1
|
Yang K, Li X, Jiang Z, Li J, Deng Q, He J, Chen J, Li X, Xu S, Jiang Z. Tumour suppressor ABCA8 inhibits malignant progression of colorectal cancer via Wnt/β-catenin pathway. Dig Liver Dis 2024; 56:880-893. [PMID: 37968146 DOI: 10.1016/j.dld.2023.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/17/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most commonly diagnosed malignant tumours of the digestive tract, and new therapeutic targets and prognostic markers are still urgently required. However, the role and molecular mechanisms of ATP binding cassette subfamily A member 8 (ABCA8) in CRC remain unclear. METHODS Databases and clinical specimens were analysed to determine the expression level of ABCA8 in CRC. Colony formation, CCK-8 and Transwell assays were conducted to determine cell proliferation, viability, migration and invasion. Flow cytometry was used to detect cell cycle progression and apoptosis. Western blot and rescue experiments were performed to determine the specific mechanisms of action of ABCA8. RESULTS ABCA8 expression is dramatically down-regulated in CRC tissues and cell lines. Ectopic expression of ABCA8 induced apoptosis and cell cycle arrest in vitro, inhibited cell growth, suppressed migration and invasion, reversed epithelial-mesenchymal transition and suppressed xenograft tumour growth and metastasis in vivo. Mechanistically, ABCA8 inhibited CRC cell proliferation and metastasis through the Wnt/β-catenin signalling pathway, both in vitro and in vivo. CONCLUSION We verified that ABCA8 inhibits the malignant progression of CRC through the Wnt/β-catenin pathway. This newly discovered ABCA8-Wnt-β-catenin signalling axis is probably helpful in guiding the clinical diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Kun Yang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaolu Li
- Department of Respiratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Zhongxiang Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Junfeng Li
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qianxi Deng
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jin He
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jun Chen
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaoqing Li
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shuman Xu
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zheng Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
2
|
Ramaiyer MS, Saad E, Kurt I, Borahay MA. Genetic Mechanisms Driving Uterine Leiomyoma Pathobiology, Epidemiology, and Treatment. Genes (Basel) 2024; 15:558. [PMID: 38790186 PMCID: PMC11121260 DOI: 10.3390/genes15050558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Uterine leiomyomas (ULs) are the most common benign tumor of the uterus. They can be associated with symptoms including abnormal uterine bleeding, pelvic pain, urinary frequency, and pregnancy complications. Despite the high prevalence of UL, its underlying pathophysiology mechanisms have historically been poorly understood. Several mechanisms of pathogenesis have been suggested, implicating various genes, growth factors, cytokines, chemokines, and microRNA aberrations. The purpose of this study is to summarize the current research on the relationship of genetics with UL. Specifically, we performed a literature review of published studies to identify how genetic aberrations drive pathophysiology, epidemiology, and therapeutic approaches of UL. With regards to pathophysiology, research has identified MED12 mutations, HMGA2 overexpression, fumarate hydratase deficiency, and cytogenetic abnormalities as contributors to the development of UL. Additionally, epigenetic modifications, such as histone acetylation and DNA methylation, have been identified as contributing to UL tumorigenesis. Specifically, UL stem cells have been found to contain a unique DNA methylation pattern compared to more differentiated UL cells, suggesting that DNA methylation has a role in tumorigenesis. On a population level, genome-wide association studies (GWASs) and epidemiologic analyses have identified 23 genetic loci associated with younger age at menarche and UL growth. Additionally, various GWASs have investigated genetic loci as potential drivers of racial disparities in UL incidence. For example, decreased expression of Cytohesin 4 in African Americans has been associated with increased UL risk. Recent studies have investigated various therapeutic options, including ten-eleven translocation proteins mediating DNA methylation, adenovirus vectors for drug delivery, and "suicide gene therapy" to induce apoptosis. Overall, improved understanding of the genetic and epigenetic drivers of UL on an individual and population level can propel the discovery of novel therapeutic options.
Collapse
Affiliation(s)
| | - Eslam Saad
- Department of Gynecology and Obstetrics, Johns Hopkins University, 720 Rutland Ave, Baltimore, MD 21205, USA; (E.S.); (I.K.)
| | - Irem Kurt
- Department of Gynecology and Obstetrics, Johns Hopkins University, 720 Rutland Ave, Baltimore, MD 21205, USA; (E.S.); (I.K.)
- Faculty of Medicine, Selcuk University, 42000 Konya, Turkey
| | - Mostafa A. Borahay
- Department of Gynecology and Obstetrics, Johns Hopkins University, 720 Rutland Ave, Baltimore, MD 21205, USA; (E.S.); (I.K.)
