1
|
Alur V, Vastrad B, Raju V, Vastrad C, Kotturshetti S. The identification of key genes and pathways in polycystic ovary syndrome by bioinformatics analysis of next-generation sequencing data. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2024; 29:53. [DOI: 10.1186/s43043-024-00212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/17/2024] [Indexed: 01/02/2025] Open
Abstract
Abstract
Background
Polycystic ovary syndrome (PCOS) is a reproductive endocrine disorder. The specific molecular mechanism of PCOS remains unclear. The aim of this study was to apply a bioinformatics approach to reveal related pathways or genes involved in the development of PCOS.
Methods
The next-generation sequencing (NGS) dataset GSE199225 was downloaded from the gene expression omnibus (GEO) database and NGS dataset analyzed is obtained from in vitro culture of PCOS patients’ muscle cells and muscle cells of healthy lean control women. Differentially expressed gene (DEG) analysis was performed using DESeq2. The g:Profiler was utilized to analyze the gene ontology (GO) and REACTOME pathways of the differentially expressed genes. A protein–protein interaction (PPI) network was constructed and module analysis was performed using HiPPIE and cytoscape. The miRNA-hub gene regulatory network and TF-hub gene regulatory network were constructed. The hub genes were validated by using receiver operating characteristic (ROC) curve analysis.
Results
We have identified 957 DEG in total, including 478 upregulated genes and 479 downregulated gene. GO terms and REACTOME pathways illustrated that DEG were significantly enriched in regulation of molecular function, developmental process, interferon signaling and platelet activation, signaling, and aggregation. The top 5 upregulated hub genes including HSPA5, PLK1, RIN3, DBN1, and CCDC85B and top 5 downregulated hub genes including DISC1, AR, MTUS2, LYN, and TCF4 might be associated with PCOS. The hub gens of HSPA5 and KMT2A, together with corresponding predicted miRNAs (e.g., hsa-mir-34b-5p and hsa-mir-378a-5p), and HSPA5 and TCF4 together with corresponding predicted TF (e.g., RCOR3 and TEAD4) were found to be significantly correlated with PCOS.
Conclusions
These study uses of bioinformatics analysis of NGS data to obtain hub genes and key signaling pathways related to PCOS and its associated complications. Also provides novel ideas for finding biomarkers and treatment methods for PCOS and its associated complications.
Collapse
|
2
|
Guo J, Guo Q, Zhong T, Xu C, Xia Z, Fang H, Chen Q, Zhou Y, Xie J, Jin D, Yang Y, Wu X, Zhu H, Hour A, Jin X, Zhou Y, Li Q. Phenome-wide association study in 25,639 pregnant Chinese women reveals loci associated with maternal comorbidities and child health. CELL GENOMICS 2024; 4:100632. [PMID: 39389020 PMCID: PMC11602594 DOI: 10.1016/j.xgen.2024.100632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 12/02/2023] [Accepted: 07/19/2024] [Indexed: 10/12/2024]
Abstract
Phenome-wide association studies (PheWAS) have been less focused on maternal diseases and maternal-newborn comorbidities, especially in the Chinese population. To enhance our understanding of the genetic basis of these related diseases, we conducted a PheWAS on 25,639 pregnant women and 14,151 newborns in the Chinese Han population using ultra-low-coverage whole-genome sequence (ulcWGS). We identified 2,883 maternal trait-associated SNPs associated with 26 phenotypes, among which 99.5% were near established genome-wide association study (GWAS) loci. Further refinement delineated these SNPs to 442 unique trait-associated loci (TALs) predicated on linkage disequilibrium R2 > 0.8, revealing that 75.6% demonstrated pleiotropy and 50.9% were located in genes implicated in analogous phenotypes. Notably, we discovered 21 maternal SNPs associated with 35 neonatal phenotypes, including two SNPs associated with identical complications in both mothers and children. These findings underscore the importance of integrating ulcWGS data to enrich the discoveries derived from traditional PheWAS approaches.
Collapse
Affiliation(s)
- Jintao Guo
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen 361102, China; National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen 361102, China; Department of Hematology, School of Medicine, Xiamen University, Xiamen 361102, China; Weifang People's Hospital, Shandong Second Medical University, Shandong 261041, China
| | - Qiwei Guo
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen 361102, China
| | - Taoling Zhong
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Chaoqun Xu
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Zhongmin Xia
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hongkun Fang
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen 361102, China; Weifang People's Hospital, Shandong Second Medical University, Shandong 261041, China
| | - Qinwei Chen
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen 361102, China; Department of Hematology, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Ying Zhou
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Jieqiong Xie
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen 361102, China
| | - Dandan Jin
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen 361102, China
| | - You Yang
- BGI-Shenzhen, Shenzhen 518103, China
| | - Xin Wu
- BGI-Shenzhen, Shenzhen 518103, China
| | | | - Ailing Hour
- Department of Life Science, Fu-Jen Catholic University, Xinzhuang Dist., New Taipei City 242, Taiwan
| | - Xin Jin
- BGI-Shenzhen, Shenzhen 518103, China
| | - Yulin Zhou
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Qiyuan Li
- Department of Pediatrics, School of Medicine, Xiamen University, Xiamen 361102, China; National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen 361102, China; Department of Hematology, School of Medicine, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
3
|
Keskin M, Arsoy HA, Kara O, Sarandol E, Koca N, Yilmaz Y. Impact of Comorbid Polycystic Ovary Syndrome on Clinical and Laboratory Parameters in Female Adolescents with Metabolic Dysfunction-Associated Steatotic Liver Disease: A Cross-Sectional Study. J Clin Med 2024; 13:5885. [PMID: 39407944 PMCID: PMC11477162 DOI: 10.3390/jcm13195885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) and polycystic ovary syndrome (PCOS) share several pathophysiological mechanisms. While the prevalence of MASLD has been extensively studied in PCOS populations, the occurrence of PCOS among female adolescents with transient elastography (TE)-confirmed MASLD in pediatric hepatology settings remains poorly characterized. This cross-sectional study aims to address this knowledge gap and elucidate potential clinical and biochemical differences between female adolescents with MASLD and comorbid PCOS compared to those without PCOS. Methods: The study cohort included 45 female adolescents with TE-diagnosed MASLD. Comparative analyses of clinical and laboratory parameters were performed between those with (n = 19) and those without (n = 26) comorbid PCOS, diagnosed according to the Rotterdam criteria. Results: Adolescents with MASLD and comorbid PCOS exhibited significantly higher weight, lower height, and increased waist circumference compared to those without PCOS. Additionally, the prevalence of acanthosis nigricans was significantly higher in the PCOS group (68.4% versus 34.6%, p = 0.025). Regarding laboratory parameters, serum phosphorus levels and liver enzymes-including aspartate aminotransferase, alanine aminotransferase, and gamma-glutamyl transferase-were significantly lower in adolescents with comorbid PCOS. However, no significant differences were observed in lipid profiles, glucose metabolism, or novel non-invasive biomarkers of MASLD. Conclusions: This study reveals distinct clinical and biochemical profiles in female adolescents with MASLD and comorbid PCOS compared to those without PCOS. These findings have the potential to inform and refine future screening protocols and diagnostic algorithms for these interrelated conditions, specifically tailored to pediatric hepatology settings.
