1
|
Immunoexpression of Relaxin and Its Receptors in Stifle Joints of Dogs with Cranial Cruciate Ligament Disease. Animals (Basel) 2022; 12:ani12070819. [PMID: 35405809 PMCID: PMC8996950 DOI: 10.3390/ani12070819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Spontaneous cranial cruciate ligament rupture is one of the most frequently encountered joint diseases in dogs, often leading to disabling chronic progressive osteoarthritis. The cause of the progressive intra-articular collagen matrix degradation, leading to tear and mechanical failure, is unknown. A variety of contributing factors has been found, however, an initiating mediator triggering the collagen degrading cascade remains to be identified. Our finding of strong relaxin- and relaxin receptor expression on intra-articular target tissues, such as on ligament fibrocytes and synovial membranes, renders relaxin a candidate for pathogenetic involvement, for collagen lysis, and progressive ligament fiber disruption. If confirmed, this opens the way for medical treatment of the disease in its early stages. In addition, further proof of relaxin involvement in canine osteoarthritis and ligament rupture would constitute a useful spontaneous animal model for human disease. Abstract The etiology of spontaneous cranial cruciate ligament rupture in dogs is unknown despite being one of the most impacting orthopedic diseases in dogs. Numerous studies have contributed to the understanding of a multifactorial pathogenesis, this, however, without identifying a pivotal link to explain progressive collagen degeneration and osteoarthritic changes. In human medicine, recent reports have identified relaxin as a triggering factor in ligament ruptures in knee and metacarpal joints. We thus hypothesized that relaxin might also play a role in canine cruciate ligament rupture. Relaxin’s primarily known property is connective tissue remodeling through collagenolysis. We therefore investigated relaxin and its cognate receptors LGR7/LGR8 in 18 dogs with cranial cruciate ligament disease (CCLD) and compared them to a group of dogs with normal stifle joints. Applying immunohistochemistry (IHC), double immunofluorescence (dIF), and western blot analysis (WB), we found strong and significantly increased expression of both relaxin and its receptors in ruptured cruciate ligaments, and in synovial membranes. Pattern of immuno-staining on dIF strongly suggests relaxin binding to primed receptors and activation of signaling properties, which in turn may have affected collagen matrix metabolism. Thus, in canine cranial cruciate ligament disease, relaxin/receptor signaling may be a primary trigger for collagen fiber degradation and collagen lysis, eventually followed by ligament rupture.
Collapse
|
2
|
Evidence for existence of insulin-like factor 3 (INSL3) hormone-receptor system in the ovarian corpus luteum and extra-ovarian reproductive organs during pregnancy in goats. Cell Tissue Res 2021; 385:173-189. [PMID: 33590284 DOI: 10.1007/s00441-021-03410-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 01/01/2021] [Indexed: 10/22/2022]
Abstract
Insulin-like factor 3 (INSL3), initially described as a male hormone, is expressed in female reproductive organs during the estrous cycle and pregnancy but its function has not yet been established. This study explores the function of INSL3 in pregnant Saanen goats by characterizing the expression dynamics of INSL3 and its receptor, relaxin family peptide receptor 2 (RXFP2) and by demonstrating specific INSL3 binding in reproductive organs, using molecular and immunological approaches and ligand-receptor interaction assays. We demonstrate that the corpus luteum (CL) acts as both a source and target of INSL3 in pregnant goats, while extra-ovarian reproductive organs serve as additional INSL3 targets. The expression of INSL3 and RXFP2 in the CL reached maximum levels in middle pregnancy, followed by a decrease in late pregnancy; in contrast, RXFP2 expression levels in extra-ovarian reproductive organs were higher in the mammary glands but lower in the uterus, cervix and placenta and did not significantly change during pregnancy. The functional RXFP2 enabling INSL3 to bind was identified as an ~ 85 kDa protein in both the CL and mammary glands and localized in large and small luteal cells in the CL and in tubuloalveolar and ductal epithelial cells in the mammary glands. Additionally, INSL3 also bound to multiple cell types expressing RXFP2 in the uterus, cervix and placenta in a hormone-specific and saturable manner. These results provide evidence that an active intra- and extra-ovarian INSL3 hormone-receptor system operates during pregnancy in goats.
