1
|
Luo C, Liu X, Liu Y, Shao H, Gao J, Tao J. Upregulation of CD39 During Gout Attacks Promotes Spontaneous Remission of Acute Gouty Inflammation. Inflammation 2024; 47:664-677. [PMID: 38055119 DOI: 10.1007/s10753-023-01936-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023]
Abstract
Gout is a self-limiting form of inflammatory arthropathy caused by the formation of urate crystals due to hyperuricemia. The resolution of gout involves the transition of proinflammatory M1-type macrophages to anti-inflammatory M2-type macrophages, as well as neutrophil-mediated extracellular trap (NET) formation. However, the underlying mechanisms of these changes are not clear. Studies have confirmed that high expression of CD39 on macrophages and neutrophils can trigger the polarization of macrophages from a proinflammatory state to an anti-inflammatory state. Recent studies have shown that the pathogenesis of gout involves extracellular ATP (eATP), and the synergistic effect of MSU and extracellular ATP can cause gout. CD39 is a kind of ATP hydrolysis enzyme that can degrade eATP, suggesting that CD39 may inhibit the aggravation of inflammation in gout and participate in the remission mechanism of gout. To confirm this hypothesis, using data mining and flow cytometry, we first found that CD39 expression was significantly upregulated on CD14 + monocytes and neutrophils in gout patients during the acute phase. Inhibition of CD39 by lentivirus or a CD39 inhibitor in acute gout models aggravated gouty arthritis and delayed gout remission. Apyrase, a functional analog of CD39, can significantly reduce the inflammatory response and promote gout remission in acute gout model mice. Our findings confirm that the upregulation of CD39 during gout flare-ups promotes spontaneous remission of acute gouty inflammation.
Collapse
Affiliation(s)
- Chengyu Luo
- Department of Rheumatology and Immunology, Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China (USTC), University of Science and Technology of China, Hefei, 230001, People's Republic of China
| | - Xingyue Liu
- Department of Rheumatology and Immunology, Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China (USTC), University of Science and Technology of China, Hefei, 230001, People's Republic of China
| | - Yiming Liu
- Department of Rheumatology and Immunology, Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China (USTC), University of Science and Technology of China, Hefei, 230001, People's Republic of China
| | - Huijun Shao
- Department of Rheumatology and Immunology, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, People's Republic of China
| | - Jie Gao
- Department of Rheumatology and Immunology, Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China (USTC), University of Science and Technology of China, Hefei, 230001, People's Republic of China
| | - Jinhui Tao
- Department of Rheumatology and Immunology, Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China (USTC), University of Science and Technology of China, Hefei, 230001, People's Republic of China.
- Department of Rheumatology and Immunology, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, People's Republic of China.
| |
Collapse
|
2
|
Chen YT, Lohia GK, Chen S, Riquelme SA. Immunometabolic Regulation of Bacterial Infection, Biofilms, and Antibiotic Susceptibility. J Innate Immun 2024; 16:143-158. [PMID: 38310854 PMCID: PMC10914382 DOI: 10.1159/000536649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/01/2024] [Indexed: 02/06/2024] Open
Abstract
BACKGROUND Upon infection, mucosal tissues activate a brisk inflammatory response to clear the pathogen, i.e., resistance to disease. Resistance to disease is orchestrated by tissue-resident macrophages, which undergo profound metabolic reprogramming after sensing the pathogen. These metabolically activated macrophages release many inflammatory factors, which promote their bactericidal function. However, in immunocompetent individuals, pathogens like Pseudomonas aeruginosa, Staphylococcus aureus, and Salmonella evade this type of immunity, generating communities that thrive for the long term. SUMMARY These organisms develop features that render them less susceptible to eradication, such as biofilms and increased tolerance to antibiotics. Furthermore, after antibiotic therapy withdrawal, "persister" cells rapidly upsurge, triggering inflammatory relapses that worsen host health. How these pathogens persisted in inflamed tissues replete with activated macrophages remains poorly understood. KEY MESSAGES In this review, we discuss recent findings indicating that the ability of P. aeruginosa, S. aureus, and Salmonella to evolve biofilms and antibiotic tolerance is promoted by the similar metabolic routes that regulate macrophage metabolic reprogramming.
Collapse
Affiliation(s)
- Ying-Tsun Chen
- Department of Pediatrics, Division of Infectious Diseases, Columbia University, New York, New York, USA
| | - Gaurav Kumar Lohia
- Department of Pediatrics, Division of Infectious Diseases, Columbia University, New York, New York, USA
| | - Samantha Chen
- Department of Pediatrics, Division of Infectious Diseases, Columbia University, New York, New York, USA
| | - Sebastián A Riquelme
- Department of Pediatrics, Division of Infectious Diseases, Columbia University, New York, New York, USA
| |
Collapse
|
3
|
Seifert J, Küchler C, Drube S. ATP/IL-33-Co-Sensing by Mast Cells (MCs) Requires Activated c-Kit to Ensure Effective Cytokine Responses. Cells 2023; 12:2696. [PMID: 38067124 PMCID: PMC10705958 DOI: 10.3390/cells12232696] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/10/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Mast cells (MCs) are sentinel cells which represent an important part of the first line of defense of the immune system. MCs highly express receptors for danger-associated molecular patterns (DAMPs) such as the IL-33R and P2X7, making MCs to potentially effective sensors for IL-33 and adenosine-triphosphate (ATP), two alarmins which are released upon necrosis-induced cell damage in peripheral tissues. Besides receptors for alarmins, MCs also express the stem cell factor (SCF) receptor c-Kit, which typically mediates MC differentiation, proliferation and survival. By using bone marrow-derived MCs (BMMCs), ELISA and flow cytometry experiments, as well as p65/RelA and NFAT reporter MCs, we aimed to investigate the influence of SCF on alarmin-induced signaling pathways and the resulting cytokine production and degranulation. We found that the presence of SCF boosted the cytokine production but not degranulation in MCs which simultaneously sense ATP and IL-33 (ATP/IL-33 co-sensing). Therefore, we conclude that SCF maintains the functionality of MCs in peripheral tissues to ensure appropriate MC reactions upon cell damage, induced by pathogens or allergens.
