1
|
Liao Y, Zhang W, Liu Y, Zhu C, Zou Z. The role of ubiquitination in health and disease. MedComm (Beijing) 2024; 5:e736. [PMID: 39329019 PMCID: PMC11424685 DOI: 10.1002/mco2.736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Ubiquitination is an enzymatic process characterized by the covalent attachment of ubiquitin to target proteins, thereby modulating their degradation, transportation, and signal transduction. By precisely regulating protein quality and quantity, ubiquitination is essential for maintaining protein homeostasis, DNA repair, cell cycle regulation, and immune responses. Nevertheless, the diversity of ubiquitin enzymes and their extensive involvement in numerous biological processes contribute to the complexity and variety of diseases resulting from their dysregulation. The ubiquitination process relies on a sophisticated enzymatic system, ubiquitin domains, and ubiquitin receptors, which collectively impart versatility to the ubiquitination pathway. The widespread presence of ubiquitin highlights its potential to induce pathological conditions. Ubiquitinated proteins are predominantly degraded through the proteasomal system, which also plays a key role in regulating protein localization and transport, as well as involvement in inflammatory pathways. This review systematically delineates the roles of ubiquitination in maintaining protein homeostasis, DNA repair, genomic stability, cell cycle regulation, cellular proliferation, and immune and inflammatory responses. Furthermore, the mechanisms by which ubiquitination is implicated in various pathologies, alongside current modulators of ubiquitination are discussed. Enhancing our comprehension of ubiquitination aims to provide novel insights into diseases involving ubiquitination and to propose innovative therapeutic strategies for clinical conditions.
Collapse
Affiliation(s)
- Yan Liao
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| | - Wangzheqi Zhang
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| | - Yang Liu
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| | - Chenglong Zhu
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| | - Zui Zou
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| |
Collapse
|
2
|
Zeng Z, Li Y, Zhou H, Li M, Ye J, Li D, Zhu Y, Zhang Y, Zhang X, Deng Y, Li J, Gu L, Wu J. System-wide identification of novel de-ubiquitination targets for USP10 in gastric cancer metastasis through multi-omics screening. BMC Cancer 2024; 24:773. [PMID: 38937694 PMCID: PMC11209979 DOI: 10.1186/s12885-024-12549-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024] Open
Abstract
OBJECTIVE Ubiquitin-specific peptidase 10 (USP10), a typical de-ubiquitinase, has been found to play a double-edged role in human cancers. Previously, we reported that the expression of USP10 was negatively correlated with the depth of gastric wall invasion, lymph node metastasis, and prognosis in gastric cancer (GC) patients. However, it remains unclear whether USP10 can regulate the metastasis of GC cells through its de-ubiquitination function. METHODS In this study, proteome, ubiquitinome, and transcriptome analyses were conducted to comprehensively identify novel de-ubiquitination targets for USP10 in GC cells. Subsequently, a series of validation experiments, including in vitro cell culture studies, in vivo metastatic tumor models, and clinical sample analyses, were performed to elucidate the regulatory mechanism of USP10 and its de-ubiquitination targets in GC metastasis. RESULTS After overexpression of USP10 in GC cells, 146 proteins, 489 ubiquitin sites, and 61 mRNAs exhibited differential expression. By integrating the results of multi-omics, we ultimately screened 9 potential substrates of USP10, including TNFRSF10B, SLC2A3, CD44, CSTF2, RPS27, TPD52, GPS1, RNF185, and MED16. Among them, TNFRSF10B was further verified as a direct de-ubiquitination target for USP10 by Co-IP and protein stabilization assays. The dysregulation of USP10 or TNFRSF10B affected the migration and invasion of GC cells in vitro and in vivo models. Molecular mechanism studies showed that USP10 inhibited the epithelial-mesenchymal transition (EMT) process by increasing the stability of TNFRSF10B protein, thereby regulating the migration and invasion of GC cells. Finally, the retrospective clinical sample studies demonstrated that the downregulation of TNFRSF10B expression was associated with poor survival among 4 of 7 GC cohorts, and the expression of TNFRSF10B protein was significantly negatively correlated with the incidence of distant metastasis, diffuse type, and poorly cohesive carcinoma. CONCLUSIONS Our study established a high-throughput strategy for screening de-ubiquitination targets for USP10 and further confirmed that inhibiting the ubiquitination of TNFRSF10B might be a promising therapeutic strategy for GC metastasis.