Collapse
|
3
|
Ivell R, Alhujaili W, Kohsaka T, Anand-Ivell R. Physiology and evolution of the INSL3/RXFP2 hormone/receptor system in higher vertebrates. Gen Comp Endocrinol 2020; 299:113583. [PMID: 32800774 DOI: 10.1016/j.ygcen.2020.113583] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/08/2020] [Indexed: 12/12/2022]
Abstract
Although the insulin-like peptide hormone INSL3 and its cognate receptor RXFP2 (relaxin-family peptide receptor 2) have existed throughout chordate evolution, their physiological diversification appears to be linked closely with mammalian emergence and radiation. In contrast, they have been lost in birds and reptiles. Both hormone and receptor are expressed from autosomal genes which have maintained their synteny across vertebrate evolution. Whereas the INSL3 gene comprises only two exons closely linked to the JAK3 gene, RXFP2 is normally encoded by 18 exons. Both genes, however, are subject to alternative splicing to yield a variety of possibly inactive or antagonistic molecules. In mammals, the INSL3-RXFP2 dyad has maintained a probably primitive association with gametogenesis, seen also in fish, whereby INSL3 promotes the survival, growth and differentiation of male germ cells in the testis and follicle development in the ovary. In addition, however, the INSL3/RXFP2 system has adopted a typical 'neohormone' profile, essential for the promotion of internal fertilisation and viviparity; fetal INSL3 is essential for the first phase of testicular descent into a scrotum, and also appears to be associated with male phenotype, in particular horn and skeletal growth. Circulating INSL3 is produced exclusively by the mature testicular Leydig cells in male mammals and acts as a potent biomarker for testis development during fetal and pubertal development as well as in ageing. As such it can be used also to monitor seasonally breeding animals as well as to investigate environmental or lifestyle conditions affecting development. Nevertheless, most information about INSL3 and RXFP2 comes from a very limited selection of species; it will be especially useful to gain further information from a more diverse range of animals, especially those whose evolution has led them to express unusual reproductive phenotypes.
Collapse
Affiliation(s)
- Richard Ivell
- School of Bioscience, University of Nottingham, Sutton Bonington, LE2 5RD, UK; School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, LE2 5RD, UK.
| | - Waleed Alhujaili
- School of Bioscience, University of Nottingham, Sutton Bonington, LE2 5RD, UK
| | - Tetsuya Kohsaka
- Dept. of Applied Life Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, Japan
| | | |
Collapse
|
4
|
Ishak GM, Dutra GA, Gastal GDA, Elcombe ME, Gastal MO, Park SB, Feugang JM, Gastal EL. Deficiency in proliferative, angiogenic, and LH receptors in the follicle wall: implications of season toward the anovulatory condition. Domest Anim Endocrinol 2020; 70:106382. [PMID: 31585312 DOI: 10.1016/j.domaniend.2019.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 06/12/2019] [Accepted: 07/24/2019] [Indexed: 01/22/2023]
Abstract
This study aimed to gain insight on the effect of different seasons of the year on the expression pattern of growth factor and hormone receptors involved in follicle development. A novel follicle wall biopsy technique was used to collect in vivo follicle wall layers (ie, granulosa, theca interna, and theca externa) and follicular fluid samples from growing dominant follicles, simultaneously and repeatedly, using the same mares during the spring anovulatory (SAN), spring ovulatory (SOV), summer (SU), and fall ovulatory (FOV) seasons. The immunofluorescent expression patterns of epidermal growth factor receptor (EGFR), Ki-67, vascular endothelial growth factor receptor (VEGFR), and LH receptor (LHR) were evaluated in each follicle wall layer, in addition to intrafollicular estradiol and nitric oxide (NO). Proliferative proteins (EGFR and Ki-67) were highly (P < 0.05-P < 0.001) expressed during the SOV season compared with the SAN and FOV seasons. Lower (P < 0.05-P < 0.001) expression of both proteins was observed during SU compared with the SOV season. The expression of VEGFR was greater (P < 0.05-P < 0.01) in the theca interna of dominant follicles during the SOV season compared with the SAN and SU seasons. Similarly, in the overall quantification, the VEGFR expression was greater (P < 0.001) during the SOV season compared with the SU and FOV seasons. A higher (P < 0.05) LHR expression was detected in the theca interna during the SOV season than the SAN season. Furthermore, a higher (P < 0.05-P < 0.001) expression of LHR was observed in the granulosa, theca interna, and in the overall quantification during the SOV season compared with the SU and FOV seasons. Intrafollicular NO concentration did not differ (P > 0.05) among different seasons of the year. The intrafollicular estradiol concentration was higher (P < 0.05) during the SU compared with the SAN season and higher (P < 0.05) during the FOV season compared with the SAN and SOV seasons. In conclusion, the synergistic effect of lower expression of proliferative protein, angiogenic, and LH receptors in at least some of the layers of the follicle wall seems to trigger dominant follicles toward the anovulation process during the spring and fall transitional seasons.