Collapse
Affiliation(s)
- Johanna Seifert
- Institut für Immunologie, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Leutragraben 3, 07743 Jena, Germany
| | - Claudia Küchler
- Institut für Immunologie, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Leutragraben 3, 07743 Jena, Germany
| | - Sebastian Drube
- Institut für Immunologie, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Leutragraben 3, 07743 Jena, Germany
| |
Collapse
|
4
|
Dubyak GR, Miller BA, Pearlman E. Pyroptosis in neutrophils: Multimodal integration of inflammasome and regulated cell death signaling pathways. Immunol Rev 2023; 314:229-249. [PMID: 36656082 PMCID: PMC10407921 DOI: 10.1111/imr.13186] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Pyroptosis is a proinflammatory mode of lytic cell death mediated by accumulation of plasma membrane (PM) macropores composed of gasdermin-family (GSDM) proteins. It facilitates two major functions in innate immunity: (i) elimination of intracellular replicative niches for pathogenic bacteria; and (ii) non-classical secretion of IL-1 family cytokines that amplify host-beneficial inflammatory responses to microbial infection or tissue damage. Physiological roles for gasdermin D (GSDMD) in pyroptosis and IL-1β release during inflammasome signaling have been extensively characterized in macrophages. This involves cleavage of GSDMD by caspase-1 to generate GSDMD macropores that mediate IL-1β efflux and progression to pyroptotic lysis. Neutrophils, which rapidly accumulate in large numbers at sites of tissue infection or damage, become the predominant local source of IL-1β in coordination with their potent microbiocidal capacity. Similar to macrophages, neutrophils express GSDMD and utilize the same spectrum of diverse inflammasome platforms for caspase-1-mediated cleavage of GSDMD. Distinct from macrophages, neutrophils possess a remarkable capacity to resist progression to GSDMD-dependent pyroptotic lysis to preserve their viability for efficient microbial killing while maintaining GSDMD-dependent mechanisms for export of bioactive IL-1β. Rather, neutrophils employ cell-specific mechanisms to conditionally engage GSDMD-mediated pyroptosis in response to bacterial pathogens that use neutrophils as replicative niches. GSDMD and pyroptosis have also been mechanistically linked to induction of NETosis, a signature neutrophil pathway that expels decondensed nuclear DNA into extracellular compartments for immobilization and killing of microbial pathogens. This review summarizes a rapidly growing number of recent studies that have produced new insights, unexpected mechanistic nuances, and some controversies regarding the regulation of, and roles for, neutrophil inflammasomes, pyroptosis, and GSDMs in diverse innate immune responses.
Collapse
Affiliation(s)
- George R. Dubyak
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Brandon A. Miller
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Eric Pearlman
- Department of Ophthalmology, University of California, Irvine, California, USA
- Department of Physiology and Biophysics, University of California, Irvine, California, USA
| |
Collapse
|
5
|
Wang Z, Ahmed S, Labib M, Wang H, Hu X, Wei J, Yao Y, Moffat J, Sargent EH, Kelley SO. Efficient recovery of potent tumour-infiltrating lymphocytes through quantitative immunomagnetic cell sorting. Nat Biomed Eng 2022; 6:108-117. [PMID: 35087171 DOI: 10.1038/s41551-021-00820-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022]
Abstract
Adoptive cell therapies require the recovery and expansion of highly potent tumour-infiltrating lymphocytes (TILs). However, TILs in tumours are rare and difficult to isolate efficiently, which hinders the optimization of therapeutic potency and dose. Here we show that a configurable microfluidic device can efficiently recover potent TILs from solid tumours by leveraging specific expression levels of target cell-surface markers. The device, which is sandwiched by permanent magnets, balances magnetic forces and fluidic drag forces to sort cells labelled with magnetic nanoparticles conjugated with antibodies for the target markers. Compared with conventional cell sorting, immunomagnetic cell sorting recovered up to 30-fold higher numbers of TILs, and the higher levels and diversity of the recovered TILs accelerated TIL expansion and enhanced their therapeutic potency. Immunomagnetic cell sorting also allowed us to identify and isolate potent TIL subpopulations, in particular TILs with moderate levels of CD39 (a marker of T-cell reactivity to tumours and T-cell exhaustion), which we found are tumour-specific, self-renewable and essential for the long-term success of adoptive cell therapies.
Collapse
Affiliation(s)
- Zongjie Wang
- The Edward S. Rogers Sr Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada.,Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Sharif Ahmed
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Mahmoud Labib
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Hansen Wang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Xiyue Hu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Jiarun Wei
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Yuxi Yao
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Jason Moffat
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Edward H Sargent
- The Edward S. Rogers Sr Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Shana O Kelley
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada. .,Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada. .,Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada. .,Department of Chemistry, Northwestern University, Evanston, IL, USA. .,Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
6
|
Allard D, Allard B, Stagg J. On the mechanism of anti-CD39 immune checkpoint therapy. J Immunother Cancer 2021; 8:jitc-2019-000186. [PMID: 32098829 PMCID: PMC7057429 DOI: 10.1136/jitc-2019-000186] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2019] [Indexed: 12/26/2022] Open
Abstract
With the coming of age of cancer immunotherapy, the search for new therapeutic targets has led to the identification of immunosuppressive adenosine as an important regulator of antitumor immunity. This resulted in the development of selective inhibitors targeting various components of the adenosinergic pathway, including small molecules antagonists targeting the high affinity A2A adenosine receptor and low affinity A2B receptor, therapeutic monoclonal antibodies (mAbs) and small molecules targeting CD73 and therapeutic mAbs targeting CD39. As each regulator of the adenosinergic pathway present non-overlapping biologic functions, a better understanding of the mechanisms of action of each targeted approach should accelerate clinical translation and improve rational design of combination treatments. In this review, we discuss the potential mechanisms-of-action of anti-CD39 cancer therapy and potential toxicities that may emerge from sustained CD39 inhibition. Caution should be taken, however, in extrapolating data from gene-targeted mice to patients treated with blocking anti-CD39 agents. As phase I clinical trials are now underway, further insights into the mechanism of action and potential adverse events associated with anti-CD39 therapy are anticipated in coming years.
