1
|
Liu M, Zhang Z, Chen Y, Feng T, Zhou Q, Tian X. Circadian clock and lipid metabolism disorders: a potential therapeutic strategy for cancer. Front Endocrinol (Lausanne) 2023; 14:1292011. [PMID: 38189049 PMCID: PMC10770836 DOI: 10.3389/fendo.2023.1292011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024] Open
Abstract
Recent research has emphasized the interaction between the circadian clock and lipid metabolism, particularly in relation to tumors. This review aims to explore how the circadian clock regulates lipid metabolism and its impact on carcinogenesis. Specifically, targeting key enzymes involved in fatty acid synthesis (SREBP, ACLY, ACC, FASN, and SCD) has been identified as a potential strategy for cancer therapy. By disrupting these enzymes, it may be possible to inhibit tumor growth by interfering with lipid metabolism. Transcription factors, like SREBP play a significant role in regulating fatty acid synthesis which is influenced by circadian clock genes such as BMAL1, REV-ERB and DEC. This suggests a strong connection between fatty acid synthesis and the circadian clock. Therefore, successful combination therapy should target fatty acid synthesis in addition to considering the timing and duration of drug use. Ultimately, personalized chronotherapy can enhance drug efficacy in cancer treatment and achieve treatment goals.
Collapse
Affiliation(s)
- Mengsi Liu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Province University Key Laboratory of Oncology of Traditional Chinese Medicine, Changsha, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha, China
| | - Zhen Zhang
- Department of Oncology, Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China
| | - Yating Chen
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Province University Key Laboratory of Oncology of Traditional Chinese Medicine, Changsha, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha, China
| | - Ting Feng
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Province University Key Laboratory of Oncology of Traditional Chinese Medicine, Changsha, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha, China
| | - Qing Zhou
- Department of Andrology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xuefei Tian
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Province University Key Laboratory of Oncology of Traditional Chinese Medicine, Changsha, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
2
|
Talapatra J, Reddy MM. Lipid Metabolic Reprogramming in Embryonal Neoplasms with MYCN Amplification. Cancers (Basel) 2023; 15:cancers15072144. [PMID: 37046804 PMCID: PMC10093342 DOI: 10.3390/cancers15072144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Tumor cells reprogram their metabolism, including glucose, glutamine, nucleotide, lipid, and amino acids to meet their enhanced energy demands, redox balance, and requirement of biosynthetic substrates for uncontrolled cell proliferation. Altered lipid metabolism in cancer provides lipids for rapid membrane biogenesis, generates the energy required for unrestricted cell proliferation, and some of the lipids act as signaling pathway mediators. In this review, we focus on the role of lipid metabolism in embryonal neoplasms with MYCN dysregulation. We specifically review lipid metabolic reactions in neuroblastoma, retinoblastoma, medulloblastoma, Wilms tumor, and rhabdomyosarcoma and the possibility of targeting lipid metabolism. Additionally, the regulation of lipid metabolism by the MYCN oncogene is discussed.
Collapse
Affiliation(s)
- Jyotirmayee Talapatra
- The Operation Eyesight Universal Institute for Eye Cancer, L V Prasad Eye Institute, Bhubaneswar 751024, India
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India
| | - Mamatha M Reddy
- The Operation Eyesight Universal Institute for Eye Cancer, L V Prasad Eye Institute, Bhubaneswar 751024, India
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India
| |
Collapse
|
3
|
Huang SS, Tsai CH, Kuo CY, Li YS, Cheng SP. ACLY inhibitors induce apoptosis and potentiate cytotoxic effects of sorafenib in thyroid cancer cells. Endocrine 2022; 78:85-94. [PMID: 35761130 DOI: 10.1007/s12020-022-03124-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/21/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE ATP-citrate lyase (ACLY) is a critical enzyme at the intersection of glucose and lipid metabolism. ACLY is often upregulated or activated in cancer cells to accelerate lipid synthesis and promote tumor progression. In this study, we aimed to explore the possibility of utilizing ACLY inhibition as a new strategy in the treatment of thyroid cancer. METHODS Bioinformatics analysis of the public datasets was performed. Thyroid cancer cells were treated with two different ACLY inhibitors, SB-204990 and NDI-091143. RESULTS Bioinformatics analysis revealed that ACLY expression was increased in anaplastic thyroid cancer. In thyroid cancer cell lines FTC-133 and 8505C, ACLY inhibitors suppressed monolayer cell growth and clonogenic ability in a dose-dependent and time-dependent manner. Flow cytometry analysis showed that ACLY inhibitors increased the proportion of sub-G1 cells in the cell cycle and the number of annexin V-positive cells. Immunoblotting confirmed caspase-3 activation and PARP1 cleavage following treatment with ACLY inhibitors. Compromised cell viability could be partially rescued by co-treatment with the pan-caspase inhibitor Z-VAD-FMK. Additionally, we showed that ACLY inhibitors impeded three-dimensional growth and cell invasion in thyroid cancer cells. Isobolograms and combination index analysis indicated that ACLY inhibitors synergistically potentiated the cytotoxicity rendered by sorafenib. CONCLUSIONS Targeting ACLY holds the potential for being a novel therapeutic strategy for thyroid cancer.