| |
Collapse
|
3
|
Nowak B, Mucha A, Zatoń-Dobrowolska M, Chrostowski G, Kruszyński W. Genetic basis of sow hyperprolificacy and litter size optimization based on a genome-wide association study. Theriogenology 2024; 218:119-125. [PMID: 38325148 DOI: 10.1016/j.theriogenology.2024.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/09/2024]
Abstract
Over the last few decades, there has been a constant increase in sow litter size, the consequences of which include parturition duration extension, an increase in the percentage of stillborn and hypoxic piglets, and increased variation in piglet birth weight, which reduces their vitality. As such, it seems clear that further increasing sow fertility will generate difficulties and costs in rearing numerous litters with low birth weights. Therefore, the current study aimed to analyze the genetic background of sow hyperprolifcacy using a genome-wide association study (GWAS). The research included 144 sows in the maternal component, divided into two equal groups. The first group (control) consisted of females giving birth to the optimal number of piglets in their third and fourth litters (14-16), while the second group (cases) included those with excessive litter size (>16). The analyzed sows were genotyped using Illumina's PorcineSNP60v2 BeadChip microarray, comprising 64,232 single nucleotide polymorphisms (SNPs). Statistical analysis using R included quality control of genotyping data and GWAS analysis based on five logistic regression models (dominant, codominant, overdominant, recessive, and log-additive) with a single SNP marker as the explanatory variable. On this basis, one SNP (SIRI0000069) was identified on chromosome seven within the EFCAB11 (EF-hand calcium binding domain 11) gene that had a statistically significant effect on sow hyperprolificacy. Additionally, ten SNPs (INRA0007631, ALGA0011600, ALGA0043433, ALGA0043428, M1GA0010535 ALGA00443338, ALGA0087116, MARC0056787, ALGA0112928, and ALGA0089047) had a relationship with the analyzed feature at a level close to significance, set at 1-5. These SNPs appear important since they are located on chromosomes on which a large number of quantitative trait loci (QTLs) and SNPs associated with reproductive characteristics, including litter size, have been identified.
Collapse
Affiliation(s)
- Błażej Nowak
- Department of Genetics, Wrocław University of Environmental and Life Sciences, Kożuchowska 7, 51-631, Wrocław, Poland.
| | - Anna Mucha
- Department of Genetics, Wrocław University of Environmental and Life Sciences, Kożuchowska 7, 51-631, Wrocław, Poland
| | - Magdalena Zatoń-Dobrowolska
- Department of Genetics, Wrocław University of Environmental and Life Sciences, Kożuchowska 7, 51-631, Wrocław, Poland
| | - Grzegorz Chrostowski
- Department of Genetics, Wrocław University of Environmental and Life Sciences, Kożuchowska 7, 51-631, Wrocław, Poland
| | - Wojciech Kruszyński
- Department of Genetics, Wrocław University of Environmental and Life Sciences, Kożuchowska 7, 51-631, Wrocław, Poland
| |
Collapse
|
4
|
Yang Q, Vafaei S, Falahati A, Khosh A, Bariani MV, Omran MM, Bai T, Siblini H, Ali M, He C, Boyer TG, Al-Hendy A. Bromodomain-Containing Protein 9 Regulates Signaling Pathways and Reprograms the Epigenome in Immortalized Human Uterine Fibroid Cells. Int J Mol Sci 2024; 25:905. [PMID: 38255982 PMCID: PMC10815284 DOI: 10.3390/ijms25020905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/26/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Bromodomain-containing proteins (BRDs) are involved in many biological processes, most notably epigenetic regulation of transcription, and BRD dysfunction has been linked to many diseases, including tumorigenesis. However, the role of BRDs in the pathogenesis of uterine fibroids (UFs) is entirely unknown. The present study aimed to determine the expression pattern of BRD9 in UFs and matched myometrium and further assess the impact of a BRD9 inhibitor on UF phenotype and epigenetic/epitranscriptomic changes. Our studies demonstrated that the levels of BRD9 were significantly upregulated in UFs compared to matched myometrium, suggesting that the aberrant BRD expression may contribute to the pathogenesis of UFs. We then evaluated the potential roles of BRD9 using its specific inhibitor, I-BRD9. Targeted inhibition of BRD9 suppressed UF tumorigenesis with increased apoptosis and cell cycle arrest, decreased cell proliferation, and extracellular matrix deposition in UF cells. The latter is the key hallmark of UFs. Unbiased transcriptomic profiling coupled with downstream bioinformatics analysis further and extensively demonstrated that targeted inhibition of BRD9 impacted the cell cycle- and ECM-related biological pathways and reprogrammed the UF cell epigenome and epitranscriptome in UFs. Taken together, our studies support the critical role of BRD9 in UF cells and the strong interconnection between BRD9 and other pathways controlling the UF progression. Targeted inhibition of BRDs might provide a non-hormonal treatment option for this most common benign tumor in women of reproductive age.
Collapse
Affiliation(s)
- Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (S.V.); (M.V.B.); (M.M.O.); (H.S.); (M.A.); (A.A.-H.)
| | - Somayeh Vafaei
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (S.V.); (M.V.B.); (M.M.O.); (H.S.); (M.A.); (A.A.-H.)
| | - Ali Falahati
- DNA GTx LAB, Dubai Healthcare City, Dubai 505262, United Arab Emirates;
| | - Azad Khosh
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (A.K.); (T.G.B.)
| | - Maria Victoria Bariani
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (S.V.); (M.V.B.); (M.M.O.); (H.S.); (M.A.); (A.A.-H.)
| | - Mervat M. Omran
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (S.V.); (M.V.B.); (M.M.O.); (H.S.); (M.A.); (A.A.-H.)
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Tao Bai
- Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Hiba Siblini
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (S.V.); (M.V.B.); (M.M.O.); (H.S.); (M.A.); (A.A.-H.)
| | - Mohamed Ali
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (S.V.); (M.V.B.); (M.M.O.); (H.S.); (M.A.); (A.A.-H.)
| | - Chuan He
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA;
| | - Thomas G. Boyer
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (A.K.); (T.G.B.)
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (S.V.); (M.V.B.); (M.M.O.); (H.S.); (M.A.); (A.A.-H.)
| |
Collapse
|