Collapse
Affiliation(s)
- Murat Keskin
- Department of Gastroenterology, Faculty of Medicine, KTO Karatay University, Konya 42020, Türkiye;
| | - Hanife Aysegul Arsoy
- Department of Pediatric Gastroenterology, Bursa Yuksek Ihtisas Training and Research Hospital, University of Health Sciences, Bursa 16350, Türkiye;
| | - Ozlem Kara
- Department of Pediatric Endocrinology, Bursa Yuksek Ihtisas Training and Research Hospital, University of Health Sciences, Bursa 16350, Türkiye;
| | - Emre Sarandol
- Department of Biochemistry, Faculty of Medicine, Bursa Uludağ University, Bursa 16059, Türkiye;
| | - Nizameddin Koca
- Department of Internal Medicine, Bursa Faculty of Medicine, University of Health Sciences, Bursa 16350, Türkiye;
| | - Yusuf Yilmaz
- Department of Gastroenterology, School of Medicine, Recep Tayyip Erdoğan University, Rize 53100, Türkiye
- The Global NASH Council, Washington, DC 20037, USA
| |
Collapse
|
4
|
Francis R, Kalyanaraman R, Boominathan V, Parthasarathy S, Chavaan A, Ansari IA, Ansari SA, Alkahtani HM, Chandran J, Tharumasivam SV. Piperine's potential in treating polycystic ovarian syndrome explored through in-silico docking. Sci Rep 2024; 14:21834. [PMID: 39294254 PMCID: PMC11411113 DOI: 10.1038/s41598-024-72800-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024] Open
Abstract
Polycystic Ovarian Syndrome (PCOS) is a multifaceted metabolic and hormonal condition that impacts women in their procreative ages, identified by ovarian dysfunction, hyperandrogenaemia overweight and insulin insensitivity. The piperine, an important alkaloid compound of black pepper has shown promise in modulating various physiological processes. In this work, employed computational docking studies to explore the potential of piperine as a treatment for PCOS. Utilizing computational methods, we analyzed the binding interactions between piperine and key molecular targets implicated in PCOS pathogenesis, including hyperandrogenism, and "oligomenorrhea. The network pharmacology analysis report found 988 PCOS-related genes, 108 hyperandrogenism-related genes, and 377 oligomenorrhea-related genes, and we finally shortlisted 5 common genes in PCOS, hyperandrogenism, and "oligomenorrhea": NR3C1, PPARG, FOS, CYP17A1, and H6PD. Our results reveal favorable binding affinities with PPARG (-8.34 Kcal/mol) and H6PD (-8.70 Kcal/mol) and interaction patterns, suggesting the potential of piperine to modulate these targets. Moreover, the reliability of the piperine-target interactions was revealed by molecular simulations studies. These findings support further experimental investigations to validate the therapeutic efficacy of piperine in PCOS management. The integration of computational approaches with experimental studies has the potential to lay the groundwork for the creation of new therapies specifically targeting PCOS and related endocrine disorders.
Collapse
Affiliation(s)
- Rahul Francis
- Department of Biotechnology, Srimad Andavan Arts and Science College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Ramanathan Kalyanaraman
- Department of Biotechnology, Srimad Andavan Arts and Science College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Vasuki Boominathan
- Department of Biotechnology, Srimad Andavan Arts and Science College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | | | - Ashajyothi Chavaan
- Department of Studies in Biotechnology, Vijayanagar Sri Krishnadevarya University, Ballari, Karnataka, 583-105, India
| | - Irfan Aamer Ansari
- Department of Drug Science and Technology, University of Turin, 10125, Turin, Italy
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O Box 2457, 11451, Riyadh, Saudi Arabia.
| | - Hamad M Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O Box 2457, 11451, Riyadh, Saudi Arabia
| | - Janani Chandran
- Department of Biotechnology, Srimad Andavan Arts and Science College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Siva Vijayakumar Tharumasivam
- Department of Biotechnology, Srimad Andavan Arts and Science College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.