Collapse
Affiliation(s)
- David Allard
- Faculty of Pharmacy, Centre Hospitalier de L'Universite de Montreal, Montreal, Quebec, Canada
| | - Bertrand Allard
- Institut du Cancer de Montreal, Centre Hospitalier de L'Universite de Montreal, Montreal, Quebec, Canada
| | - John Stagg
- Faculty of Pharmacy, Centre Hospitalier de L'Universite de Montreal, Montreal, Quebec, Canada .,Institut du Cancer de Montreal, Centre Hospitalier de L'Universite de Montreal, Montreal, Quebec, Canada
| |
Collapse
|
7
|
|
8
|
Zhao R, Qiao J, Zhang X, Zhao Y, Meng X, Sun D, Peng X. Toll-Like Receptor-Mediated Activation of CD39 Internalization in BMDCs Leads to Extracellular ATP Accumulation and Facilitates P2X7 Receptor Activation. Front Immunol 2019; 10:2524. [PMID: 31736956 PMCID: PMC6834529 DOI: 10.3389/fimmu.2019.02524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022] Open
Abstract
Toll-like receptors (TLRs) trigger innate immune responses through their recognition of conserved molecular ligands of either endogenous or microbial origin. Although activation, function, and signaling pathways of TLRs were already well-studied, their precise function in specific cell types, especially innate immune cells, needs to be further clarified. In this study, we showed that when significantly decreased amounts of membrane CD39, an adenosine triphosphate (ATP)-degrading enzyme, were detected in lipopolysaccharide (LPS)-treated bone marrow-derived dendritic cells (BMDCs), Cd39 mRNA expression, and whole-cell CD39 expression were at the same levels as those in untreated BMDCs. Further experiments demonstrated that the downregulation of membrane CD39 expression in LPS-treated BMDCs was mediated by endocytosis, leading to membrane-exposed CD39 downregulation, which was positively associated with decreased enzymatic activity in ATP metabolism and increased extracellular ATP accumulation. The accumulated ATP promoted intracellular calcium accumulation and IL-1β production in BMDCs through P2X7 signaling activation. Further research revealed that not only LPS but also other TLR ligands, excluding polyI:C, induced CD39 internalization in BMDCs and that the MyD88 pathway was critical in this process. The results suggested that the activation of CD39 internalization in DCs induced by a TLR ligand caused increased ATP accumulation, leading to P2X7 receptor activation that mediated a proinflammatory effect. Considering the strong modulatory effect of extracellular ATP accumulation on the immune response and inflammation, the manipulation of membrane CD39 expression on DCs may have implications on the regulation and treatment of inflammatory responses.
Collapse
Affiliation(s)
- Ronglan Zhao
- Department of Laboratory Medicine, Weifang Medical University, Weifang, China.,Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, Weifang Medical University, Weifang, China
| | - Jinjuan Qiao
- Department of Laboratory Medicine, Weifang Medical University, Weifang, China.,Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, Weifang Medical University, Weifang, China
| | - Xumei Zhang
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yansong Zhao
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiangying Meng
- Department of Laboratory Medicine, Weifang Medical University, Weifang, China.,Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, Weifang Medical University, Weifang, China
| | - Deming Sun
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Doheny Eye Institute, Los Angeles, CA, United States
| | - Xiaoxiang Peng
- Department of Laboratory Medicine, Weifang Medical University, Weifang, China.,Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, Weifang Medical University, Weifang, China
| |
Collapse
|
9
|
Stark R, Wesselink TH, Behr FM, Kragten NAM, Arens R, Koch-Nolte F, van Gisbergen KPJM, van Lier RAW. T RM maintenance is regulated by tissue damage via P2RX7. Sci Immunol 2019; 3:3/30/eaau1022. [PMID: 30552101 DOI: 10.1126/sciimmunol.aau1022] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 11/13/2018] [Indexed: 12/16/2022]
Abstract
Tissue-resident memory T cells (TRM) are noncirculating immune cells that contribute to the first line of local defense against reinfections. Their location at hotspots of pathogen encounter frequently exposes TRM to tissue damage. This history of danger-signal exposure is an important aspect of TRM-mediated immunity that has been overlooked so far. RNA profiling revealed that TRM from liver and small intestine express P2RX7, a damage/danger-associated molecular pattern (DAMP) receptor that is triggered by extracellular nucleotides (ATP, NAD+). We confirmed that P2RX7 protein was expressed in CD8+ TRM but not in circulating T cells (TCIRC) across different infection models. Tissue damage induced during routine isolation of liver lymphocytes led to P2RX7 activation and resulted in selective cell death of TRM P2RX7 activation in vivo by exogenous NAD+ led to a specific depletion of TRM while retaining TCIRC The effect was absent in P2RX7-deficient mice and after P2RX7 blockade. TCR triggering down-regulated P2RX7 expression and made TRM resistant to NAD-induced cell death. Physiological triggering of P2RX7 by sterile tissue damage during acetaminophen-induced liver injury led to a loss of previously acquired pathogen-specific local TRM in wild-type but not in P2RX7 KO T cells. Our results highlight P2RX7-mediated signaling as a critical pathway for the regulation of TRM maintenance. Extracellular nucleotides released during infection and tissue damage could deplete TRM locally and free niches for new and infection-relevant specificities. This suggests that the recognition of tissue damage promotes persistence of antigen-specific over bystander TRM in the tissue niche.
Collapse
Affiliation(s)
- Regina Stark
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands. .,Department of Experimental Immunology, Amsterdam UMC, Amsterdam, Netherlands
| | - Thomas H Wesselink
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Felix M Behr
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Experimental Immunology, Amsterdam UMC, Amsterdam, Netherlands
| | - Natasja A M Kragten
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaas P J M van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Experimental Immunology, Amsterdam UMC, Amsterdam, Netherlands
| | - René A W van Lier
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Experimental Immunology, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
10
|
Abstract
P2X7 is a nonselective cation channel activated by extracellular ATP. P2X7 activation contributes to the proinflammatory response to injury or bacterial invasion and mediates apoptosis. Recently, P2X7 function has been linked to chronic inflammatory and neuropathic pain. P2X7 may contribute to pain modulation both by effects on peripheral tissue injury underlying clinical pain states, and through alterations in central nervous system processing, as suggested by animal models. To further test its role in pain sensitivity, we examined whether variation within the P2RX7 gene, which encodes the P2X7 receptor, was associated with experimentally induced pain in human patients. Experimental pain was assessed in Tromsø 6, a longitudinal and cross-sectional population-based study (N = 3016), and the BrePainGen cohort, consisting of patients who underwent breast cancer surgery (N = 831). For both cohorts, experimental pain intensity and tolerance were assessed with the cold-pressor test. In addition, multisite chronic pain was assessed in Tromsø 6 and pain intensity 1 week after surgery was assessed in BrePainGen. We tested whether the single-nucleotide polymorphism rs7958311, previously implicated in clinical pain, was associated with experimental and clinical pain phenotypes. In addition, we examined effects of single-nucleotide polymorphisms rs208294 and rs208296, for which previous results have been equivocal. Rs7958311 was associated with experimental pain intensity in the meta-analysis of both cohorts. Significant associations were also found for multisite pain and postoperative pain. Our results strengthen the existing evidence and suggest that P2X7 and genetic variation in the P2RX7-gene may be involved in the modulation of human pain sensitivity.