Collapse
Affiliation(s)
- G M Ishak
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, IL, USA; Department of Surgery and Obstetrics, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| | - G A Dutra
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, IL, USA
| | - G D A Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, IL, USA
| | - M E Elcombe
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, IL, USA
| | - M O Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, IL, USA
| | - S B Park
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, USA
| | - J M Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, USA
| | - E L Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, IL, USA.
| |
Collapse
|
5
|
Ishak GMA, Dutra GA, Gastal GDA, Gastal MO, Feugang JM, Gastal EL. Transition to the ovulatory season in mares: An investigation of antral follicle receptor gene expression in vivo. Mol Reprod Dev 2019; 86:1832-1845. [PMID: 31571308 DOI: 10.1002/mrd.23277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 09/08/2019] [Indexed: 11/08/2022]
Abstract
The inability to obtain in vivo samples of antral follicle wall layers without removing the ovaries or sacrificing the animals has limited more in-depth studies on folliculogenesis. In this study, a novel ultrasound-guided follicle wall biopsy (FWB) technique was used to obtain in vivo follicle wall layers and follicular fluid samples of growing antral follicles. The expression of proliferative, hormonal, angiogenic, and pro-/antiapoptotic receptors and proteins in the follicular wall among three follicle classes were compared during the spring transitional anovulatory (SAN) and spring ovulatory (SOV) seasons in mares. The main findings observed in the granulosa, theca interna, and/or all follicle layers during the SOV season compared with the SAN season were (a) small-sized follicles (10-14 mm) had greater epidermal growth factor receptor (EGFR) and Bcl-2 expression; (b) medium-sized follicles during the expected deviation/selection diameter (20-24 mm) had greater expression of EGFR, Ki-67, luteinizing hormone receptor (LHR), and Bcl-2; and (c) dominant follicles (30-34 mm) had greater EGFR, Ki-67, vascular endothelial growth factor, LHR, and Bcl-2 expression. Estradiol related receptor alpha expression and intrafollicular estradiol concentration increased, along with an increase in follicle diameter in both seasons. In this study, the application of the FWB technique allowed a direct comparison of different receptors' expression among follicles in different stages of development and between two seasons using the same individuals, without jeopardizing their ovarian function. The successful utilization of the FWB technique and the mare as an experimental animal offer a great combination for future folliculogenesis studies on mechanisms of follicle selection, development, and ovulation in different species, including women.