- Department of Biotechnology Engineering, School of Engineering and Technology, Dhanalakshmi Srinivasan University, Samayapuram, Trichy, Tamil Nadu, India.
| |
Collapse
|
5
|
Ratre P, Nazeer N, Soni N, Kaur P, Tiwari R, Mishra PK. Smart carbon-based sensors for the detection of non-coding RNAs associated with exposure to micro(nano)plastics: an artificial intelligence perspective. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8429-8452. [PMID: 38182954 DOI: 10.1007/s11356-023-31779-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 12/26/2023] [Indexed: 01/07/2024]
Abstract
Micro(nano)plastics (MNPs) are pervasive environmental pollutants that individuals eventually consume. Despite this, little is known about MNP's impact on public health. In this article, we assess the evidence for potentially harmful consequences of MNPs in the human body, concentrating on molecular toxicity and exposure routes. Since MNPs are present in various consumer products, foodstuffs, and the air we breathe, exposure can occur through ingestion, inhalation, and skin contact. MNPs exposure can cause mitochondrial oxidative stress, inflammatory lesions, and epigenetic modifications, releasing specific non-coding RNAs in circulation, which can be detected to diagnose non-communicable diseases. This article examines the most fascinating smart carbon-based nanobiosensors for detecting circulating non-coding RNAs (lncRNAs and microRNAs). Carbon-based smart nanomaterials offer many advantages over traditional methods, such as ease of use, sensitivity, specificity, and efficiency, for capturing non-coding RNAs. In particular, the synthetic methods, conjugation chemistries, doping, and in silico approach for the characterization of synthesized carbon nanodots and their adaptability to identify and measure non-coding RNAs associated with MNPs exposure is discussed. Furthermore, the article provides insights into the use of artificial intelligence tools for designing smart carbon nanomaterials.
Collapse
Affiliation(s)
- Pooja Ratre
- Department of Environmental Biotechnology, Genetics & Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Nazim Nazeer
- Department of Environmental Biotechnology, Genetics & Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Nikita Soni
- Department of Environmental Biotechnology, Genetics & Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Prasan Kaur
- Department of Environmental Biotechnology, Genetics & Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Rajnarayan Tiwari
- Department of Environmental Biotechnology, Genetics & Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Pradyumna Kumar Mishra
- Department of Environmental Biotechnology, Genetics & Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
6
|
Buigues A, Ramírez-Martin N, Martínez J, Pellicer N, Meseguer M, Pellicer A, Herraiz S. Systemic changes induced by autologous stem cell ovarian transplant in plasma proteome of women with impaired ovarian reserves. Aging (Albany NY) 2023; 15:14553-14573. [PMID: 38149997 PMCID: PMC10781467 DOI: 10.18632/aging.205400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/10/2023] [Indexed: 12/28/2023]
Abstract
Patients with poor ovarian response (POR) and premature ovarian insufficiency (POI) are challenging to treat, with oocyte donation remaining as the only feasible option to achieve pregnancy in some cases. The Autologous stem cell ovarian transplantation (ASCOT) technique allows follicle development, enabling pregnancies and births of healthy babies in these patients. Previous results suggest that growth factors and cytokines secreted by stem cells are partially responsible for their regenerative properties. Indeed, ASCOT beneficial effects associate with the presence of different bone marrow derived stem cell- secreted factors in plasma. Therefore, the aim of this study was to assess whether ASCOT induce any modifications in the plasma proteomic profile of patients with impaired ovarian reserves. Discriminant analysis highlighted clear distinctions between the plasma proteome before (PRE), during stem cell mobilization and collection (APHERESIS) and three months after ASCOT (POST) in patients with POR and POI. Both the stem cell mobilization and ASCOT technique induced statistically significant modifications in the plasma composition, reversing some age-related protein expression changes. In the POR group, functional analysis revealed an enrichment in processes related to the complement cascade, immune system, and platelet degranulation, while in the POI group, enriched processes were also associated with responses to oxygen-containing compounds and growth hormones, and blood vessel maturation. In conclusion, our findings highlight the potential proteins and biological processes that may promote the follicle activation and growth observed after ASCOT. Identifying plasma proteins that regenerate aged or damaged ovaries could lead to more effective, targeted and/or preventive therapies for patients.
Collapse
Affiliation(s)
- Anna Buigues
- IVIRMA Global Research Alliance, IVI Foundation - Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia 46026, Spain
| | - Noelia Ramírez-Martin
- IVIRMA Global Research Alliance, IVI Foundation - Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia 46026, Spain
| | - Jessica Martínez
- IVIRMA Global Research Alliance, IVI Foundation - Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia 46026, Spain
| | - Nuria Pellicer
- IVIRMA Global Research Alliance, IVI Foundation - Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia 46026, Spain
- IVIRMA Global Research Alliance, IVIRMA Valencia, Valencia 46015, Spain
| | - Marcos Meseguer
- IVIRMA Global Research Alliance, IVI Foundation - Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia 46026, Spain
- IVIRMA Global Research Alliance, IVIRMA Valencia, Valencia 46015, Spain
| | - Antonio Pellicer
- IVIRMA Global Research Alliance, IVI Foundation - Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia 46026, Spain
- IVIRMA Global Research Alliance, IVIRMA Rome, Rome 00197, Italy
| | - Sonia Herraiz
- IVIRMA Global Research Alliance, IVI Foundation - Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia 46026, Spain
| |
Collapse
|
7
|
Huang J, Ji X. Never a dull enzyme, RNA polymerase II. Transcription 2023; 14:49-67. [PMID: 37132022 PMCID: PMC10353340 DOI: 10.1080/21541264.2023.2208023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/04/2023] Open
Abstract
RNA polymerase II (Pol II) is composed of 12 subunits that collaborate to synthesize mRNA within the nucleus. Pol II is widely recognized as a passive holoenzyme, with the molecular functions of its subunits largely ignored. Recent studies employing auxin-inducible degron (AID) and multi-omics techniques have revealed that the functional diversity of Pol II is achieved through the differential contributions of its subunits to various transcriptional and post-transcriptional processes. By regulating these processes in a coordinated manner through its subunits, Pol II can optimize its activity for diverse biological functions. Here, we review recent progress in understanding Pol II subunits and their dysregulation in diseases, Pol II heterogeneity, Pol II clusters and the regulatory roles of RNA polymerases.