Collapse
|
11
|
Li S, Chen X, Wang N, Li J, Feng Y, Sun J. Identification and characterization of ecto-nucleoside triphosphate diphosphohydrolase 1 (CD39) involved in regulating extracellular ATP-mediated innate immune responses in Japanese flounder (Paralichthys olivaceus). Mol Immunol 2019; 112:10-21. [PMID: 31075558 DOI: 10.1016/j.molimm.2019.04.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/28/2019] [Accepted: 04/28/2019] [Indexed: 12/17/2022]
Abstract
Extracellular adenosine triphosphate (eATP), released following inflammatory stimulation or infection, is a potent signaling molecule in activating innate immune responses in fish. However, the regulation of eATP-mediated innate immunity in fish remains unknown. Ecto-nucleoside triphosphate diphosphohydrolase 1 (CD39) is a critical molecular switch for controlling the ATP levels in the extracellular space. CD39 plays a key role in regulating eATP-activated innate immune responses through the phosphohydrolysis of pro-inflammatory eATP to inactive AMP. Here, we identified and characterized a CD39 homolog (namely, poCD39) in the Japanese flounder Paralichthys olivaceus and analyzed its regulatory role in eATP-mediated innate immunity. Real-time quantitative PCR analysis revealed that poCD39 is ubiquitously present in all tested normal tissues with dominant expression in enriched Japanese flounder head kidney macrophages (HKMs). Immune challenge experiments demonstrated that poCD39 expression was upregulated by inflammatory stimulation and Edwardsiella tarda infection. Biochemical and immunofluorescence analysis revealed that poCD39 is a functional glycosylated membrane protein for the hydrolysis of eATP. Inhibition of poCD939 activity with the ecto-NTPDase inhibitor ARL 67156 resulted in increased IL-1beta gene expression and ROS production in Japanese flounder HKMs. In contrast, overexpression of poCD39 in Japanese flounder FG-9307 cells reduced eATP-induced pro-inflammatory cytokine IL-1beta gene expression. Finally, poCD39 expression was significantly induced by eATP stimulation in the HKMs, suggesting that eATP may provide a feedback mechanism for transcriptional regulation of fish CD39. Taken together, we identified and characterized a functional fish CD39 protein involved in regulating eATP-mediated innate immune responses in fish.
Collapse
Affiliation(s)
- Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China.
| | - Xiaoli Chen
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Nan Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Jiafang Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Yu Feng
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China.
| |
Collapse
|
12
|
De Marchi E, Orioli E, Pegoraro A, Sangaletti S, Portararo P, Curti A, Colombo MP, Di Virgilio F, Adinolfi E. The P2X7 receptor modulates immune cells infiltration, ectonucleotidases expression and extracellular ATP levels in the tumor microenvironment. Oncogene 2019; 38:3636-3650. [PMID: 30655604 PMCID: PMC6756114 DOI: 10.1038/s41388-019-0684-y] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/06/2018] [Accepted: 12/23/2018] [Indexed: 01/22/2023]
Abstract
In the tumor microenvironment (TME) ATP and its receptor P2X7 exert a pivotal influence on cancer growth and tumor-host interactions. Here we analyzed the different effect of P2X7 genetic deficiency versus its antagonism on response against P2X7-expressing implanted tumors. We focused on immune cell expression of ATP degrading enzymes CD39 and CD73 and in vivo measured TME's ATP. The immune infiltrate of tumors growing in P2X7 null mice shows a decrease in CD8+ cells and an increased number of Tregs, overexpressing the fitness markers OX40, PD-1, and CD73. A similar Treg phenotype is also present in the spleen of tumor-bearing P2X7 null mice and it is paralleled by a decrease in proinflammatory cytokines and an increase in TGF-β. Differently, systemic administration of the P2X7 blocker A740003 in wild-type mice left unaltered the number of tumor-infiltrating CD8+ and Treg lymphocytes but increased CD4+ effector cells and decreased their expression of CD39 and CD73. P2X7 blockade did not affect spleen immune cell composition or ectonucleotidase expression but increased circulating INF-γ. Augmented CD73 in P2X7 null mice was mirrored by a decrease in TME ATP concentration and nucleotide reduced secretion from immune cells. On the contrary, TME ATP levels remained unaltered upon P2X7 antagonism, owing to release of ATP from cancerous cells and diminished ectonucleotidase expression by CD4+ and dendritic cells. These data point at P2X7 receptor as a key determinant of TME composition due to its combined action on immune cell infiltrate, ectonucleotidases, and ATP release.
Collapse
MESH Headings
- 5'-Nucleotidase/metabolism
- Adenosine Triphosphate/metabolism
- Animals
- Antigens, Differentiation/metabolism
- CD4-Positive T-Lymphocytes/pathology
- CD8-Positive T-Lymphocytes/pathology
- Cell Line, Tumor
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/pathology
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Programmed Cell Death 1 Receptor/metabolism
- Purinergic P2X Receptor Antagonists/pharmacology
- Receptors, Purinergic P2X7/genetics
- Receptors, Purinergic P2X7/metabolism
- T-Lymphocytes, Regulatory/pathology
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Elena De Marchi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Via Luigi Borsari, 46, 44121, Ferrara, Italy
| | - Elisa Orioli
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Via Luigi Borsari, 46, 44121, Ferrara, Italy
| | - Anna Pegoraro
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Via Luigi Borsari, 46, 44121, Ferrara, Italy
| | - Sabina Sangaletti
- Department of Experimental Oncology, Molecular Immunology Unit, Istituto Nazionale dei Tumori (IRCCS), Via Amadeo, 42, 20133, Milan, Italy
| | - Paola Portararo
- Department of Experimental Oncology, Molecular Immunology Unit, Istituto Nazionale dei Tumori (IRCCS), Via Amadeo, 42, 20133, Milan, Italy
| | - Antonio Curti
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology L. and A. Seràgnoli, S. Orsola-Malpighi Hospital, University of Bologna, via Massarenti, 9, 40138, Bologna, Italy
| | - Mario Paolo Colombo
- Department of Experimental Oncology, Molecular Immunology Unit, Istituto Nazionale dei Tumori (IRCCS), Via Amadeo, 42, 20133, Milan, Italy
| | - Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Via Luigi Borsari, 46, 44121, Ferrara, Italy
| | - Elena Adinolfi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Via Luigi Borsari, 46, 44121, Ferrara, Italy.