Collapse
Affiliation(s)
- Ghassan M A Ishak
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, Illinois.,Department of Surgery and Obstetrics, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| | - Gabriel A Dutra
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, Illinois
| | - Gustavo D A Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, Illinois
| | - Melba O Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, Illinois
| | - Jean M Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, Mississippi
| | - Eduardo L Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, Illinois
| |
Collapse
|
6
|
Zhou W, Sipilä P, De Iuliis GN, Dun MD, Nixon B. Analysis of Epididymal Protein Synthesis and Secretion. J Vis Exp 2018. [PMID: 30199011 DOI: 10.3791/58308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The mammalian epididymis generates one of the most complex intraluminal fluids of any endocrine gland in order to support the post-testicular maturation and storage of spermatozoa. Such complexity arises due to the combined secretory and absorptive activity of the lining epithelial cells. Here, we describe the techniques for the analysis of epididymal protein synthesis and secretion by focusing on the model protein family of dynamin (DNM) mechanoenzymes; large GTPases that have the potential to regulate bi-directional membrane trafficking events. For the study of protein expression in epididymal tissue, we describe robust methodology for immunofluorescence labeling of target proteins in paraffin-embedded sections and the subsequent detection of the spatial distribution of these proteins via immunofluorescence microscopy. We also describe optimized methodology for the isolation and characterization of exosome like vesicles, known as epididymosomes, which are secreted into the epididymal lumen to participate in intercellular communication with maturing sperm cells. As a complementary approach, we also describe the immunofluorescence detection of target proteins in an SV40-immortalized mouse caput epididymal epithelial (mECap18) cell line. Moreover, we discuss the utility of the mECap18 cell line as a suitable in vitro model with which to explore the regulation of epididymal secretory activity. For this purpose, we describe the culturing requirements for the maintenance of the mECap18 cell line and the use of selective pharmacological inhibition regimens that are capable of influencing their secretory protein profile. The latter are readily assessed via harvesting of conditioned culture medium, concentration of secreted proteins via trichloroacetic acid/acetone precipitation and their subsequent analysis via SDS-PAGE and immunoblotting. We contend that these combined methods are suitable for the analysis of alternative epididymal protein targets as a prelude to determining their functional role in sperm maturation and/or storage.
Collapse
Affiliation(s)
- Wei Zhou
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, University of Newcastle; Hunter Medical Research Institute
| | - Petra Sipilä
- Department of Physiology, Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku
| | - Geoffry N De Iuliis
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, University of Newcastle; Hunter Medical Research Institute
| | - Matthew D Dun
- Hunter Medical Research Institute; School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, University of Newcastle; Hunter Medical Research Institute;
| |
Collapse
|
7
|
Ishak GM, Bashir ST, Dutra GA, Gastal GDA, Gastal MO, Cavinder CA, Feugang JM, Gastal EL. In vivo antral follicle wall biopsy: a new research technique to study ovarian function at the cellular and molecular levels. Reprod Biol Endocrinol 2018; 16:71. [PMID: 30055625 PMCID: PMC6064614 DOI: 10.1186/s12958-018-0380-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/26/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND In vivo studies involving molecular markers of the follicle wall associated with follicular fluid (FF) milieu are crucial for a better understanding of follicle dynamics. The inability to obtain in vivo samples of antral follicle wall (granulosa and theca cells) without jeopardizing ovarian function has restricted advancement in knowledge of folliculogenesis in several species. The purpose of this study in mares was to develop and validate a novel, minimally invasive in vivo technique for simultaneous collection of follicle wall biopsy (FWB) and FF samples, and repeated collection from the same individual, during different stages of antral follicle development. We hypothesized that the in vivo FWB technique provides samples that maintain the normal histological tissue structure of the follicle wall layers, offers sufficient material for various cellular and molecular techniques, and allows simultaneous retrieval of FF. METHODS In Experiment 1 (ex vivo), each follicle was sampled using two techniques: biopsy forceps and scalpel blade (control). In Experiment 2 (in vivo), FWB and FF samples from 10-, 20-, and 30-mm follicles were repeatedly and simultaneously obtained through transvaginal ultrasound-guided technique. RESULTS In Experiment 1, the thickness of granulosa, theca interna, and theca externa layers was not influenced (P > 0.05) by the harvesting techniques. In Experiment 2, the overall recovery rates of FWB and FF samples were 97 and 100%, respectively. However, the success rate of obtaining samples with all layers of the follicle wall and clear FF varied according to follicle size. The expression of luteinizing hormone receptor (LHR) was mostly confined in the theca interna layer, with the estradiol-related receptor alpha (ERRα) in the granulosa and theca interna layers. The 30-mm follicle group had greater (P < 0.05) LHR expression in the theca interna and ERRα in the granulosa layer compared to the other groups. The overall expression of LHR and ERRα, and the intrafollicular estradiol were higher (P < 0.05 - P < 0.0001) in the 30-mm follicle group. CONCLUSION The in vivo technique developed in this study can be repeatedly and simultaneously used to provide sufficient FWB and FF samples for various cellular and molecular studies without jeopardizing the ovarian function, and has the potential to be translated to other species, including humans.