Collapse
Affiliation(s)
- Jie Huang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xiong Ji
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
8
|
Argentato PP, Guerra JVDS, Luzia LA, Ramos ES, Maschietto M, Rondó PHDC. Excessive Gestational Weight Gain Alters DNA Methylation and Influences Foetal and Neonatal Body Composition. EPIGENOMES 2023; 7:18. [PMID: 37606455 PMCID: PMC10443290 DOI: 10.3390/epigenomes7030018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Changes in body weight are associated with the regulation of DNA methylation (DNAm). In this study, we investigated the associations between maternal gestational weight gain-related DNAm and foetal and neonatal body composition. METHODS Brazilian pregnant women from the Araraquara Cohort Study were followed up during pregnancy, delivery, and after hospital discharge. Women with normal pre-pregnancy BMI were allocated into two groups: adequate gestational weight gain (AGWG, n = 45) and excessive gestational weight gain (EGWG, n = 30). Foetal and neonatal body composition was evaluated via ultrasound and plethysmography, respectively. DNAm was assessed in maternal blood using Illumina Infinium MethylationEPIC BeadChip arrays. Linear regression models were used to explore the associations between DNAm and foetal and neonatal body composition. RESULTS Maternal weight, GWG, neonatal weight, and fat mass were higher in the EGWG group. Analysis of DNAm identified 46 differentially methylated positions and 11 differentially methylated regions (DMRs) between the EGWG and AGWG groups. Nine human phenotypes were enriched for these 11 DMRs located in 13 genes (EMILIN1, HOXA5, CPT1B, CLDN9, ZFP57, BRCA1, POU5F1, ANKRD33, HLA-B, RANBP17, ZMYND11, DIP2C, TMEM232), highlighting the terms insulin resistance, and hyperglycaemia. Maternal DNAm was associated with foetal total thigh and arm tissues and subcutaneous thigh and arm fat, as well as with neonatal fat mass percentage and fat mass. CONCLUSION The methylation pattern in the EGWG group indicated a risk for developing chronic diseases and involvement of maternal DNAm in foetal lean and fat mass and in neonatal fat mass.
Collapse
Affiliation(s)
- Perla Pizzi Argentato
- Nutrition Department, School of Public Health, University of São Paulo, Avenida Dr. Arnaldo 715, São Paulo 01246-904, SP, Brazil; (P.P.A.); (L.A.L.)
| | - João Victor da Silva Guerra
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Centre for Research in Energy and Materials (CNPEM) and Graduate Program in Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, University of Campinas, Rua Giuseppe Máximo Scolfaro 10.000, Cidade Universitária, Campinas 13083-970, SP, Brazil;
| | - Liania Alves Luzia
- Nutrition Department, School of Public Health, University of São Paulo, Avenida Dr. Arnaldo 715, São Paulo 01246-904, SP, Brazil; (P.P.A.); (L.A.L.)
| | - Ester Silveira Ramos
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Ribeirão Preto 14049-900, SP, Brazil;
| | - Mariana Maschietto
- Boldrini Children’s Hospital, University of Campinas, Rua Márcia Mendes 619, Cidade Universitária, Campinas 13083-884, SP, Brazil;
| | - Patrícia Helen de Carvalho Rondó
- Nutrition Department, School of Public Health, University of São Paulo, Avenida Dr. Arnaldo 715, São Paulo 01246-904, SP, Brazil; (P.P.A.); (L.A.L.)
| |
Collapse
|
9
|
Liang R, Sheng M, Li X, Jin J, Yi Y. Transcriptomic analysis reveals that the anti-PCOS effects of Zishen Qingre Lishi Huayu recipe may involve pathways and genes related to autophagy, steroidogenesis, oxidative stress, and inflammation in granulosa cells. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116551. [PMID: 37121450 DOI: 10.1016/j.jep.2023.116551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zishen Qingre Lishi Huayu recipe (ZQLHR) is a Chinese medicine compound composed of nine herbs for the treatment of polycystic ovary syndrome (PCOS). It is used to nourish kidneys, clear heat, reduce dampness and dissipation blood stasis by promoting diuresis and blood circulation, dredging the meridians and harmonizing menstruation in the treatment of PCOS. Several clinical studies have shown that ZQLHR is effective in the treatment of PCOS, but the underlying mechanism remains unclear. AIM OF THE STUDY In this study, we researched on the effects and mechanism of action of ZQLHR during treatment of human granulosa cells (hGCs) obtained from PCOS patients in order to provide a scientific basis for the clinical application of ZQLHR in the treatment of PCOS, emphasize the importance of some genes that have been reported to play a role in the pathogenesis or therapeutic mechanisms of PCOS from the perspective of disease treatment, and identify some new genes and signaling pathways that may play an important role in the treatment of PCOS. MATERIALS AND METHODS KGN cells (a granulosa cell-like tumor cell line) were subjected to a cell counting kit-8 assay to explore the appropriate intervention concentration and duration of ZQLHR. Treated with or without ZQLHR (ZQLHR and control groups), the hGCs obtained from PCOS patients were sequenced using RNA sequencing, and the genes thus detected were further analyzed through Kyoto encyclopedia of genes and genomes enrichment analysis, gene set enrichment analysis, and individuation gene analysis. These genes were also compared with PCOS-related genes in other databases. To further verify the authenticity of the differentially expressed genes between the two groups, the expression of eight randomly selected vital genes and three proteins of interest was verified through real time quantitative polymerase chain reaction and Western blot experiment respectively. RESULTS The best intervention concentration and duration for ZQLHR to promote the proliferation of KGN cells were 0.2% and 48 h respectively in this experiment. Multiple signaling pathways and 55 focus differentially expressed genes, both related to autophagy, steroidogenesis, oxidative stress-related longevity, inflammation, and complications of PCOS, may play an important role in the therapeutic mechanism of action of ZQLHR. The expression of eight genes is consistent with the result of RNA sequencing, and the expression of three proteins of interest is the same as expected. CONCLUSIONS The promotion of hGCs proliferation upon treatment with ZQLHR may be a manifestation of ZQLHR in the treatment of PCOS patients. The positive effects of ZQLHR against PCOS may involve pathways and genes related to autophagy, steroidogenesis, oxidative stress-related longevity, and inflammation in hGCs. Some components of ZQLHR applied for the treatment of PCOS may also be effective for the treatment of some complications of PCOS.