| |
Collapse
|
13
|
Linden J, Koch-Nolte F, Dahl G. Purine Release, Metabolism, and Signaling in the Inflammatory Response. Annu Rev Immunol 2019; 37:325-347. [PMID: 30676821 DOI: 10.1146/annurev-immunol-051116-052406] [Citation(s) in RCA: 217] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
ATP, NAD+, and nucleic acids are abundant purines that, in addition to having critical intracellular functions, have evolved extracellular roles as danger signals released in response to cell lysis, apoptosis, degranulation, or membrane pore formation. In general ATP and NAD+ have excitatory and adenosine has anti-inflammatory effects on immune cells. This review focuses on recent advances in our understanding of purine release mechanisms, ectoenzymes that metabolize purines (CD38, CD39, CD73, ENPP1, and ENPP2/autotaxin), and signaling by key P2 purinergic receptors (P2X7, P2Y2, and P2Y12). In addition to metabolizing ATP or NAD+, some purinergic ectoenzymes metabolize other inflammatory modulators, notably lysophosphatidic acid and cyclic GMP-AMP (cGAMP). Also discussed are extracellular signaling effects of NAD+ mediated by ADP-ribosylation, and epigenetic effects of intracellular adenosine mediated by modification of S-adenosylmethionine-dependent DNA methylation.
Collapse
Affiliation(s)
- Joel Linden
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, California 92037, USA; .,Department of Pharmacology, University of California, San Diego, La Jolla, California 92093, USA
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany;
| | - Gerhard Dahl
- Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, Florida 33136, USA;
| |
Collapse
|
14
|
ATP as a Pathophysiologic Mediator of Bacteria-Host Crosstalk in the Gastrointestinal Tract. Int J Mol Sci 2018; 19:ijms19082371. [PMID: 30103545 PMCID: PMC6121306 DOI: 10.3390/ijms19082371] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/02/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022] Open
Abstract
Extracellular nucleotides, such as adenosine triphosphate (ATP), are released from host cells including nerve termini, immune cells, injured or dead cells, and the commensal bacteria that reside in the gut lumen. Extracellular ATP interacts with the host through purinergic receptors, and promotes intercellular and bacteria-host communication to maintain the tissue homeostasis. However, the release of massive concentrations of ATP into extracellular compartments initiates acute and chronic inflammatory responses through the activation of immunocompetent cells (e.g., T cells, macrophages, and mast cells). In this review, we focus on the functions of ATP as a pathophysiologic mediator that is required for the induction and resolution of inflammation and inter-species communication.
Collapse
|
15
|
Diezmos EF, Markus I, Perera DS, Gan S, Zhang L, Sandow SL, Bertrand PP, Liu L. Blockade of Pannexin-1 Channels and Purinergic P2X7 Receptors Shows Protective Effects Against Cytokines-Induced Colitis of Human Colonic Mucosa. Front Pharmacol 2018; 9:865. [PMID: 30127744 PMCID: PMC6087744 DOI: 10.3389/fphar.2018.00865] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/17/2018] [Indexed: 12/31/2022] Open
Abstract
Introduction: The pannexin-1 (Panx1) channels are found in many cell types, and ATP released from these channels can act on nearby cells activating purinergic P2X7 receptors (P2X7R) which lead to inflammation. Although Panx1 and P2X7R are implicated in the process of inflammation and cell death, few studies have looked at the role they play in inflammatory bowel disease in human. Hence, the aim of the present study was to investigate the function of Panx1 and P2X7R in an ex vivo colitis model developed from human colonic mucosal explants. Materials and Methods: Healthy human colonic mucosal strips (4 × 10 mm) were incubated in carbogenated culture medium at 37°C for 16 h. Proinflammatory cytokines TNFα and IL-1β (each 10 ng/mL) were used to induce colitis in mucosal strips, and the effects of Panx1 and P2X7R on cytokines-induced tissue damage were determined in the presence of the Panx1 channel blocker 10Panx1 (100 μM) and P2X7R antagonist A438079 (100 μM). The effects of 10Panx1 and A438079 on cytokines-enhanced epithelial permeability were also studied using Caco-2 cells. Results: Histological staining showed that the mucosal strips had severe structural damage in the cytokines-only group but not in the incubation-control group (P < 0.01). Compared to the cytokines-only group, crypt damage was significantly decreased in groups receiving cytokines with inhibitors (10Panx1, A438079, or 10Panx1 + A438079, P < 0.05). The immunoreactive signals of tight junction protein zonula occludens-1 (ZO-1) were abundant in all control tissues but were significantly disrupted and lost in the cytokines-only group (P < 0.01). The diminished ZO-1 immunoreactivity induced by cytokines was prevented in the presence of 10Panx1 (P = 0.04). Likewise, 10Panx1 significantly attenuated the cytokines-evoked increase in paracellular permeability of Caco-2 cells. Although the inhibition of P2X7R activity by A438079 diminished cytokines-induced crypt damage, its effect on the maintenance of ZO-1 immunoreactivity and Caco-2 epithelial cell integrity was less evident. Conclusion: The blockade of Panx1 and P2X7R reduced the inflammatory cytokines-induced crypt damage, loss of tight junctions and increase in cell permeability. Thus, Panx1 and P2X7R may have roles in causing mucosal damage, a common clinical feature of inflammatory bowel disease.