Collapse
Affiliation(s)
- G M Ishak
- Department of Animal Science, Food and Nutrition, Southern Illinois University, 1205 Lincoln Drive, MC 4417, Carbondale, IL, 62901, USA
- Department of Surgery and Obstetrics, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| | - S T Bashir
- Department of Animal Science, Food and Nutrition, Southern Illinois University, 1205 Lincoln Drive, MC 4417, Carbondale, IL, 62901, USA
| | - G A Dutra
- Department of Animal Science, Food and Nutrition, Southern Illinois University, 1205 Lincoln Drive, MC 4417, Carbondale, IL, 62901, USA
| | - G D A Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, 1205 Lincoln Drive, MC 4417, Carbondale, IL, 62901, USA
| | - M O Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, 1205 Lincoln Drive, MC 4417, Carbondale, IL, 62901, USA
| | - C A Cavinder
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, USA
| | - J M Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, USA
| | - E L Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, 1205 Lincoln Drive, MC 4417, Carbondale, IL, 62901, USA.
| |
Collapse
|
8
|
Gastal G, Aguiar F, Rodrigues A, Scimeca J, Apgar G, Banz W, Feugang J, Gastal E. Cryopreservation and in vitro culture of white-tailed deer ovarian tissue. Theriogenology 2018; 113:253-260. [DOI: 10.1016/j.theriogenology.2018.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 02/26/2018] [Accepted: 03/05/2018] [Indexed: 12/13/2022]
|
9
|
Taylor JF, Schnabel RD, Sutovsky P. Identification of genomic variants causing sperm abnormalities and reduced male fertility. Anim Reprod Sci 2018; 194:57-62. [PMID: 29454799 PMCID: PMC6503949 DOI: 10.1016/j.anireprosci.2018.02.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 12/18/2022]
Abstract
Whole genome sequencing has identified millions of bovine genetic variants; however, there is currently little understanding about which variants affect male fertility. It is imperative that we begin to link detrimental genetic variants to sperm phenotypes via the analysis of semen samples and measurement of fertility for bulls with alternate genotypes. Artificial insemination (AI) bulls provide a useful model system because of extensive fertility records, measured as sire conception rates (SCR). Genetic variants with moderate to large effects on fertility can be identified by sequencing the genomes of fertile and subfertile or infertile sires identified with high or low SCR as adult AI bulls or yearling bulls that failed Breeding Soundness Evaluation. Variants enriched in frequency in the sequences of subfertile/infertile bulls, particularly those likely to result in the loss of protein function or predicted to be severely deleterious to genes involved in sperm protein structure and function, semen quality or sperm morphology can be designed onto genotyping assays for validation of their effects on fertility. High throughput conventional and image-based flow cytometry, proteomics and cell imaging can be used to establish the functional effects of variants on sperm phenotypes. Integrating the genetic, fertility and sperm phenotype data will accelerate biomarker discovery and validation, improve routine semen testing in bull studs and identify new targets for cost-efficient AI dose optimization approaches such as semen nanopurification. This will maximize semen output from genetically superior sires and will increase the fertility of cattle. Better understanding of the relationships between male genotype and sperm phenotype may also yield new diagnostic tools and treatments for human male and idiopathic infertility.
Collapse
Affiliation(s)
- Jeremy F Taylor
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA.