Collapse
Affiliation(s)
- Zhi Zeng
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yina Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Heng Zhou
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mingyang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Juan Ye
- Department of Pharmacy, Huazhong University of Science and Technology Hospital, Wuhan, Hubei, China
| | - Dan Li
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yuxi Zhu
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Yonggang Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xu Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yunchao Deng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Juan Li
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Lijuan Gu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Jie Wu
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Guerrache A, Micheau O. TNF-Related Apoptosis-Inducing Ligand: Non-Apoptotic Signalling. Cells 2024; 13:521. [PMID: 38534365 DOI: 10.3390/cells13060521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/01/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
TNF-related apoptosis-inducing ligand (TRAIL or Apo2 or TNFSF10) belongs to the TNF superfamily. When bound to its agonistic receptors, TRAIL can induce apoptosis in tumour cells, while sparing healthy cells. Over the last three decades, this tumour selectivity has prompted many studies aiming at evaluating the anti-tumoral potential of TRAIL or its derivatives. Although most of these attempts have failed, so far, novel formulations are still being evaluated. However, emerging evidence indicates that TRAIL can also trigger a non-canonical signal transduction pathway that is likely to be detrimental for its use in oncology. Likewise, an increasing number of studies suggest that in some circumstances TRAIL can induce, via Death receptor 5 (DR5), tumour cell motility, potentially leading to and contributing to tumour metastasis. While the pro-apoptotic signal transduction machinery of TRAIL is well known from a mechanistic point of view, that of the non-canonical pathway is less understood. In this study, we the current state of knowledge of TRAIL non-canonical signalling.
Collapse
Affiliation(s)
- Abderrahmane Guerrache
- Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231, «Equipe DesCarTes», 21000 Dijon, France
| | - Olivier Micheau
- Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231, «Equipe DesCarTes», 21000 Dijon, France
- Laboratoire d'Excellence LipSTIC, 21000 Dijon, France
| |
Collapse
|
4
|
Li B, Zhang X, Ren Q, Gao L, Tian J. NVP-BEZ235 Inhibits Renal Cell Carcinoma by Targeting TAK1 and PI3K/Akt/mTOR Pathways. Front Pharmacol 2022; 12:781623. [PMID: 35082669 PMCID: PMC8784527 DOI: 10.3389/fphar.2021.781623] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022] Open
Abstract
In spite of the promising in vitro and preclinical results, dual PI3K/Akt/mTOR inhibitor NVP-BEZ235, and ATP-competitive mTOR inhibitor PP242 both failed to confirm their inhibitory efficacy against renal cell carcinoma (RCC) in clinical settings. Therefore, a better understanding of the molecular mechanism is essential so as to provide possibilities for their use in combination with other agents. In present study, RCC cell lines (UMRC6, 786-0 and UOK121) were treated with NVP-BEZ235, PP242 or Rapamycin, an mTOR complex 1 (mTORC1)-specific inhibitor. They all suppressed cell proliferation and invasion, induced apoptosis and cell cycle arrest, and the effects were in the order of NVP-BEZ235 > PP242 > Rapamycin. Accordingly, the marked and sustained decrease in speckle-type POZ protein (SPOP) expression and phosphorylation of Akt and mTOR kinases was observed in RCC cells treated with NVP-BEZ235 and PP242, whereas only potent inhibition of mTOR activity was induced in Rapamycin-treated cells. In considering the overactivation of c-Jun and IκB-α in human renal tumor tissue, we next investigated the role of JNK and IKK pathways in the response of RCC cells to these compounds. First of all, transforming growth factor β activated kinase 1 (TAK1)-dependent activation of JNK/ (activator