Collapse
Affiliation(s)
- Erica F Diezmos
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Irit Markus
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - D S Perera
- Sydney Colorectal Associates, Hurstville, NSW, Australia
| | - Steven Gan
- Sydney Colorectal Associates, Hurstville, NSW, Australia
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Shaun L Sandow
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.,Inflammation and Healing Cluster, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| | - Paul P Bertrand
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.,School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia
| | - Lu Liu
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
16
|
Ganesan AP, Clarke J, Wood O, Garrido-Martin EM, Chee SJ, Mellows T, Samaniego-Castruita D, Singh D, Seumois G, Alzetani A, Woo E, Friedmann PS, King EV, Thomas GJ, Sanchez-Elsner T, Vijayanand P, Ottensmeier CH. Tissue-resident memory features are linked to the magnitude of cytotoxic T cell responses in human lung cancer. Nat Immunol 2017; 18:940-950. [PMID: 28628092 PMCID: PMC6036910 DOI: 10.1038/ni.3775] [Citation(s) in RCA: 382] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 05/22/2017] [Indexed: 12/14/2022]
Abstract
Therapies that boost the anti-tumor responses of cytotoxic T lymphocytes (CTLs) have shown promise; however, clinical responses to the immunotherapeutic agents currently available vary considerably, and the molecular basis of this is unclear. We performed transcriptomic profiling of tumor-infiltrating CTLs from treatment-naive patients with lung cancer to define the molecular features associated with the robustness of anti-tumor immune responses. We observed considerable heterogeneity in the expression of molecules associated with activation of the T cell antigen receptor (TCR) and of immunological-checkpoint molecules such as 4-1BB, PD-1 and TIM-3. Tumors with a high density of CTLs showed enrichment for transcripts linked to tissue-resident memory cells (TRM cells), such as CD103, and CTLs from CD103hi tumors displayed features of enhanced cytotoxicity. A greater density of TRM cells in tumors was predictive of a better survival outcome in lung cancer, and this effect was independent of that conferred by CTL density. Here we define the 'molecular fingerprint' of tumor-infiltrating CTLs and identify potentially new targets for immunotherapy.
Collapse
MESH Headings
- Adenocarcinoma/immunology
- Adenocarcinoma/mortality
- Adult
- Aged
- Aged, 80 and over
- Antigens, CD/genetics
- Carcinoma, Squamous Cell/immunology
- Carcinoma, Squamous Cell/mortality
- Female
- Gene Expression Profiling
- Head and Neck Neoplasms/immunology
- Hepatitis A Virus Cellular Receptor 2/genetics
- Humans
- Immunologic Memory/immunology
- Immunotherapy
- Integrin alpha Chains/genetics
- Lung Neoplasms/immunology
- Lung Neoplasms/mortality
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Male
- Middle Aged
- Prognosis
- Programmed Cell Death 1 Receptor/genetics
- Receptors, Antigen, T-Cell/genetics
- Squamous Cell Carcinoma of Head and Neck
- Survival Rate
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Tumor Necrosis Factor Receptor Superfamily, Member 9/genetics
Collapse
Affiliation(s)
- Anusha-Preethi Ganesan
- La Jolla Institute for Allergy &Immunology, La Jolla, California, USA
- Division of Pediatric Hematology Oncology, Rady Children's Hospital, University of California San Diego, San Diego, California, USA
| | - James Clarke
- La Jolla Institute for Allergy &Immunology, La Jolla, California, USA
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Oliver Wood
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Eva M Garrido-Martin
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine University of Southampton, Southampton, UK
| | - Serena J Chee
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
- Southampton University Hospitals NHS foundation Trust, Southampton, UK
| | - Toby Mellows
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine University of Southampton, Southampton, UK
| | | | - Divya Singh
- La Jolla Institute for Allergy &Immunology, La Jolla, California, USA
| | - Grégory Seumois
- La Jolla Institute for Allergy &Immunology, La Jolla, California, USA
| | - Aiman Alzetani
- Southampton University Hospitals NHS foundation Trust, Southampton, UK
| | - Edwin Woo
- Southampton University Hospitals NHS foundation Trust, Southampton, UK
| | - Peter S Friedmann
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine University of Southampton, Southampton, UK
| | - Emma V King
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Gareth J Thomas
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Tilman Sanchez-Elsner
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine University of Southampton, Southampton, UK
| | - Pandurangan Vijayanand
- La Jolla Institute for Allergy &Immunology, La Jolla, California, USA
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine University of Southampton, Southampton, UK
| | - Christian H Ottensmeier
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
- Southampton University Hospitals NHS foundation Trust, Southampton, UK
| |
Collapse
|
17
|
Diezmos EF, Bertrand PP, Liu L. Purinergic Signaling in Gut Inflammation: The Role of Connexins and Pannexins. Front Neurosci 2016; 10:311. [PMID: 27445679 PMCID: PMC4925662 DOI: 10.3389/fnins.2016.00311] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/20/2016] [Indexed: 12/13/2022] Open
Abstract
Purinergic receptors play an important role in inflammation, and can be activated by ATP released via pannexin channels and/or connexin hemichannels. The purinergic P2X7 receptor (P2X7R) is of interest since it is involved in apoptosis when activated. Most studies focus on the influence of pannexin-1 (Panx1) and connexin 43 (Cx43) on ATP release and how it affects P2X7R function during inflammation. Inflammatory bowel disease (IBD) is characterized by uncontrolled inflammation within the gastrointestinal system. At present, the pathophysiology of this disease remains largely unknown but it may involve the interplay between P2X7R, Panx1, and Cx43. There are two main types of IBD, ulcerative colitis and Crohn's disease, that are classified by their location and frequency of inflammation. Current research suggests that alterations to normal functioning of innate and adaptive immunity may be a factor in disease progression. The involvement of purinergic receptors, connexins, and pannexins in IBD is a relatively novel notion in the context of gastrointestinal inflammation, and has been explored by various research groups. Thus, the present review focuses on the current research involving connexins, pannexins, and purinergic receptors within the gut and enteric nervous system, and will examine their involvement in inflammation and the pathophysiology of IBD.