Collapse
Affiliation(s)
- Shou-Sen Huang
- Department of Surgery, Taitung MacKay Memorial Hospital, Taitung, Taiwan
| | - Chung-Hsin Tsai
- Department of Surgery, MacKay Memorial Hospital and MacKay Medical College, Taipei, Taiwan
| | - Chi-Yu Kuo
- Department of Surgery, MacKay Memorial Hospital and MacKay Medical College, Taipei, Taiwan
| | - Ying-Syuan Li
- Department of Surgery, MacKay Memorial Hospital and MacKay Medical College, Taipei, Taiwan
| | - Shih-Ping Cheng
- Department of Surgery, MacKay Memorial Hospital and MacKay Medical College, Taipei, Taiwan.
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan.
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
4
|
Cheng H, Wang M, Su J, Li Y, Long J, Chu J, Wan X, Cao Y, Li Q. Lipid Metabolism and Cancer. Life (Basel) 2022; 12:life12060784. [PMID: 35743814 PMCID: PMC9224822 DOI: 10.3390/life12060784] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
Lipid metabolism is involved in the regulation of numerous cellular processes, such as cell growth, proliferation, differentiation, survival, apoptosis, inflammation, movement, membrane homeostasis, chemotherapy response, and drug resistance. Reprogramming of lipid metabolism is a typical feature of malignant tumors. In a variety of cancers, fat uptake, storage and fat production are up-regulated, which in turn promotes the rapid growth, invasion, and migration of tumors. This paper systematically summarizes the key signal transduction pathways and molecules of lipid metabolism regulating tumors, and the role of lipid metabolism in programmed cell death. In conclusion, understanding the potential molecular mechanism of lipid metabolism and the functions of different lipid molecules may facilitate elucidating the mechanisms underlying the occurrence of cancer in order to discover new potential targets for the development of effective antitumor drugs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qinglin Li
- Correspondence: ; Tel.: +86-0551-65169051
| |
Collapse
|
5
|
He Y, Wang G, Wang Q, Zhao Z, Gan L, Yang S, Wang Y, Guo S, An J, Zhang J, Zhang Z, Zhou F. Genetic variants in NPAS2 gene and clinical outcomes of resectable non-small-cell lung cancer. Future Oncol 2021; 17:795-805. [PMID: 33541123 DOI: 10.2217/fon-2020-0211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background: A series of studies have demonstrated that NPAS2 plays a critical role in the development and progression of several cancers. However, the association between genetic variants in the NPAS2 gene and the clinical outcome of patients with non-small-cell lung cancer (NSCLC) has not been investigated. Methods: Six functional SNPs in NPAS2 were selected and genotyped using the Sequenom iPLEX genotyping system in a cohort of 484 Chinese NSCLC patients undergoing surgery. Multivariate Cox proportional hazards model were used for the prognosis analysis. Results: We found that SNP rs2305158 exhibited a significant association with overall survival of NSCLC patients in the dominant model (hazard ratio [HR]: 0.68; 95% CI: 0.49-0.95; p = 0.02). Lymph node metastasis was significantly associated with increased death risk (HR: 1.73; 95% CI: 1.24-2.40; p = 0.001) in patients with the homozygous wildtype (WW) genotype of rs2305158. However, no significant association was observed between them in patients carrying a heterozygous variant (WV) or homozygous variant (VV) genotype of rs2305158. Finally, in the joint and interaction analysis, the patients carrying homozygous wildtype (WW) genotype and lymph node metastasis from N1 to N3 conferred a significant increased effect on death (HR: 2.29; 95% CI: 1.40-3.76; p = 0.001). Conclusions: Our results suggest that NPAS2 polymorphisms may serve as an independent prognostic marker for NSCLC patients.
