1
|
Yang Y, Huang H, Zhu MY, Wei HR, Zhang M, Tang L, Gao W, Yang X, Zhang Z, Cao P, Tao W. A neural circuit for lavender-essential-oil-induced antinociception. Cell Rep 2024; 43:114800. [PMID: 39365703 DOI: 10.1016/j.celrep.2024.114800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/14/2024] [Accepted: 09/11/2024] [Indexed: 10/06/2024] Open
Abstract
Lavender essential oil (LEO) has been shown to relieve pain in humans, but the underlying neural mechanisms remain unknown. Here, we found that inhalation exposure to 0.1% LEO confers antinociceptive effects in mice with complete Freund adjuvant (CFA)-induced inflammatory pain through activation of projections from the anterior piriform cortex (aPir) to the insular cortex (IC). Specifically, in vivo fiber photometry recordings and viral tracing data show that glutamatergic projections from the aPir (aPirGlu) innervate GABAergic neurons in the IC (ICGABA) to inhibit local glutamatergic neurons (ICGlu) that are hyperactivated in inflammatory pain. Optogenetic or chemogenetic activation of this aPirGlu→ICGABA→Glu pathway can recapitulate the antinociceptive effects of LEO inhalation in CFA mice. Conversely, artificial inhibition of IC-projecting aPirGlu neurons abolishes LEO-induced antinociception. Our study thus depicts an LEO-responsive olfactory system circuit mechanism for alleviating inflammatory pain via aPir→IC neural connections, providing evidence to support development of aroma-based treatments for alleviating pain.
Collapse
Affiliation(s)
- Yumeng Yang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Hao Huang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Meng-Yu Zhu
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Hong-Rui Wei
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Mingjun Zhang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Lan Tang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Wei Gao
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Xinlu Yang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Zhi Zhang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Center for Advance Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.
| | - Peng Cao
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.
| | - Wenjuan Tao
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
2
|
Simaei SR, Askari VR, Rostami M, Kamalinejad M, Farzaei MH, Morovati M, Heydarpour F, Jafari Z, Baradaran Rahimi V. Lavender and metformin effectively propagate progesterone levels in patients with polycystic ovary syndrome: A randomized, double-blind clinical trial. Fitoterapia 2024; 172:105720. [PMID: 37931721 DOI: 10.1016/j.fitote.2023.105720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND The present study aimed to evaluate the impacts of lavender and metformin on polycystic ovary syndrome (PCOS) patients. METHODS We performed a randomized, double-blind clinical trial including 68 females aged 18 to 45, fulfilling the Rotterdam criteria for PCOS. The patients were randomized to receive lavender (250 mg twice daily) or metformin (500 mg three times a day) for 90 days. The serum progesterone was measured at baseline and after 90 days, one week before their expected menstruation. Moreover, the length of the menstrual cycle was documented. RESULTS Our results showed that lavender and metformin treatment notably increased the progesterone levels in PCOS patients (increasing from 0.35 (0.66) and 0.8 (0.69) to 2.5 (6.2) and 2.74 (6.27) ng/mL, respectively, P < 0.001). However, we found no significant differences between the increasing effects of both treatments on progesterone levels. In addition, all patients in the lavender or metformin groups had baseline progesterone levels <3 ng/mL, reaching 14 (45.2%) patients >3 ng/mL. Lavender and metformin remarkably attenuated the menstrual cycle length in PCOS patients (decreasing from 56.0 (20.0) and 60 (12.0) to 42.0 (5.0) and 50.0 (14.0) days, respectively, P < 0.001). Furthermore, the decreasing effects of lavender on the menstrual cycle length were greater than the metformin group; however, it was not statistically significant (P = 0.06). CONCLUSION Lavender effectively increased progesterone levels and regulated the menstrual cycles in PCOS patients, similar to metformin. Therefore, lavender may be a promising candidate for the treatment of PCOS.