Collapse
Affiliation(s)
- Erica F Diezmos
- School of Medical Sciences, University of New South Wales Sydney, NSW, Australia
| | - Paul P Bertrand
- School of Medical Sciences, University of New South WalesSydney, NSW, Australia; School of Medical Sciences, RMIT UniversityBundoora, VIC, Australia
| | - Lu Liu
- School of Medical Sciences, University of New South Wales Sydney, NSW, Australia
| |
Collapse
|
18
|
Geraghty NJ, Watson D, Adhikary SR, Sluyter R. P2X7 receptor in skin biology and diseases. World J Dermatol 2016; 5:72-83. [DOI: 10.5314/wjd.v5.i2.72] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/23/2015] [Accepted: 01/29/2016] [Indexed: 02/06/2023] Open
Abstract
The P2X7 receptor is a trimeric ligand-gated cation channel present on immune and other cells. Activation of this receptor by its natural ligand extracellular adenosine triphosphate results in a variety of downstream responses, including the release of pro-inflammatory mediators and cell death. In normal skin, P2X7 is present on keratinocytes, Langerhans cells and fibroblasts, while the presence of this receptor on other cutaneous cells is mainly inferred from studies of equivalent cell types present in other tissues. Mast cells in normal skin however express negligible amounts of P2X7, which can be upregulated in cutaneous disease. This review discusses the potential significance of P2X7 in skin biology, and the role of this receptor in inflammatory skin disorders such as irritant and chronic dermatitis, psoriasis, graft-versus-host disease, as well is in wound healing, transplantation and skin cancer.
Collapse
|
19
|
Pandolfi JB, Ferraro AA, Sananez I, Gancedo MC, Baz P, Billordo LA, Fainboim L, Arruvito L. ATP-Induced Inflammation Drives Tissue-Resident Th17 Cells in Metabolically Unhealthy Obesity. THE JOURNAL OF IMMUNOLOGY 2016; 196:3287-96. [PMID: 26951799 DOI: 10.4049/jimmunol.1502506] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/17/2016] [Indexed: 12/27/2022]
Abstract
Obesity-induced inflammation is conducted by a metabolic pathway, which eventually causes activation of specialized immune cells and leads to an unresolved inflammatory response within the tissue. For this reason, it is critically important to determine how hypertrophic fat tissue alters T cell balance to drive inflammation. In this study, we identify the purinergic signaling as a novel mechanism driving the adaptive Th17 response in human visceral adipose tissue (VAT) of metabolically unhealthy obese patients. We demonstrate that ATP acting via the P2X7 receptor pathway promotes a Th17 polarizing microenvironment with high levels of IL-1β, IL-6, and IL-17 in VAT explants from lean donors. Moreover, in vitro blockade of the P2X7 receptor abrogates the levels of these cytokines. These findings are consistent with a greater frequency of Th17 cells in tissue from metabolically unhealthy obese donors, revealed not only by the presence of a baseline Th17-promoting milieu, but also by the higher expression of steadily recognized Th17 markers, such as RORC, IL-17 cytokine, and IL-23R, in comparison with metabolically healthy obese and lean donors. In addition, we demonstrate that CD39 expression on CD4(+)effector T cells represents a novel Th17 marker in the inflamed VAT, which also confers protection against ATP-induced cell death. The manipulation of the purinergic signaling might represent a new therapeutic target to shift the CD4(+)T cell balance under inflammatory conditions.
Collapse
Affiliation(s)
- Julieta B Pandolfi
- Instituto de Inmunología, Genética y Metabolismo, Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, C1120AAF Buenos Aires, Argentina; and
| | - Ariel A Ferraro
- División Cirugía Gastroenterológica, Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, C1120AAF Buenos Aires, Argentina
| | - Inés Sananez
- Instituto de Inmunología, Genética y Metabolismo, Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, C1120AAF Buenos Aires, Argentina; and
| | - Maria C Gancedo
- División Cirugía Gastroenterológica, Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, C1120AAF Buenos Aires, Argentina
| | - Plácida Baz
- Instituto de Inmunología, Genética y Metabolismo, Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, C1120AAF Buenos Aires, Argentina; and
| | - Luis A Billordo
- Instituto de Inmunología, Genética y Metabolismo, Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, C1120AAF Buenos Aires, Argentina; and
| | - Leonardo Fainboim
- Instituto de Inmunología, Genética y Metabolismo, Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, C1120AAF Buenos Aires, Argentina; and
| | - Lourdes Arruvito
- Instituto de Inmunología, Genética y Metabolismo, Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, C1120AAF Buenos Aires, Argentina; and
| |
Collapse
|
20
|
Rissiek B, Haag F, Boyer O, Koch-Nolte F, Adriouch S. P2X7 on Mouse T Cells: One Channel, Many Functions. Front Immunol 2015; 6:204. [PMID: 26042119 PMCID: PMC4436801 DOI: 10.3389/fimmu.2015.00204] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 04/14/2015] [Indexed: 12/12/2022] Open
Abstract
The P2X7 receptor is an adenosine triphosphate (ATP)-gated cation channel that is expressed by several cells of the immune system. P2X7 is best known for its proinflammatory role in promoting inflammasome formation and release of mature interleukin (IL)-1β by innate immune cells. Mounting evidence indicates that P2X7 is also an important regulatory receptor of murine and human T cell functions. Murine T cells express a sensitive splice variant of P2X7 that can be activated either by non-covalent binding of ATP or, in the presence of nicotinamide adenine dinucleotide, by its covalent ADP-ribosylation catalyzed by the ecto-ADP-ribosyltransferase ARTC2.2. Prolonged activation of P2X7 by either one of these pathways triggers the induction of T cell death. Conversely, lower concentrations of ATP can activate P2X7 to enhance T cell proliferation and production of IL-2. In this review, we will highlight the molecular and cellular consequences of P2X7 activation on mouse T cells and its versatile role in T cell homeostasis and activation. Further, we will discuss important differences in the function of P2X7 on human and murine T cells.