| | - Robert D Schnabel
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
10
|
Feugang JM, Liao SF, Willard ST, Ryan PL. In-depth proteomic analysis of boar spermatozoa through shotgun and gel-based methods. BMC Genomics 2018; 19:62. [PMID: 29347914 PMCID: PMC5774113 DOI: 10.1186/s12864-018-4442-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 01/10/2018] [Indexed: 01/14/2023] Open
Abstract
Background Mature spermatozoa contain numerous epididymal and seminal plasma proteins, which full identification through high-throughput technologies may allow for a better understanding of the sperm biology. Therefore, we conducted a global proteomic analysis of boar spermatozoa through shotgun and gel-based methodologies. Results The total proteins were extracted from mature spermatozoa and subjecsted to proteome analyses. Functional analyses of gene ontology representations and pathway enrichments were conducted on the shotgun dataset, followed by immunology and gene expression validations. Shotgun and gel-based approaches allowed the detection of 2728 proteins and 2123 spots, respectively. Approximately 38% and 59% of total proteins were respectively fully and partially annotated, and 3% were unknown. Gene ontology analysis indicated high proportions of proteins associated with intracellular and cytoplasm localizations, protein and nucleic acid binding, hydrolase and transferase activities, and cellular, metabolic, and regulation of biological processes. Proteins associated with phosphorylation processes and mitochondrial membranes, nucleic acid binding, and phosphate and phosphorous metabolics represented 77% of the dataset. Pathways associated with oxidative phosphorylation, citrate cycle, and extra-cellular matrix-receptor interaction were significantly enriched. Protein complex, intracellular organelle, cytoskeletal parts, fertilization and reproduction, and gap junction pathway were significantly enriched within the top 116 highly abundant proteins. Nine randomly selected protein candidates were confirmed with gel-based identification, immunofluorescence detection, and mRNA expression. Conclusions This study offers an in-depth proteomic mapping of mature boar spermatozoa that will enable comparative and discovery research for the improvement of male fertility. Electronic supplementary material The online version of this article (10.1186/s12864-018-4442-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jean M Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.
| | - Shengfa F Liao
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Scott T Willard
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.,Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Peter L Ryan
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.,Department of Pathobiology and Population Medicine, Mississippi State University, Mississippi State, MS, 39762, USA
| |
Collapse
|
11
|
Gastal G, Aguiar F, Alves B, Alves K, de Tarso S, Ishak G, Cavinder C, Feugang J, Gastal E. Equine ovarian tissue viability after cryopreservation and in vitro culture. Theriogenology 2017; 97:139-147. [DOI: 10.1016/j.theriogenology.2017.04.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 04/04/2017] [Accepted: 04/21/2017] [Indexed: 10/19/2022]
|
12
|
Glynn DJ, Heng K, Russell DL, Sharkey DJ, Robertson SA, Anand-Ivell R, Ivell R. Male Seminal Relaxin Contributes to Induction of the Post-mating Cytokine Response in the Female Mouse Uterus. Front Physiol 2017; 8:422. [PMID: 28674503 PMCID: PMC5474474 DOI: 10.3389/fphys.2017.00422] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/31/2017] [Indexed: 11/17/2022] Open
Abstract
The hormone relaxin is important in female reproduction for embryo implantation, cardiovascular function, and during labor and lactation. Relaxin is also synthesized in males by organs of the male tract. We hypothesized that relaxin might be one component of seminal plasma responsible for eliciting the female cytokine response induced in the uterus at mating. When recombinant relaxin was injected into the uterus of wild-type (Rln+/+) mice at estrus, it evoked the production of Cxcl1 mRNA and its secreted protein product CXCL1 in four of eight animals. Mating experiments were then conducted using mice with a null mutation in the relaxin gene (Rln−/− mice). qRT-PCR analysis of mRNA expression in wild-type females showed diminished uterine expression of several cytokine and chemokine genes in the absence of male relaxin. Similar differences were also noted comparing Rln−/− and Rln+/+ females mated to wild-type males. Quantification of uterine luminal fluid cytokine content confirmed that male relaxin provokes the production of CXCL10 and CSF3 in Rln+/+ females. Differences were also seen comparing Rln−/− and Rln+/+ females mated with Rln−/− males for CXCL1, CSF3, and CCL5, implying that endogenous relaxin in females might prime the uterus to respond appropriately to seminal fluid at coitus. Finally, pan-leukocyte CD45 mRNA was increased in wild-type matings compared to other combinations, implying that male and female relaxin may trigger leukocyte expansion in the uterus. We conclude that male and/or female relaxin may be important in activating the uterine cytokine/chemokine network required to initiate maternal immune adaptation to pregnancy.
