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Correspondence: Zhanli Wang Han Xiao
| |
Collapse
|
2
|
Extracellular HMGB1 as Inflammatory Mediator in the Progression of Mycoplasma Gallisepticum Infection. Cells 2022; 11:cells11182817. [PMID: 36139393 PMCID: PMC9496866 DOI: 10.3390/cells11182817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
High-mobility group box 1 (HMGB1), a member of damage-associated molecular patterns (DAMPs), is involved in the immune regulation of several infectious diseases. Mycoplasma gallisepticum (MG) infection is proved to cause an abnormal immune response, but the role of HMGB1 in MG-induced chronic respiratory disease (CRD) is unclear. In this study, we found that HMGB1 was released from the nucleus to the extracellular in macrophages upon infection with MG. Extracellular HMGB1 bound to TLR2 activating the NF-κB pathway triggering a severe inflammatory storm and promoting the progression of MG infection. More importantly, TLR4 could be activated by HMGB1 to trigger immune disorders after TLR2 was silenced. This disease process could be interrupted by ethyl pyruvate (EP) inhibition of HMGB1 release or glycyrrhizic acid (GA). Furthermore, treatment of MG-infected chickens with GA significantly alleviated immune organ damage. In conclusion, we demonstrate that HMGB1 is secreted extracellularly to form an inflammatory environment upon MG infection, triggering a further cellular inflammatory storm in a positive feedback approach. Blocking MG-induced HMGB1 release or suppression downstream of the HMGB1-TLR2/TLR4 axis may be a promising novel strategy for the treatment of CRD. Furthermore, this study may provide a theoretical reference for understanding non-LPS-activated TLR4 events.
Collapse
|
3
|
Zhu T, Wang M, Quan J, Du Z, Li Q, Xie Y, Lin M, Xu C, Xie Y. Identification and Verification of Feature Biomarkers Associated With Immune Cells in Dilated Cardiomyopathy by Bioinformatics Analysis. Front Genet 2022; 13:874544. [PMID: 35646094 PMCID: PMC9133742 DOI: 10.3389/fgene.2022.874544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/30/2022] [Indexed: 11/18/2022] Open
Abstract
Objective: To explore immune-related feature genes in patients with dilated cardiomyopathy (DCM). Methods: Expression profiles from three datasets (GSE1145, GSE21610 and GSE21819) of human cardiac tissues of DCM and healthy controls were downloaded from the GEO database. After data preprocessing, differentially expressed genes (DEGs) were identified by the ‘limma’ package in R software. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were then performed to identify biological functions of the DEGs. The compositional patterns of stromal and immune cells were estimated using xCell. Hub genes and functional modules were identified based on protein-protein interaction (PPI) network analysis by STRING webtool and Cytoscape application. Correlation analysis was performed between immune cell subtypes and hub genes. Hub genes with |correlation coefficient| > 0.5 and p value <0.05 were selected as feature biomarkers. A logistic regression model was constructed based on the selected biomarkers and validated in datasets GSE5406 and GSE57338. Results: A total of 1,005 DEGs were identified. Functional enrichment analyses indicated that extracellular matrix remodeling and immune and inflammation disorder played important roles in the pathogenesis of DCM. Immune cells, including CD8+ T-cells, macrophages M1 and Th1 cells, were proved to be significantly changed in DCM patients by immune cell infiltration analysis. In the PPI network analysis, STAT3, IL6, CCL2, PIK3R1, ESR1, CCL5, IL17A, TLR2, BUB1B and MYC were identified as hub genes, among which CCL2, CCL5 and TLR2 were further screened as feature biomarkers by using hub genes and immune cells correlation analysis. A diagnosis model was successfully constructed by using the three biomarkers with area under the curve (AUC) scores 0.981, 0.867 and 0.946 in merged dataset, GSE5406 and GSE57338, respectively. Conclusion: The present study identified three immune-related genes as diagnostic biomarkers for DCM, providing a novel perspective of immune and inflammatory response for the exploration of DCM molecular mechanisms.