Collapse
Affiliation(s)
- Björn Rissiek
- Insitute of Immunology, University Medical Center , Hamburg , Germany ; Department of Neurology, University Medical Center , Hamburg , Germany
| | - Friedrich Haag
- Insitute of Immunology, University Medical Center , Hamburg , Germany
| | - Olivier Boyer
- U905, INSERM , Rouen , France ; Institute for Research and Innovation in Biomedicine (IRIB), Normandy University , Rouen , France ; Department of Immunology, Rouen University Hospital , Rouen , France
| | | | - Sahil Adriouch
- U905, INSERM , Rouen , France ; Institute for Research and Innovation in Biomedicine (IRIB), Normandy University , Rouen , France
| |
Collapse
|
21
|
Hoque R, Mehal WZ. Inflammasomes in pancreatic physiology and disease. Am J Physiol Gastrointest Liver Physiol 2015; 308:G643-51. [PMID: 25700081 PMCID: PMC4398840 DOI: 10.1152/ajpgi.00388.2014] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 02/10/2015] [Indexed: 01/31/2023]
Abstract
In this review we summarize the role of inflammasomes in pancreatic physiology and disease with a focus on acute pancreatitis where much recent progress has been made. New findings have identified inducers of and cell specificity of inflammasome component expression in the pancreas, the contribution of inflammasome-regulated effectors to pancreatitis, and metabolic regulation of inflammasome activation, which are strong determinants of injury in pancreatitis. New areas of pancreatic biology will be highlighted in the context of our evolving understanding of gut microbiome- and injury-induced inflammasome priming, pyroptosis, and innate immune-mediated regulation of cell metabolism.
Collapse
Affiliation(s)
- Rafaz Hoque
- 1Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut; and
| | - Wajahat Z. Mehal
- 1Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut; and ,2Section of Digestive Diseases, Department of Veterans Affairs Connecticut Healthcare, West Haven, Connecticut
| |
Collapse
|
22
|
Stoffels M, Zaal R, Kok N, van der Meer JWM, Dinarello CA, Simon A. ATP-Induced IL-1β Specific Secretion: True Under Stringent Conditions. Front Immunol 2015; 6:54. [PMID: 25729382 PMCID: PMC4325933 DOI: 10.3389/fimmu.2015.00054] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 01/28/2015] [Indexed: 11/13/2022] Open
Abstract
Interleukin-1β is a potent proinflammatory cytokine, of which processing and secretion are tightly regulated. After exposure to various stimuli, mononuclear phagocytes synthesize the inactive precursor (pro-IL-1β), which is then cleaved intracellularly by caspase-1 and secreted. A widely used method for in vitro secretion of IL-1β employs LPS-primed human peripheral blood monocytes. Subsequently, adenosine triphosphate (ATP) is added to the cells in order to trigger the P2X7 receptor resulting in processing and secretion of mature IL-1β. However, it is often reported that secretion is due to cytotoxic effects of ATP with P2X7 receptor-activation-related cell death. We have challenged this concept and demonstrate IL-1β specific secretion, since there is no increase in cell death and IL-1α and IL-18 are not released in the same cultures. More importantly we show that these conclusions can only be drawn under stringent experimental conditions.
Collapse
Affiliation(s)
- Monique Stoffels
- Department of Medicine, Radboud University Medical Center, Nijmegen Institute for Infection, Inflammation and Immunity (N4i) , Nijmegen , Netherlands
| | - Ruben Zaal
- Department of Medicine, Radboud University Medical Center, Nijmegen Institute for Infection, Inflammation and Immunity (N4i) , Nijmegen , Netherlands
| | - Nina Kok
- Department of Medicine, Radboud University Medical Center, Nijmegen Institute for Infection, Inflammation and Immunity (N4i) , Nijmegen , Netherlands
| | - Jos W M van der Meer
- Department of Medicine, Radboud University Medical Center, Nijmegen Institute for Infection, Inflammation and Immunity (N4i) , Nijmegen , Netherlands
| | - Charles A Dinarello
- Department of Medicine, Radboud University Medical Center, Nijmegen Institute for Infection, Inflammation and Immunity (N4i) , Nijmegen , Netherlands
| | - Anna Simon
- Department of Medicine, Radboud University Medical Center, Nijmegen Institute for Infection, Inflammation and Immunity (N4i) , Nijmegen , Netherlands
| |
Collapse
|
23
|
Aldi S, Marino A, Tomita K, Corti F, Anand R, Olson KE, Marcus AJ, Levi R. E-NTPDase1/CD39 modulates renin release from heart mast cells during ischemia/reperfusion: a novel cardioprotective role. FASEB J 2014; 29:61-9. [PMID: 25318477 DOI: 10.1096/fj.14-261867] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ischemia/reperfusion (I/R) elicits renin release from cardiac mast cells (MC), thus activating a local renin-angiotensin system (RAS), culminating in ventricular fibrillation. We hypothesized that in I/R, neurogenic ATP could degranulate juxtaposed MC and that ecto-nucleoside triphosphate diphosphohydrolase 1/CD39 (CD39) on MC membrane could modulate ATP-induced renin release. We report that pharmacological inhibition of CD39 in a cultured human mastocytoma cell line (HMC-1) and murine bone marrow-derived MC with ARL67156 (100 µM) increased ATP-induced renin release (≥2-fold), whereas purinergic P2X7 receptors (P2X7R) blockade with A740003 (3 µM) prevented it. Likewise, CD39 RNA silencing in HMC-1 increased ATP-induced renin release (≥2-fold), whereas CD39 overexpression prevented it. Acetaldehyde, an I/R product (300 µM), elicited an 80% increase in ATP release from HMC-1, in turn, causing an autocrine 20% increase in renin release. This effect was inhibited or potentiated when CD39 was overexpressed or silenced, respectively. Moreover, P2X7R silencing prevented ATP- and acetaldehyde-induced renin release. I/R-induced RAS activation in ex vivo murine hearts, characterized by renin and norepinephrine overflow and ventricular fibrillation, was potentiated (∼2-fold) by CD39 inhibition, an effect prevented by P2X7R blockade. Our data indicate that by regulating ATP availability at the MC surface, CD39 modulates local renin release and thus, RAS activation, ultimately exerting a cardioprotective effect.
Collapse
Affiliation(s)
| | | | | | | | - Ranjini Anand
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York, USA; and Thrombosis Research Laboratory, Veterans Affairs New York Harbor Healthcare System, New York, New York, USA
| | - Kim E Olson
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York, USA; and Thrombosis Research Laboratory, Veterans Affairs New York Harbor Healthcare System, New York, New York, USA
| | - Aaron J Marcus
- Pathology and Laboratory Medicine and Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York, USA; and Thrombosis Research Laboratory, Veterans Affairs New York Harbor Healthcare System, New York, New York, USA
| | | |
Collapse
|