Collapse
Affiliation(s)
- Ruining Liang
- Jiangxi University of Chinese Medicine, Nanchang, 330000, China; Department of Reproductive Medicine, Second Affiliated Hospital, Jiangxi University of Chinese Medicine, Nanchang, 330000, China; Institute of Obstetrics and Gynecology, Jiangxi University of Chinese Medicine, Nanchang, 330000, China.
| | - Mengzhen Sheng
- Jiangxi University of Chinese Medicine, Nanchang, 330000, China.
| | - Xin Li
- Jiangxi University of Chinese Medicine, Nanchang, 330000, China.
| | - Jing Jin
- Jiangxi University of Chinese Medicine, Nanchang, 330000, China.
| | - Yao Yi
- Jiangxi University of Chinese Medicine, Nanchang, 330000, China; Department of Reproductive Medicine, Second Affiliated Hospital, Jiangxi University of Chinese Medicine, Nanchang, 330000, China; Institute of Obstetrics and Gynecology, Jiangxi University of Chinese Medicine, Nanchang, 330000, China.
| |
Collapse
|
10
|
Zhou J, Jiang Z, Fu L, Qu F, Dai M, Xie N, Zhang S, Wang F. Contribution of labor related gene subtype classification on heterogeneity of polycystic ovary syndrome. PLoS One 2023; 18:e0282292. [PMID: 36857354 PMCID: PMC9977056 DOI: 10.1371/journal.pone.0282292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/11/2023] [Indexed: 03/02/2023] Open
Abstract
OBJECTIVE As one of the most common endocrine disorders in women of reproductive age, polycystic ovary syndrome (PCOS) is highly heterogeneous with varied clinical features and diverse gestational complications among individuals. The patients with PCOS have 2-fold higher risk of preterm labor which is associated with substantial infant morbidity and mortality and great socioeconomic cost. The study was designated to identify molecular subtypes and the related hub genes to facilitate the susceptibility assessment of preterm labor in women with PCOS. METHODS Four mRNA datasets (GSE84958, GSE5090, GSE43264 and GSE98421) were obtained from Gene Expression Omnibus database. Twenty-eight candidate genes related to preterm labor or labor were yielded from the researches and our unpublished data. Then, we utilized unsupervised clustering to identify molecular subtypes in PCOS based on the expression of above candidate genes. Key modules were generated with weighted gene co-expression network analysis R package, and their hub genes were generated with CytoHubba. The probable biological function and mechanism were explored through Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis. In addition, STRING and Cytoscape software were used to identify the protein-protein interaction (PPI) network, and the molecular complex detection (MCODE) was used to identify the hub genes. Then the overlapping hub genes were predicted. RESULTS Two molecular subtypes were found in women with PCOS based on the expression similarity of preterm labor or labor-related genes, in which two modules were highlighted. The key modules and PPI network have five overlapping five hub genes, two of which, GTF2F2 and MYO6 gene, were further confirmed by the comparison between clustering subgroups according to the expression of hub genes. CONCLUSIONS Distinct PCOS molecular subtypes were identified with preterm labor or labor-related genes, which might uncover the potential mechanism underlying heterogeneity of clinical pregnancy complications in women with PCOS.
Collapse
Affiliation(s)
- Jue Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Zhou Jiang
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Leyi Fu
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fan Qu
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Minchen Dai
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ningning Xie
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Songying Zhang
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- * E-mail: (FW); (SZ)
| | - Fangfang Wang
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- * E-mail: (FW); (SZ)
| |
Collapse
|
11
|
Heidarzadehpilehrood R, Pirhoushiaran M, Binti Osman M, Ling KH, Abdul Hamid H. Unveiling Key Biomarkers and Therapeutic Drugs in Polycystic Ovary Syndrome (PCOS) Through Pathway Enrichment Analysis and Hub Gene-miRNA Networks. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2023; 22:e139985. [PMID: 38444712 PMCID: PMC10912876 DOI: 10.5812/ijpr-139985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 03/07/2024]
Abstract
Background Polycystic ovary syndrome (PCOS) affects women of reproductive age globally with an incidence rate of 5% - 26%. Growing evidence reports important roles for microRNAs (miRNAs) in the pathophysiology of granulosa cells (GCs) in PCOS. Objectives The objectives of this study were to identify the top differentially expressed miRNAs (DE-miRNAs) and their corresponding targets in hub gene-miRNA networks, as well as identify novel DE-miRNAs by analyzing three distinct microarray datasets. Additionally, functional enrichment analysis was performed using bioinformatics approaches. Finally, interactions between the 5 top-ranked hub genes and drugs were investigated. Methods Using bioinformatics approaches, three GC profiles from the gene expression omnibus (GEO), namely gene expression omnibus series (GSE)-34526, GSE114419, and GSE137684, were analyzed. Targets of the top DE-miRNAs were predicted using the multiMiR R package, and only miRNAs with validated results were retrieved. Genes that were common between the "DE-miRNA prediction results" and the "existing tissue DE-mRNAs" were designated as differentially expressed genes (DEGs). Gene ontology (GO) and pathway enrichment analyses were implemented for DEGs. In order to identify hub genes and hub DE-miRNAs, the protein-protein interaction (PPI) network and miRNA-mRNA interaction network were constructed using Cytoscape software. The drug-gene interaction database (DGIdb) database was utilized to identify interactions between the top-ranked hub genes and drugs. Results Out of the top 20 DE-miRNAs that were retrieved from the GSE114419 and GSE34526 microarray datasets, only 13 of them had "validated results" through the multiMiR prediction method. Among the 13 DE-miRNAs investigated, only 5, namely hsa-miR-8085, hsa-miR-548w, hsa-miR-612, hsa-miR-1470, and hsa-miR-644a, demonstrated interactions with the 10 hub genes in the hub gene-miRNA networks in our study. Except for hsa-miR-612, the other 4 DE-miRNAs, including hsa-miR-8085, hsa-miR-548w, hsa-miR-1470, and hsa-miR-644a, are novel and had not been reported in PCOS pathogenesis before. Also, GO and pathway enrichment analyses identified "pathogenic E. coli infection" in the Kyoto encyclopedia of genes and genomes (KEGG) and "regulation of Rac1 activity" in FunRich as the top pathways. The drug-hub gene interaction network identified ACTB, JUN, PTEN, KRAS, and MAPK1 as potential targets to treat PCOS with therapeutic drugs. Conclusions The findings from this study might assist researchers in uncovering new biomarkers and potential therapeutic drug targets in PCOS treatment.