Collapse
Affiliation(s)
- Tingfang Zhu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingjie Wang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinwei Quan
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zunhui Du
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiheng Li
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Xie
- Johns Hopkins University, Baltimore, MD, United States
| | - Menglu Lin
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cathy Xu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yucai Xie
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yucai Xie,
| |
Collapse
|
4
|
Kessler EL, Wang JW, Kok B, Brans MA, Nederlof A, van Stuijvenberg L, Huang C, Vink A, Arslan F, Efimov IR, Lam CSP, Vos MA, de Kleijn DPV, Fontes MSC, van Veen TAB. Ventricular TLR4 Levels Abrogate TLR2-Mediated Adverse Cardiac Remodeling upon Pressure Overload in Mice. Int J Mol Sci 2021; 22:ijms222111823. [PMID: 34769252 PMCID: PMC8583975 DOI: 10.3390/ijms222111823] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022] Open
Abstract
Involvement of the Toll-like receptor 4 (TLR4) in maladaptive cardiac remodeling and heart failure (HF) upon pressure overload has been studied extensively, but less is known about the role of TLR2. Interplay and redundancy of TLR4 with TLR2 have been reported in other organs but were not investigated during cardiac dysfunction. We explored whether TLR2 deficiency leads to less adverse cardiac remodeling upon chronic pressure overload and whether TLR2 and TLR4 additively contribute to this. We subjected 35 male C57BL/6J mice (wildtype (WT) or TLR2 knockout (KO)) to sham or transverse aortic constriction (TAC) surgery. After 12 weeks, echocardiography and electrocardiography were performed, and hearts were extracted for molecular and histological analysis. TLR2 deficiency (n = 14) was confirmed in all KO mice by PCR and resulted in less hypertrophy (heart weight to tibia length ratio (HW/TL), smaller cross-sectional cardiomyocyte area and decreased brain natriuretic peptide (BNP) mRNA expression, p < 0.05), increased contractility (QRS and QTc, p < 0.05), and less inflammation (e.g., interleukins 6 and 1β, p < 0.05) after TAC compared to WT animals (n = 11). Even though TLR2 KO TAC animals presented with lower levels of ventricular TLR4 mRNA than WT TAC animals (13.2 ± 0.8 vs. 16.6 ± 0.7 mg/mm, p < 0.01), TLR4 mRNA expression was increased in animals with the largest ventricular mass, highest hypertrophy, and lowest ejection fraction, leading to two distinct groups of TLR2 KO TAC animals with variations in cardiac remodeling. This variation, however, was not seen in WT TAC animals even though heart weight/tibia length correlated with expression of TLR4 in these animals (r = 0.078, p = 0.005). Our data suggest that TLR2 deficiency ameliorates adverse cardiac remodeling and that ventricular TLR2 and TLR4 additively contribute to adverse cardiac remodeling during chronic pressure overload. Therefore, both TLRs may be therapeutic targets to prevent or interfere in the underlying molecular processes.
Collapse
Affiliation(s)
- Elise L. Kessler
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht University, 3584CM Utrecht, The Netherlands; (B.K.); (M.A.B.); (A.N.); (L.v.S.); (M.A.V.); (M.S.C.F.); (T.A.B.v.V.)
- Laboratory Experimental Cardiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht University, 3508GA Utrecht, The Netherlands;
- Correspondence: ; Tel.: +31-628706156
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore 117597, Singapore; (J.-W.W.); (C.H.)
- Cardiovascular Research Institute, National University Heart Centre Singapore, Singapore 117599, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore 117597, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore 117597, Singapore
| | - Bart Kok
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht University, 3584CM Utrecht, The Netherlands; (B.K.); (M.A.B.); (A.N.); (L.v.S.); (M.A.V.); (M.S.C.F.); (T.A.B.v.V.)
| | - Maike A. Brans
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht University, 3584CM Utrecht, The Netherlands; (B.K.); (M.A.B.); (A.N.); (L.v.S.); (M.A.V.); (M.S.C.F.); (T.A.B.v.V.)
- Laboratory Experimental Cardiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht University, 3508GA Utrecht, The Netherlands;
| | - Angelique Nederlof
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht University, 3584CM Utrecht, The Netherlands; (B.K.); (M.A.B.); (A.N.); (L.v.S.); (M.A.V.); (M.S.C.F.); (T.A.B.v.V.)
| | - Leonie van Stuijvenberg
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht University, 3584CM Utrecht, The Netherlands; (B.K.); (M.A.B.); (A.N.); (L.v.S.); (M.A.V.); (M.S.C.F.); (T.A.B.v.V.)
| | - Chenyuan Huang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore 117597, Singapore; (J.-W.W.); (C.H.)