Collapse
Affiliation(s)
- Danielle J Glynn
- Robinson Research Institute and School of Biological Sciences, University of AdelaideAdelaide, SA, Australia.,Robinson Research Institute and Adelaide Medical School, University of AdelaideAdelaide, SA, Australia
| | - Kee Heng
- Robinson Research Institute and School of Biological Sciences, University of AdelaideAdelaide, SA, Australia
| | - Darryl L Russell
- Robinson Research Institute and Adelaide Medical School, University of AdelaideAdelaide, SA, Australia
| | - David J Sharkey
- Robinson Research Institute and Adelaide Medical School, University of AdelaideAdelaide, SA, Australia
| | - Sarah A Robertson
- Robinson Research Institute and Adelaide Medical School, University of AdelaideAdelaide, SA, Australia
| | - Ravinder Anand-Ivell
- School of Pharmacy and Medical Sciences, University of South AustraliaAdelaide, SA, Australia.,School of Biosciences, University of NottinghamUnited Kingdom
| | - Richard Ivell
- Robinson Research Institute and School of Biological Sciences, University of AdelaideAdelaide, SA, Australia.,School of Biosciences, University of NottinghamUnited Kingdom
| |
Collapse
|
13
|
Brohi RD, Wang L, Hassine NB, Cao J, Talpur HS, Wu D, Huang CJ, Rehman ZU, Bhattarai D, Huo LJ. Expression, Localization of SUMO-1, and Analyses of Potential SUMOylated Proteins in Bubalus bubalis Spermatozoa. Front Physiol 2017; 8:354. [PMID: 28659810 PMCID: PMC5468435 DOI: 10.3389/fphys.2017.00354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/15/2017] [Indexed: 11/19/2022] Open
Abstract
Mature spermatozoa have highly condensed DNA that is essentially silent both transcriptionally and translationally. Therefore, post translational modifications are very important for regulating sperm motility, morphology, and for male fertility in general. Protein sumoylation was recently demonstrated in human and rodent spermatozoa, with potential consequences for sperm motility and DNA integrity. We examined the expression and localization of small ubiquitin-related modifier-1 (SUMO-1) in the sperm of water buffalo (Bubalus bubalis) using immunofluorescence analysis. We confirmed the expression of SUMO-1 in the acrosome. We further found that SUMO-1 was lost if the acrosome reaction was induced by calcium ionophore A23187. Proteins modified or conjugated by SUMO-1 in water buffalo sperm were pulled down and analyzed by mass spectrometry. Sixty proteins were identified, including proteins important for sperm morphology and motility, such as relaxin receptors and cytoskeletal proteins, including tubulin chains, actins, and dyneins. Forty-six proteins were predicted as potential sumoylation targets. The expression of SUMO-1 in the acrosome region of water buffalo sperm and the identification of potentially SUMOylated proteins important for sperm function implicates sumoylation as a crucial PTM related to sperm function.
Collapse
Affiliation(s)
- Rahim Dad Brohi
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural UniversityWuhan, China.,Department of Hubei Province's Engineering Research Center in Buffalo Breeding and ProductsWuhan, China
| | - Li Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural UniversityWuhan, China.,Department of Hubei Province's Engineering Research Center in Buffalo Breeding and ProductsWuhan, China
| | | | - Jing Cao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural UniversityWuhan, China.,Department of Hubei Province's Engineering Research Center in Buffalo Breeding and ProductsWuhan, China
| | - Hira Sajjad Talpur
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural UniversityWuhan, China.,Department of Hubei Province's Engineering Research Center in Buffalo Breeding and ProductsWuhan, China
| | - Di Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural UniversityWuhan, China.,Department of Hubei Province's Engineering Research Center in Buffalo Breeding and ProductsWuhan, China
| | - Chun-Jie Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural UniversityWuhan, China.,Department of Hubei Province's Engineering Research Center in Buffalo Breeding and ProductsWuhan, China
| | - Zia-Ur Rehman
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural UniversityWuhan, China.,Department of Hubei Province's Engineering Research Center in Buffalo Breeding and ProductsWuhan, China
| | - Dinesh Bhattarai
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural UniversityWuhan, China.,Department of Hubei Province's Engineering Research Center in Buffalo Breeding and ProductsWuhan, China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural UniversityWuhan, China.,Department of Hubei Province's Engineering Research Center in Buffalo Breeding and ProductsWuhan, China
| |
Collapse
|