Collapse
Affiliation(s)
- Yiwei He
- Sun Yat-sen University Medical College, Guangzhou, 510000, China
| | - Gang Wang
- Department of General Surgery, The 74th Group Army Hospital, Guangzhou, 510318, China
| | - Qian Wang
- Department of Anorectal Surgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| | - Zheng Zhao
- Department of Oncology, Shaanxi Provincial Cancer Hospital, Xi'an, 710032, China
| | - Lu Gan
- Department of orthopedics, Air Force Medical Center, Beijing, 100000, China
| | - Shirong Yang
- Department of Physiology & Pathophysiology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yongxing Wang
- Department of Physiology & Pathophysiology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Shanshan Guo
- Department of Physiology & Pathophysiology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Jiaze An
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Jian Zhang
- Department of General Surgery, Huaihai Hospital, Xuzhou Medical University, Xuzhou, Jiangsu, 210000, China
| | - Zhaohui Zhang
- Department of General Surgery, Huaihai Hospital, Xuzhou Medical University, Xuzhou, Jiangsu, 210000, China
| | - Feng Zhou
- Department of Physiology & Pathophysiology, The Fourth Military Medical University, Xi'an, 710032, China.,Department of General Surgery, Huaihai Hospital, Xuzhou Medical University, Xuzhou, Jiangsu, 210000, China
| |
Collapse
|
6
|
Fernández LP, Gómez de Cedrón M, Ramírez de Molina A. Alterations of Lipid Metabolism in Cancer: Implications in Prognosis and Treatment. Front Oncol 2020; 10:577420. [PMID: 33194695 PMCID: PMC7655926 DOI: 10.3389/fonc.2020.577420] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/14/2020] [Indexed: 01/06/2023] Open
Abstract
Cancer remains the second leading cause of mortality worldwide. In the course of this multistage and multifactorial disease, a set of alterations takes place, with genetic and environmental factors modulating tumorigenesis and disease progression. Metabolic alterations of tumors are well-recognized and are considered as one of the hallmarks of cancer. Cancer cells adapt their metabolic competences in order to efficiently supply their novel demands of energy to sustain cell proliferation and metastasis. At present, there is a growing interest in understanding the metabolic switch that occurs during tumorigenesis. Together with the Warburg effect and the increased glutaminolysis, lipid metabolism has emerged as essential for tumor development and progression. Indeed, several investigations have demonstrated the consequences of lipid metabolism alterations in cell migration, invasion, and angiogenesis, three basic steps occurring during metastasis. In addition, obesity and associated metabolic alterations have been shown to augment the risk of cancer and to worsen its prognosis. Consequently, an extensive collection of tumorigenic steps has been shown to be modulated by lipid metabolism, not only affecting the growth of primary tumors, but also mediating progression and metastasis. Besides, key enzymes involved in lipid-metabolic pathways have been associated with cancer survival and have been proposed as prognosis biomarkers of cancer. In this review, we will analyze the impact of obesity and related tumor microenviroment alterations as modifiable risk factors in cancer, focusing on the lipid alterations co-occurring during tumorigenesis. The value of precision technologies and its application to target lipid metabolism in cancer will also be discussed. The degree to which lipid alterations, together with current therapies and intake of specific dietary components, affect risk of cancer is now under investigation, and innovative therapeutic or preventive applications must be explored.
Collapse
Affiliation(s)
- Lara P Fernández
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, Campus of International Excellence (CEI) University Autonomous of Madrid (UAM) + CSIC, Madrid, Spain
| | - Marta Gómez de Cedrón
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, Campus of International Excellence (CEI) University Autonomous of Madrid (UAM) + CSIC, Madrid, Spain
| | - Ana Ramírez de Molina
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, Campus of International Excellence (CEI) University Autonomous of Madrid (UAM) + CSIC, Madrid, Spain
| |
Collapse
|
7
|
Cho S, Song N, Choi JY, Shin A. Effect of Citric Acid Cycle Genetic Variants and Their Interactions with Obesity, Physical Activity and Energy Intake on the Risk of Colorectal Cancer: Results from a Nested Case-Control Study in the UK Biobank. Cancers (Basel) 2020; 12:cancers12102939. [PMID: 33053772 PMCID: PMC7601149 DOI: 10.3390/cancers12102939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/04/2020] [Accepted: 10/09/2020] [Indexed: 12/24/2022] Open
Abstract
Simple Summary The citric acid cycle has a central role in the cellular energy metabolism and biosynthesis of macromolecules in the mitochondrial matrix. We identified the single nucleotide polymorphisms (SNPs) of the citrate acid cycle with colorectal cancer susceptibility in UK population. Furthermore, we found the significant interaction of SNPs in the citric acid cycle with the contributors to energy balance and SNP-SNP interactions. Our findings provide clues to the etiology in cancer development related to energy metabolism and evidence on identification of the population at high risk of colorectal cancer. Abstract Colorectal cancer is a common malignancy worldwide. Physical activity and a healthy diet contribute to energy balance and have been recommended for the prevention of colorectal cancer. We suggest that the individual differences in energy balance can be explained by genetic polymorphisms involved in mitochondria, which play a central role in energy metabolism at the cellular level. This study aimed to evaluate the association between genetic variants of the mitochondrial citric acid cycle and colorectal cancer. Study participants comprised 3523 colorectal cancer cases and 10,522 matched controls from the UK Biobank study. Odds ratios (ORs) and 95% confidence intervals (CIs) for colorectal cancer were estimated using a conditional logistic regression model. We found a significant association between the SUCLG2 gene rs35494829 and colon cancer (ORs [95% CIs] per increment of the minor allele, 0.82 [0.74–0.92]). Statistical significance was observed in the interactions of the citric acid cycle variants with obesity, energy intake, and vigorous physical activity in colorectal cancer. We also identified significant SNP-SNP interactions among citric acid cycle SNPs in colorectal cancer. The results of this study may provide evidence for bioenergetics in the development of colorectal cancer and for establishing a precise prevention strategy.