- Cardiovascular Research Institute, National University Heart Centre Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore 117597, Singapore
| | - Aryan Vink
- Department of Pathology, University Medical Center Utrecht, 3508GA Utrecht, The Netherlands;
| | - Fatih Arslan
- Laboratory Experimental Cardiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht University, 3508GA Utrecht, The Netherlands;
- Department of Cardiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht University, 3508GA Utrecht, The Netherlands
| | - Igor R. Efimov
- Department of Biomedical Engineering, George Washington University, Washington, DC 20052, USA;
| | - Carolyn S. P. Lam
- National Heart Centre Singapore and Duke-National University of Singapore, 5 Hospital Dr, Singapore 169609, Singapore;
- UMC Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
| | - Marc A. Vos
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht University, 3584CM Utrecht, The Netherlands; (B.K.); (M.A.B.); (A.N.); (L.v.S.); (M.A.V.); (M.S.C.F.); (T.A.B.v.V.)
| | - Dominique P. V. de Kleijn
- Department of Vascular Surgery, The Netherlands & Netherlands Heart Institute, University Medical Center Utrecht, Utrecht University, 3508GA Utrecht, The Netherlands;
- The Netherlands Heart Institute, Moreelsepark 1, 3511EP Utrecht, The Netherlands
| | - Magda S. C. Fontes
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht University, 3584CM Utrecht, The Netherlands; (B.K.); (M.A.B.); (A.N.); (L.v.S.); (M.A.V.); (M.S.C.F.); (T.A.B.v.V.)
| | - Toon A. B. van Veen
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht University, 3584CM Utrecht, The Netherlands; (B.K.); (M.A.B.); (A.N.); (L.v.S.); (M.A.V.); (M.S.C.F.); (T.A.B.v.V.)
| |
Collapse
|
5
|
Sustained Immunoparalysis in Endotoxin-Tolerized Monocytic Cells. Mediators Inflamm 2020; 2020:8294342. [PMID: 32617075 PMCID: PMC7306843 DOI: 10.1155/2020/8294342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 01/09/2023] Open
Abstract
Sepsis is associated with a strong inflammatory reaction triggering a complex and prolonged immune response. Septic patients have been shown to develop sustained immunosuppression due to a reduced responsiveness of leukocytes to pathogens. Changes in cellular metabolism of leukocytes have been linked to this phenomenon and contribute to the ongoing immunological derangement. However, the underlying mechanisms of these phenomena are incompletely understood. In cell culture models, we mimicked LPS tolerance conditions to provide evidence that epigenetic modifications account for monocyte metabolic changes which cause immune paralysis in restimulated septic monocytes. In detail, we observed differential methylation of CpG sites related to metabolic activity in human PBMCs 18 h after septic challenge. The examination of changes in immune function and metabolic pathways was performed in LPS-tolerized monocytic THP-1 cells. Passaged THP-1 cells, inheriting initial LPS challenge, presented with dysregulation of cytokine expression and oxygen consumption for up to 7 days after the initial LPS treatment. Proinflammatory cytokine concentrations of TNFα and IL1β were significantly suppressed following a second LPS challenge (p < 0.001) on day 7 after first LPS stimulation. However, the analysis of cellular metabolism did not reveal any noteworthy alterations between tolerant and nontolerant THP-1 monocytes. No quantitative differences in ATP and NADH synthesis or participating enzymes of energy metabolism occurred. Our data demonstrate that the function and epigenetic modifications of septic and tolerized monocytes can be examined in vitro with the help of our LPS model. Changes in CpG site methylation and monocyte function point to a correlation between epigenetic modification in metabolic pathways and reduced monocyte function under postseptic conditions.
Collapse
|
6
|
Liang S, Xinyong C, Hongmin Z, Jing W, Lang H, Ping Z. TLR2 and TLR3 expression as a biomarker for the risk of doxorubicin-induced heart failure. Toxicol Lett 2018; 295:205-211. [PMID: 29959987 DOI: 10.1016/j.toxlet.2018.06.1219] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/19/2018] [Accepted: 06/26/2018] [Indexed: 12/19/2022]
Abstract
Doxorubicin (Dox) is limited in its use because of its adverse effect of inducing irreversible heart dysfunction. Innate immune factors, including toll-like receptors (TLRs), play important roles in most cardiac diseases and doxorubicin-induced cardiotoxicity. In this study, subjects were divided into the following groups: healthy controls (n = 62), HF group (n = 60), Dox group (n = 82), and Dox-HF group (n = 32). Expressions of TLR mRNAs in peripheral blood mononuclear cells were detected by RT-PCR. Western blotting was used to quantify protein expressions of Peripheral blood mononuclear cells (PBMCs) TLRs and their downstream signal proteins. The release of inflammatory factors was detected by ELISA. Results indicated that TLR2 was increased and TLR3 was decreased between the control group and Dox group, and between the Dox group and Dox-HF group. Serum inflammatory factors were comparable between the HF group, the Dox group, and the Dox-HF group. This study suggested that TLR2 and TLR3 are up- and down-regulated, respectively, in doxorubicin-treated patients who develop heart dysfunctions. This may suggest a predictive role for TLR2-TLR3 imbalance in doxorubicin-induced heart failure.