Collapse
Affiliation(s)
- Saeed Reza Simaei
- Department of Persian Medicine, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad Iran.
| | - Mahboobeh Rostami
- Department of Obstetrics and Gynecology, Faculty of Medicine, Islamic Azad University of Mashhad, Mashhad, Iran.
| | - Mohammad Kamalinejad
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Mohammadreza Morovati
- Department of Persian Medicine, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Fatemeh Heydarpour
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Zahra Jafari
- Department of Persian Medicine, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad Iran.
| |
Collapse
|
3
|
Cruz Sánchez E, García MT, Gracia I, Fernández-Bermejo SI, Rodríguez JF, García-Vargas JM, Vidal Roig D. Antibacterial Activity Assessment of Chitosan/Alginate Lavender Essential Oil Membranes for Biomedical Applications. MEMBRANES 2024; 14:12. [PMID: 38248702 PMCID: PMC10818663 DOI: 10.3390/membranes14010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024]
Abstract
The demand for natural products in the treatment of dermatological pathologies has boosted the use of bioactive substances such as lavender essential oil (LEO), which stands out for its anti-inflammatory and antioxidant properties and its antimicrobial potential. Biopolymers such as chitosan (CHT) and alginate (ALG) are biodegradable and biocompatible and have proven their viability in biomedical applications such as skin regeneration. The inhibitory effect of LEO on the growth of skin-related bacterial species Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa and the fungus Candida albicans was studied by incorporating 1% v/v LEO encapsulated in CHT, ALG, and CHT/ALG membranes. Despite the verification of the antimicrobial effect of all type of membranes, no synergistic effect was observed following the addition of LEO. S. aureus and P. aeruginosa showed the most growth on the different substrates and C. albicans demonstrated the highest inhibition. This is a first approach using microorganisms isolated from clinical samples or skin microbiota. Further investigation would be advisable using more clinical strains for each microorganism to validate their biomedical applicability.
Collapse
Affiliation(s)
- Encarnación Cruz Sánchez
- Department of Chemical Engineering, Facultad de Ciencias y Tecnologías Químicas, University of Castilla-La Mancha, Avda. Camilo José Cela 12, 13071 Ciudad Real, Spain; (E.C.S.); (M.T.G.); (I.G.); (J.F.R.); (J.M.G.-V.)
| | - María Teresa García
- Department of Chemical Engineering, Facultad de Ciencias y Tecnologías Químicas, University of Castilla-La Mancha, Avda. Camilo José Cela 12, 13071 Ciudad Real, Spain; (E.C.S.); (M.T.G.); (I.G.); (J.F.R.); (J.M.G.-V.)
| | - Ignacio Gracia
- Department of Chemical Engineering, Facultad de Ciencias y Tecnologías Químicas, University of Castilla-La Mancha, Avda. Camilo José Cela 12, 13071 Ciudad Real, Spain; (E.C.S.); (M.T.G.); (I.G.); (J.F.R.); (J.M.G.-V.)
| | - Soledad Illescas Fernández-Bermejo
- Department of Medical Sciences, Microbiology Area, Facultad de Medicina, University of Castilla-La Mancha, Paseo de Moledores s/n, 13071 Ciudad Real, Spain;
- Department of Microbiology, Hospital General Universitario de Ciudad Real, Obispo Rafael Torija s/n, 13005 Ciudad Real, Spain
| | - Juan Francisco Rodríguez
- Department of Chemical Engineering, Facultad de Ciencias y Tecnologías Químicas, University of Castilla-La Mancha, Avda. Camilo José Cela 12, 13071 Ciudad Real, Spain; (E.C.S.); (M.T.G.); (I.G.); (J.F.R.); (J.M.G.-V.)
| | - Jesús Manuel García-Vargas
- Department of Chemical Engineering, Facultad de Ciencias y Tecnologías Químicas, University of Castilla-La Mancha, Avda. Camilo José Cela 12, 13071 Ciudad Real, Spain; (E.C.S.); (M.T.G.); (I.G.); (J.F.R.); (J.M.G.-V.)
| | - Dolors Vidal Roig
- Department of Medical Sciences, Microbiology Area, Facultad de Medicina, University of Castilla-La Mancha, Paseo de Moledores s/n, 13071 Ciudad Real, Spain;
| |
Collapse
|