Collapse
Affiliation(s)
- Sooyoung Cho
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Nan Song
- Cancer Research Institute, Seoul National University, Seoul 03080, Korea; (N.S.); (J.-Y.C.)
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Ji-Yeob Choi
- Cancer Research Institute, Seoul National University, Seoul 03080, Korea; (N.S.); (J.-Y.C.)
- Department of Biomedical Sciences, Graduate School of Seoul National University, Seoul 03080, Korea
- Medical Research Center, Institute of Health Policy and Management, Seoul National University, Seoul 03080, Korea
| | - Aesun Shin
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Korea;
- Cancer Research Institute, Seoul National University, Seoul 03080, Korea; (N.S.); (J.-Y.C.)
- Correspondence: ; Tel.: +82-2-740-8331; Fax: +82-2-747-4830
| |
Collapse
|
8
|
The vital role of ATP citrate lyase in chronic diseases. J Mol Med (Berl) 2019; 98:71-95. [PMID: 31858156 DOI: 10.1007/s00109-019-01863-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023]
Abstract
Chronic or non-communicable diseases are the leading cause of death worldwide; they usually result in long-term illnesses and demand long-term care. Despite advances in molecular therapeutics, specific biomarkers and targets for the treatment of these diseases are required. The dysregulation of de novo lipogenesis has been found to play an essential role in cell metabolism and is associated with the development and progression of many chronic diseases; this confirms the link between obesity and various chronic diseases. The main enzyme in this pathway-ATP-citrate lyase (ACLY), a lipogenic enzyme-catalyzes the critical reaction linking cellular glucose catabolism and lipogenesis. Increasing lines of evidence suggest that the modulation of ACLY expression correlates with the development and progressions of various chronic diseases such as neurodegenerative diseases, cardiovascular diseases, diabetes, obesity, inflammation, and cancer. Recent studies suggest that the inhibition of ACLY activity modulates the glycolysis and lipogenesis processes and stimulates normal physiological functions. This comprehensive review aimed to critically evaluate the role of ACLY in the development and progression of different diseases and the effects of its downregulation in the prevention and treatment of these diseases.