Collapse
Affiliation(s)
- Shao Liang
- Department of Cardiology, Jiangxi Provincial People's Hospital, No, 92 Aiguo Road, Donghu District, Nanchang, 330006, Jiangxi, People's Republic of China; Jiang Xi Provincial Institute of Cardiovascular Diseases, No, 92 Aiguo Road, Donghu District, Nanchang, 330006, Jiangxi, People's Republic of China.
| | - Cai Xinyong
- Department of Cardiology, Jiangxi Provincial People's Hospital, No, 92 Aiguo Road, Donghu District, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Zhu Hongmin
- Department of Cardiology, Jiangxi Provincial People's Hospital, No, 92 Aiguo Road, Donghu District, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Wang Jing
- Department of Cardiology, Jiangxi Provincial People's Hospital, No, 92 Aiguo Road, Donghu District, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Hong Lang
- Department of Cardiology, Jiangxi Provincial People's Hospital, No, 92 Aiguo Road, Donghu District, Nanchang, 330006, Jiangxi, People's Republic of China; Jiang Xi Provincial Institute of Cardiovascular Diseases, No, 92 Aiguo Road, Donghu District, Nanchang, 330006, Jiangxi, People's Republic of China.
| | - Zhang Ping
- Department of Neurology, Jiangxi Provincial People's Hospital, No, 92 Aiguo Road, Donghu District, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
7
|
Spurthi KM, Sarikhani M, Mishra S, Desingu PA, Yadav S, Rao S, Maity S, Tamta AK, Kumar S, Majumdar S, Jain A, Raghuraman A, Khan D, Singh I, Samuel RJ, Ramachandra SG, Nandi D, Sundaresan NR. Toll-like receptor 2 deficiency hyperactivates the FoxO1 transcription factor and induces aging-associated cardiac dysfunction in mice. J Biol Chem 2018; 293:13073-13089. [PMID: 29929978 DOI: 10.1074/jbc.ra118.001880] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/09/2018] [Indexed: 12/17/2022] Open
Abstract
Toll-like receptors (TLRs) are a family of pattern-recognition receptors involved in innate immunity. Previous studies have shown that TLR2 inhibition protects the heart from acute stress, including myocardial infarction and doxorubicin-induced cardiotoxicity in animal models. However, the role of TLR2 in the development of aging-associated heart failure is not known. In this work, we studied aging-associated changes in structure and function of TLR2-deficient mice hearts. Whereas young TLR2-KO mice did not develop marked cardiac dysfunction, 8- and 12-month-old TLR2-KO mice exhibited spontaneous adverse cardiac remodeling and cardiac dysfunction in an age-dependent manner. The hearts of the 8-month-old TLR2-KO mice had increased fibrosis, cell death, and reactivation of fetal genes. Moreover, TLR2-KO hearts displayed reduced infiltration by macrophages, increased numbers of myofibroblasts and atrophic cardiomyocytes, and higher levels of the atrophy-related ubiquitin ligases MuRF-1 and atrogin-1. Mechanistically, TLR2 deficiency impaired the PI3K/Akt signaling pathway, leading to hyperactivation of the transcription factor Forkhead box protein O1 (FoxO1) and, in turn, to elevated expression of FoxO target genes involved in the regulation of muscle wasting and cell death. AS1842856-mediated chemical inhibition of FoxO1 reduced the expression of the atrophy-related ubiquitin ligases and significantly reversed the adverse cardiac remodeling while improving the contractile functions in the TLR2-KO mice. Interestingly, TLR2 levels decreased in hearts of older mice, and the activation of TLR1/2 signaling improved cardiac functions in these mice. These findings suggest that TLR2 signaling is essential for protecting the heart against aging-associated adverse remodeling and contractile dysfunction in mice.