Collapse
Affiliation(s)
- Roozbeh Heidarzadehpilehrood
- Department of Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Maryam Pirhoushiaran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, 1417613151, Tehran, Iran
| | - Malina Binti Osman
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Malaysian Research Institution on Ageing, (MyAgeing), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Habibah Abdul Hamid
- Department of Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
12
|
Subramanian A, Lee SI, Phillips K, Toulis KA, Kempegowda P, O'Reilly MW, Adderley NJ, Thangaratinam S, Arlt W, Nirantharakumar K. Polycystic ovary syndrome and risk of adverse obstetric outcomes: a retrospective population-based matched cohort study in England. BMC Med 2022; 20:298. [PMID: 36038914 PMCID: PMC9425992 DOI: 10.1186/s12916-022-02473-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/11/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) affects up to one in five women of childbearing age. Observational studies assessing the association between maternal PCOS and adverse obstetric outcomes have reported varying results, depending on patient population, diagnostic criteria for PCOS and covariates accounted for in their analyses. We aimed to assess the risk of obstetric outcomes among a population-based representative cohort of women with PCOS compared to an age-matched cohort of women without PCOS. METHODS A retrospective cohort study was conducted of pregnancies of women in England aged 15-49 years identified from the Clinical Practice Research Datalink (CPRD) GOLD pregnancy register and linked Hospital Episodes Statistic (HES) data between March 1997 and March 2020. Pregnancies from the register that had a linked HES delivery record were included. Linked CPRD primary care data was used to ascertain maternal PCOS exposure prior to pregnancy. To improve detection of PCOS, in addition to PCOS diagnostic codes, codes for (1) polycystic ovaries or (2) hyperandrogenism and anovulation together were also considered. Sensitivity analysis was limited to only pregnant women with a diagnostic code for PCOS. Primary outcomes ascertained from linked HES data were (1) preterm delivery (gestation < 37 weeks), (2) mode of delivery, (3) high (> 4000 g) or low birthweight (< 2500 g) and (4) stillbirth. Secondary outcomes were (1) very preterm delivery (< 32 weeks), (2) extremely preterm delivery (< 28 weeks), (3) small and (4) large for gestational age. Conditional logistic regression models were performed adjusting for age, ethnicity, deprivation, dysglycaemia, hypertension, thyroid disorders, number of babies born at index pregnancy, and pre-gravid BMI. Multiple imputation was performed for missing outcome data. RESULTS 27,586 deliveries with maternal PCOS were matched for age (± 1 year) to 110,344 deliveries without PCOS. In the fully adjusted models, maternal PCOS was associated with an increased risk of (1) preterm birth [aOR: 1.11 (95% CI 1.06-1.17)], and (2) emergency caesarean, elective caesarean and instrumental vaginal compared to spontaneous delivery [aOR: 1.10 (1.05-1.15), 1.07 (1.03-1.12) and 1.04 (1.00-1.09), respectively]. There was absence of association with low birthweight, high birthweight and stillbirth. In the sensitivity analysis, the association with preterm birth [aOR: 1.31 (95% CI 1.13-1.52)], emergency caesarean [aOR: 1.15 (95% CI 1.02-1.30)], and elective caesarean [aOR: 1.03 (95% CI 1.02-1.03)] remained. While there was no significant association with any of the secondary outcomes in the primary analysis, in the sensitivity analysis maternal PCOS was associated with increased risk of extremely preterm delivery [aOR: 1.86 (95% CI 1.31-2.65)], and lower risk of small for gestational age babies [aOR: 0.74 (95% CI 0.59-0.94)]. CONCLUSIONS Maternal PCOS was associated with increased risk of preterm and caesarean delivery. Association with low birthweight may be largely mediated by lower gestational age at birth.
Collapse
Affiliation(s)
| | - Siang Ing Lee
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Katherine Phillips
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | | | - Punith Kempegowda
- Institute of Metabolism and Systems Research, WHO Collaborating Centre for Global Women's Health, University of Birmingham, Birmingham, UK
| | - Michael W O'Reilly
- Endocrinology and Metabolism Unit, Department of Medicine, Royal College of Surgeons in Ireland (RCSI), University of Medicine and Health Sciences, Dublin, Republic of Ireland
| | - Nicola J Adderley
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Shakila Thangaratinam
- Institute of Metabolism and Systems Research, WHO Collaborating Centre for Global Women's Health, University of Birmingham, Birmingham, UK.,Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research, WHO Collaborating Centre for Global Women's Health, University of Birmingham, Birmingham, UK.,National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Krishnarajah Nirantharakumar
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK.,Midlands Health Data Research UK, Birmingham, UK
| |
Collapse
|
13
|
Liu L, Chen H, Chen X, Yao C, Shen W, Jia C. KNTC1 as a putative tumor oncogene in pancreatic cancer. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04146-3. [DOI: 10.1007/s00432-022-04146-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/13/2022] [Indexed: 12/09/2022]
Abstract
Abstract
Purpose
Recent studies have demonstrated that kinetochore-associated protein 1 (KNTC1) plays a significant role in the carcinogenesis of numerous types of cancer. This study aimed to explore the role and possible mechanisms of KNTC1 in the development of pancreatic cancer.
Methods and results
We analyzed differentially expressed genes by RNA sequencing in three paired pancreatic cancer and para-cancerous tissue samples and found that the expression of KNTC1 was significantly upregulated in pancreatic cancer. A Cancer and Tumor Gene Map pan-analysis showed that high expression of KNTC1 was related to poor prognosis in 9499 tumor samples. With immunohistochemical staining, we found that the high expression of KNTC1 in pancreatic cancer was related to pathological grade and clinical prognosis. Similarly, RT-PCR results indicated that the expression of KNTC1 was higher in three groups of pancreatic cancer cell lines (BxPC-3, PANC-1, and SW1990) than in normal pancreatic ductal cells. We introduced lentivirus-mediated shRNA targeting KNTC1 into PANC-1 and SW1990 cells and found that KNTC1 knockdown significantly decreased cell growth and increased cell apoptosis compared to the control group cells. Bioinformatic analysis of the cell expression profile revealed that differential genes were mainly enriched in the cell cycle, mitosis, and STAT3 signaling pathways, and co-immunoprecipitation confirmed an interaction between KNTC1 and cell division cycle associated 8.