Collapse
|
9
|
Feng X, Zhang L, Xu S, Shen AZ. ATP-citrate lyase (ACLY) in lipid metabolism and atherosclerosis: An updated review. Prog Lipid Res 2019; 77:101006. [PMID: 31499095 DOI: 10.1016/j.plipres.2019.101006] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/17/2019] [Accepted: 08/18/2019] [Indexed: 12/21/2022]
Abstract
ATP citrate lyase (ACLY) is an important enzyme linking carbohydrate to lipid metabolism by generating acetyl-CoA from citrate for fatty acid and cholesterol biosynthesis. Mendelian randomization of large human cohorts has validated ACLY as a promising target for low-density-lipoprotein-cholesterol (LDL-C) lowering and cardiovascular protection. Among current ACLY inhibitors, Bempedoic acid (ETC-1002) is a first-in-class, prodrug-based direct competitive inhibitor of ACLY which regulates lipid metabolism by upregulating hepatic LDL receptor (LDLr) expression and activity. ACLY deficiency in hepatocytes protects from hepatic steatosis and dyslipidemia. In addition, pharmacological inhibition of ACLY by bempedoic acid, prevents dyslipidemia and attenuates atherosclerosis in hypercholesterolemic ApoE-/- mice, LDLr-/- mice, and LDLr-/- miniature pigs. Convincing data from clinical trials have revealed that bempedoic acid significantly lowers LDL-C as monotherapy, combination therapy, and add-on with statin therapy in statin-intolerant patients. More recently, a phase 3 CLEAR Harmony clinical trial ("Safety and Efficacy of Bempedoic Acid to Reduce LDL Cholesterol") has shown that bempedoic acid reduces the level of LDL-C in hypercholesterolemic patients receiving guideline-recommended statin therapy with a good safety profile. Hereby, we provide a updated review of the expression, regulation, genetics, functions of ACLY in lipid metabolism and atherosclerosis, and highlight the therapeutic potential of ACLY inhibitors (such as bempedoic acid, SB-204990, and other naturally-occuring inhibitors) to treat atherosclerotic cardiovascular diseases. It must be pointed out that long-term large-scale clinical trials in high-risk patients, are warranted to validate whether ACLY represent a promising therapeutic target for pharmaceutic intervention of dyslipidemia and atherosclerosis; and assess the safety and efficacy profile of ACLY inhibitors in improving cardiovascular outcome of patients.
Collapse
Affiliation(s)
- Xiaojun Feng
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China
| | - Lei Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China
| | - Suowen Xu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, USA.
| | - Ai-Zong Shen
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China.
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW ATP-citrate lyase (ACLY) has re-emerged as a drug target for LDL cholesterol (LDL-C) lowering. We review ACLY as a therapeutic strategy, its genetics, its molecular and cellular biology, and also its inhibition. RECENT FINDINGS ACLY is a critical enzyme linking glucose catabolism to lipogenesis by providing acetyl-CoA from mitochondrial citrate for fatty acid and cholesterol biosynthesis. Human genetic variants have been associated with enhanced growth and survival of several cancers, and with attenuated plasma triglyceride responses to dietary fish oil. In mice, liver-specific Acly deficiency protects from hepatic steatosis and dyslipidemia, whereas adipose tissue-specific Acly deletion has no phenotype, supporting therapeutic inhibition of ACLY. A lipid-regulating compound, bempedoic acid, was discovered to potently inhibit ACLY, and in animal models, it prevents dyslipidemia and attenuates atherosclerosis. Phase 2 clinical trials revealed that bempedoic acid effectively lowers LDL-C as monotherapy, combined with ezetimibe, added to statin therapy and in statin-intolerant hypercholesterolemic patients. SUMMARY The efficacy of bempedoic acid as an LDL-C-lowering agent has validated ACLY inhibition as a therapeutic strategy. Positive results of phase 3 patient studies, together with long-term cardiovascular disease outcome trials, are required to establish ACLY as a major new target in cardiovascular medicine.
Collapse
Affiliation(s)
- Amy C Burke
- aDepartment of Biochemistry bDepartment of Medicine cRobarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | | |
Collapse
|
11
|
Attri KS, Murthy D, Singh PK. Racial disparity in metabolic regulation of cancer. Front Biosci (Landmark Ed) 2017; 22:1221-1246. [PMID: 28199202 DOI: 10.2741/4543] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Genetic mutations and metabolic reprogramming are two key hallmarks of cancer, required for proliferation, invasion, and metastasis of the disease. While genetic mutations, whether inherited or acquired, are critical for the initiation of tumor development, metabolic reprogramming is an effector mechanism imperative for adaptational transition during the progression of cancer. Recent findings in the literature emphasize the significance of molecular cross-talk between these two cellular processes in regulating signaling and differentiation of cancer cells. Genome-wide sequencing analyses of cancer genomes have highlighted the association of various genic mutations in predicting cancer risk and survival. Oncogenic mutational frequency is heterogeneously distributed among various cancer types in different populations, resulting in varying susceptibility to cancer risk. In this review, we explore and discuss the role of genetic mutations in metabolic enzymes and metabolic oncoregulators to stratify cancer risk in persons of different racial backgrounds.
Collapse
Affiliation(s)
- Kuldeep S Attri
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - Divya Murthy
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - Pankaj K Singh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA,
| |
Collapse
|
12
|
Harjes U, Kalucka J, Carmeliet P. Targeting fatty acid metabolism in cancer and endothelial cells. Crit Rev Oncol Hematol 2016; 97:15-21. [DOI: 10.1016/j.critrevonc.2015.10.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/03/2015] [Accepted: 10/27/2015] [Indexed: 12/15/2022] Open
|