Collapse
Affiliation(s)
- Kondapalli Mrudula Spurthi
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Mohsen Sarikhani
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Sneha Mishra
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Perumal Arumugam Desingu
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Shikha Yadav
- the Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Swathi Rao
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Sangeeta Maity
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Ankit Kumar Tamta
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Shweta Kumar
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Shamik Majumdar
- the Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Aditi Jain
- the Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India, and
| | - Aishwarya Raghuraman
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Danish Khan
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Ishwar Singh
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Rosa J Samuel
- the Central Animal Facility, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Subbaraya G Ramachandra
- the Central Animal Facility, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Dipankar Nandi
- the Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Nagalingam R Sundaresan
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India,
| |
Collapse
|
8
|
Wang JW, Fontes MSC, Wang X, Chong SY, Kessler EL, Zhang YN, de Haan JJ, Arslan F, de Jager SCA, Timmers L, van Veen TAB, Lam CSP, Kleijn DPVD. Leukocytic Toll-Like Receptor 2 Deficiency Preserves Cardiac Function And Reduces Fibrosis In Sustained Pressure Overload. Sci Rep 2017; 7:9193. [PMID: 28835616 PMCID: PMC5569043 DOI: 10.1038/s41598-017-09451-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/25/2017] [Indexed: 12/29/2022] Open
Abstract
An involement of Toll-like receptor 2 (TLR2) has been established in cardiac dysfunction after acute myocardial infarction; however, its role in chronic pressure overload is unclear. We sought to evaluate the role of TLR2 in cardiac hypertrophy, fibrosis and dysfunction in sustained pressure overload. We induced pressure overload via transverse aortic constriction (TAC) in TLR2−/− and wild type (WT) mice, and followed temporal changes over 8 weeks. Despite similar increases in heart weight, left ventricular (LV) ejection fraction (EF) and diastolic function (mitral E/A ratio) were preserved in TLR2−/− mice but impaired in WT mice following TAC. TAC produced less LV fibrosis in TLR2−/− mice associated with lower mRNA levels of collagen genes (Col1a1 and Col3a1) and lower protein level of TGFbeta1, compared to WT mice. Following TAC, the influx of macrophages and CD3 T cells into LV was similar between TLR2−/− and WT mice, whereas levels of cyto/chemokines were lower in the heart and plasma in TLR2−/− mice. TLR2−/− bone marrow-derived cells protected against LVEF decline and fibrosis following TAC. Our findings show that leukocytic TLR2 deficiency protects against LV dysfunction and fibrosis probably via a reduction in inflammatory signaling in sustained pressure overload.
Collapse
Affiliation(s)
- Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS) and National University Health System (NUHS), Singapore, Singapore
| | - Magda S C Fontes
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht, Utrecht, The Netherlands.,Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, Leiden, The Netherlands
| | - Xiaoyuan Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS) and National University Health System (NUHS), Singapore, Singapore
| | - Suet Yen Chong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS) and National University Health System (NUHS), Singapore, Singapore
| | - Elise L Kessler
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht, Utrecht, The Netherlands
| | - Ya-Nan Zhang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS) and National University Health System (NUHS), Singapore, Singapore
| | - Judith J de Haan
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Fatih Arslan
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Saskia C A de Jager
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Leo Timmers
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Toon A B van Veen
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht, Utrecht, The Netherlands
| | - Carolyn S P Lam
- National Heart Centre Singapore, Duke-NUS Graduate Medical School, Singapore, Singapore. .,Cardiology, University Medical Center, Groningen, The Netherlands.
| | - Dominique P V de Kleijn
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS) and National University Health System (NUHS), Singapore, Singapore. .,Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands. .,Department of Vascular Surgery, University Medical Center Utrecht, Utrecht, The Netherlands. .,Netherlands Heart Institute, Utrecht, The Netherlands.
| |
Collapse
|
9
|
Zhang Y, Huang Z, Li H. Insights into innate immune signalling in controlling cardiac remodelling. Cardiovasc Res 2017; 113:1538-1550. [DOI: 10.1093/cvr/cvx130] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/29/2017] [Indexed: 01/22/2023] Open
Affiliation(s)
- Yaxing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuchang District, Wuhan 430060, People’s Republic of China
- Institute of Model Animal of Wuhan University, Donghu Road 115, Wuchang District, Wuhan 430071, People’s Republic of China
- Medical Research Institute, School of Medicine, Wuhan University, Donghu Road 115, Wuchang District, Wuhan 430071, People’s Republic of China
| | - Zan Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuchang District, Wuhan 430060, People’s Republic of China
- Institute of Model Animal of Wuhan University, Donghu Road 115, Wuchang District, Wuhan 430071, People’s Republic of China
- Medical Research Institute, School of Medicine, Wuhan University, Donghu Road 115, Wuchang District, Wuhan 430071, People’s Republic of China
- College of Life Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuchang District, Wuhan 430060, People’s Republic of China
- Institute of Model Animal of Wuhan University, Donghu Road 115, Wuchang District, Wuhan 430071, People’s Republic of China
- Medical Research Institute, School of Medicine, Wuhan University, Donghu Road 115, Wuchang District, Wuhan 430071, People’s Republic of China
| |
Collapse
|