Conclusions
KNTC1 could be linked to the pathophysiology of pancreatic cancer and may be an early diagnostic marker of cervical precancerous lesions.
Collapse
|
14
|
Yuan B, Luo S, Feng L, Wang J, Mao J, Luo B. Resveratrol regulates the inflammation and oxidative stress of granulosa cells in PCOS via targeting TLR2. J Bioenerg Biomembr 2022; 54:191-201. [PMID: 35836030 DOI: 10.1007/s10863-022-09942-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022]
Abstract
Polycystic ovary syndrome (PCOS) is featured as a common endocrine disorder in reproductive-aged women, while its pathophysiology is not fully illustrated. This study examined potential actions of resveratrol in PCOS cellular model and explored the underlying interaction between resveratrol and toll-like receptor 2 (TLR2). This study performed the bioinformatics analysis on two microarray datasets (GSE34526 and GSE138518). We found that TLR2 was one of potential hub genes that may be associated with PCOS. Further examination showed that TLR2 was highly expressed in granulosa cells from PCOS group compared with control. The in vitro studies showed that LPS intervention caused an increased expression of TLR2 and the pro-inflammatory mediators, and induced oxidative stress in the granulosa cells, which was concentration-dependently antagonized by resveratrol treatment. TLR2 silence significantly attenuated LPS-induced increase TNF-α, IL-1β, IL-6 and IL-8 expression and oxidative stress of granulosa cells. Furthermore, TLR2 overexpression promoted inflammatory response and oxidative stress in the granulosa cells, which was antagonized by resveratrol treatment. In conclusion, resveratrol could attenuate LPS-induced inflammation and oxidative stress in granulosa cells, and the underlying mechanisms may be related to the inhibitory effect of resveratrol on TLR2 expression in granulosa cells.
Collapse
Affiliation(s)
- Ben Yuan
- Department of Reproductive Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, 435000, Hubei, China.
| | - Shuhong Luo
- Department of Reproductive Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, 435000, Hubei, China
| | - Liulian Feng
- Department of Reproductive Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, 435000, Hubei, China
| | - Junling Wang
- Department of Reproductive Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, 435000, Hubei, China
| | - Junbiao Mao
- Department of Reproductive Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, 435000, Hubei, China
| | - Bingbing Luo
- Department of Reproductive Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, 435000, Hubei, China
| |
Collapse
|
15
|
Wang C, Wang Y, Liu C, Meng X, Hang Z. Kinetochore-associated protein 1 promotes the invasion and tumorigenicity of cervical cancer cells via matrix metalloproteinase-2 and matrix metalloproteinase-9. Bioengineered 2022; 13:9495-9507. [PMID: 35389773 PMCID: PMC9161993 DOI: 10.1080/21655979.2022.2061144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Cervical cancer, a common cancer in women, has become a serious social burden. Kinetochore-associated protein 1 (KNTC1) that regulates the cell cycle by regulating mitosis is related to the malignant behavior of different types of tumors. However, its role in the development of cervical cancer remains unclear. In this study, we initially explored the role of KNTC1 in cervical cancer. KNTC1 expression and relevant information were downloaded from The Cancer Genome Atlas (TCGA) and dataset GSE63514 in the Gene Expression Omnibus (GEO) database for bioinformatics analyses. Cell proliferation was detected by cell counting kit-8 (CCK8) and colony formation assays. Wound healing and Transwell assays were used to evaluate cell migration and invasion abilities. Protein expression levels of matrix metallopeptidase 2 (MMP2) and matrix metallopeptidase 9 (MMP9) were measured by western blotting. Nude mouse models of subcutaneous xenograft tumor were constructed to analyze tumor growth in vivo. CCK8 and colony formation assay results demonstrated that the proliferation rate of SiHa and C-33A cells decreased when KNTC1 was silenced. Western blot and Transwell assays indicated that KNTC1 knockdown weakened the invasion and migration abilities of SiHa and C-33A cells and decreased the expression of MMP-2 and MMP-9. In-vivo experiments suggested that the inhibition of KNTC1 reduced tumor growth. Taken together, our study showed that KNTC1 plays an important role in cervical cancer. Further, we verified the promotional effect of KNTC1 on cervical cancer through in-vivo and in-vitro experiments and speculated that KNTC1 might mediate tumor invasion via MMP9 and MMP2.
Collapse
Affiliation(s)
- Caimei Wang
- Obstetrics and Gynecology, Yulin Second Hospital, Yulin, Shaanxi Province, China
| | - Yiyuan Wang
- Department of Stomatology, The Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi Province, China.,School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Congrong Liu
- Obstetrics and Gynecology, Yulin Second Hospital, Yulin, Shaanxi Province, China
| | - Xiaoyu Meng
- Obstetrics and Gynecology, Yulin Second Hospital, Yulin, Shaanxi Province, China
| | - Zhongxia Hang
- Obstetrics and Gynecology, Yulin Second Hospital, Yulin, Shaanxi Province, China
| |
Collapse
|
16
|
Ahmed MM, Tazyeen S, Haque S, Alsulimani A, Ali R, Sajad M, Alam A, Ali S, Bagabir HA, Bagabir RA, Ishrat R. Network-Based Approach and IVI Methodologies, a Combined Data Investigation Identified Probable Key Genes in Cardiovascular Disease and Chronic Kidney Disease. Front Cardiovasc Med 2022; 8:755321. [PMID: 35071341 PMCID: PMC8767007 DOI: 10.3389/fcvm.2021.755321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/17/2021] [Indexed: 01/28/2023] Open
Abstract
In fact, the risk of dying from CVD is significant when compared to the risk of developing end-stage renal disease (ESRD). Moreover, patients with severe CKD are often excluded from randomized controlled trials, making evidence-based therapy of comorbidities like CVD complicated. Thus, the goal of this study was to use an integrated bioinformatics approach to not only uncover Differentially Expressed Genes (DEGs), their associated functions, and pathways but also give a glimpse of how these two conditions are related at the molecular level. We started with GEO2R/R program (version 3.6.3, 64 bit) to get DEGs by comparing gene expression microarray data from CVD and CKD. Thereafter, the online STRING version 11.1 program was used to look for any correlations between all these common and/or overlapping DEGs, and the results were visualized using Cytoscape (version 3.8.0). Further, we used MCODE, a cytoscape plugin, and identified a total of 15 modules/clusters of the primary network. Interestingly, 10 of these modules contained our genes of interest (key genes). Out of these 10 modules that consist of 19 key genes (11 downregulated and 8 up-regulated), Module 1 (RPL13, RPLP0, RPS24, and RPS2) and module 5 (MYC, COX7B, and SOCS3) had the highest number of these genes. Then we used ClueGO to add a layer of GO terms with pathways to get a functionally ordered network. Finally, to identify the most influential nodes, we employed a novel technique called Integrated Value of Influence (IVI) by combining the network's most critical topological attributes. This method suggests that the nodes with many connections (calculated by hubness score) and high spreading potential (the spreader nodes are intended to have the most impact on the information flow in the network) are the most influential or essential nodes in a network. Thus, based on IVI values, hubness score, and spreading score, top 20 nodes were extracted, in which RPS27A non-seed gene and RPS2, a seed gene, came out to be the important node in the network.
Collapse
Affiliation(s)
- Mohd Murshad Ahmed
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Safia Tazyeen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Shafiul Haque
- Research and Scientific Unit, College of Nursing and Allied Health Science, Jazan University, Jazan, Saudi Arabia
| | - Ahmad Alsulimani
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arbia
| | - Rafat Ali
- Department of Bioscience, Jamia Millia Islamia, New Delhi, India
| | - Mohd Sajad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Aftab Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Shahnawaz Ali
- Centre for Stem Cell & Regenerative Medicine, KING' College London, Guy's Hospital, London, United Kingdom
| | - Hala Abubaker Bagabir
- Department of Medical Physiology, Faculty of Medicine, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Rania Abubaker Bagabir
- Department of Hematology and Immunology, College of Medicine, Umm-Al-Qura University, Mecca, Saudi Arabia
| | - Romana Ishrat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India,*Correspondence: Romana Ishrat ; orcid.org/0000-0001-9744-9047
| |
Collapse
|
17
|
Wu J, Chen X. Acupuncture therapy protects PCOS patients with diabetes by regulating miR-32-3p/PLA2G4A pathway. Am J Transl Res 2021; 13:8819-8832. [PMID: 34539997 PMCID: PMC8430091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To investigate the potential miRNA-mRNA network co-expressed in polycystic ovary syndrome (PCOS) and diabetes, and explore the molecular mechanism of traditional acupuncture treatment of PCOS. METHODS Patients with PCOS and diabetes who had undergone acupuncture treatment from January 2019 to June 2020 were recruited in this study. The potential miRNA-mRNA network co-expressed in PCOS and diabetes was obtained through bioinformatics analysis. The expression levels of candidate gen es were determined using quantitative qRT-PCR to study the effectiveness of acupuncture approach. Further, the mechanism of action of acupuncture method was determined using luciferase assay. RESULTS A total of 44 patients were included in this study. The miRNA-mRNA network for PCOS was then constructed based on the results of the bioinformatics analysis. Acupuncture treatment could significantly down-regulate miR-32-3p levels and up-regulate expression of PLA2G4A. Luciferase experiments showed that miR-32-3p could affect glucose metabolism in PCOS patients through down-regulating PLA2G4A expression. Functional and pathway enrichment analysis further suported this finding. CONCLUSIONS MiR-32-3p regulates PLA2G4A protein expression, which is vital in the pathogenesis of PCOS and diabetes. Further, this research proved that the potential mechanism of traditional acupuncture treatment may be the downregulation of miR-32-3p, thus inhibiting PCOS and diabetes progression.
Collapse
Affiliation(s)
- Jia Wu
- The First Clinical Medical College of Guangzhou University of Chinese MedicineGuangzhou, Guangdong Province, China
- Department of TCM Gynecology, Shunde Women and Children’s Hospital of Guangdong Medical UniversityFoshan, Guangdong Province, China
| | - Xinghua Chen
- Rehabilitation Care Center, The First Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhou, Guangdong Province, China
| |
Collapse
|
18
|
Cheng Y, Sun M, Wang F, Geng X, Wang F. Identification of Hub Genes Related to Alzheimer's Disease and Major Depressive Disorder. Am J Alzheimers Dis Other Demen 2021; 36:15333175211046123. [PMID: 34732058 PMCID: PMC10695082 DOI: 10.1177/15333175211046123] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BackgroundAlthough many studies reported a close relationship between depression and Alzheimer's disease (AD), the underlying pathophysiological mechanism remains unclear. The present study aimed to investigate the mechanism of AD and major depressive disorder (MDD). Method: The datasets were downloaded from the Gene Expression Omnibus. After screening differentially expressed genes (DEGs), gene ontology and pathway analysis were performed and protein-protein interaction, TF-target gene, and miRNA-target gene networks were established. Results: 171 DEGs of AD-related datasets and 79 DEGs shared by AD and MDD were detected. Functional analysis revealed that AD and MDD common genes were significantly enriched in circadian entrainment and long-term depression signaling pathways. Five hub genes were identified after construction of networks and validation of hub gene signatures. In conclusion, DYNC1H1, MAPRE3, TTBK2, ITGB1, and WASL may be potential targets for the diagnosis and treatment of AD and MDD.
Collapse
Affiliation(s)
- Yajing Cheng
- Department of Neurology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Meiyue Sun
- Department of Neurology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Feng Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xin Geng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease of Ministry of Education, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Fei Wang
- Department of Neurology, General Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|