protein-1) AP-1 axis in RCC cells was proved by the repression of AP-1 activity with TAK1 or JNK inhibitor. Second, the profound inhibition of TAK1/JNK/AP-1 pathway was demonstrated in RCC cells treated with NVP-BEZ235 or PP242 but not Rapamycin, which is manifested as a reduction in activity of TAK1, c-Jun and AP-1. Meanwhile, subsequent to TAK1 inactivation, the activation of IκB-α was also reduced by NVP-BEZ235 and PP242. Likewise, in vivo, treatment with NVP-BEZ235 and PP242 suppressed the growth of xenografts generated from 786-0 and A498 cells, along with decreased expression of phospho-TAK1, phospho-c-Jun, and phospho-IκB-α. In contrast, Rapamycin elicited no significant inhibitory effects on tumor growth and phosphorylation of TAK1, c-Jun and IκB-α. We conclude that besides PI3K/Akt/mTOR signaling, NVP-BEZ235, and PP242 simultaneously target TAK1-dependent pathways in RCC cells. Notably, these effects were more marked in the presence of NVP-BEZ235 than PP242, indicating the potential application of NVP-BEZ235 in combination therapy for RCC.
Collapse
Affiliation(s)
- Bihui Li
- Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Guilin, China.,Department of Oncology, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Xing Zhang
- Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Guilin, China
| | - Qianyao Ren
- Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Guilin, China
| | - Li Gao
- Department of Urinary Surgery, The First Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Jing Tian
- Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Guilin, China
| |
Collapse
|
5
|
Regulation of Cancer Metastasis by TRAIL/Death Receptor Signaling. Biomolecules 2021; 11:biom11040499. [PMID: 33810241 PMCID: PMC8065657 DOI: 10.3390/biom11040499] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/17/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
Death ligands such as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL; TNFSF10) and their corresponding death receptors (e.g., DR5) not only initiate apoptosis through activation of the extrinsic apoptotic pathway but also exert non-apoptotic biological functions such as regulation of inflammation and cancer metastasis. The involvement of the TRAIL/death receptor signaling pathway in the regulation of cancer invasion and metastasis is complex as both positive and negative roles have been reported. The underlying molecular mechanisms are even more complicated. This review will focus on discussing current knowledge in our understanding of the involvement of TRAIL/death receptor-mediated signaling in the regulation of cancer cell invasion and metastasis.
Collapse
|
6
|
Lan M, Lu W, Zou T, Li L, Liu F, Cai T, Cai Y. Role of inflammatory microenvironment: potential implications for improved breast cancer nano-targeted therapy. Cell Mol Life Sci 2021; 78:2105-2129. [PMID: 33386887 PMCID: PMC11073202 DOI: 10.1007/s00018-020-03696-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/20/2020] [Accepted: 10/31/2020] [Indexed: 02/06/2023]
Abstract
Tumor cells, inflammatory cells and chemical factors work together to mediate complex signaling networks, which forms inflammatory tumor microenvironment (TME). The development of breast cancer is closely related to the functional activities of TME. This review introduces the origins of cancer-related chronic inflammation and the main constituents of inflammatory microenvironment. Inflammatory microenvironment plays an important role in breast cancer growth, metastasis, drug resistance and angiogenesis through multifactorial mechanisms. It is suggested that inflammatory microenvironment contributes to providing possible mechanisms of drug action and modes of drug transport for anti-cancer treatment. Nano-drug delivery system (NDDS) becomes a popular topic for optimizing the design of tumor targeting drugs. It is seen that with the development of therapeutic approaches, NDDS can be used to achieve drug-targeted delivery well across the biological barriers and into cells, resulting in superior bioavailability, drug dose reduction as well as off-target side effect elimination. This paper focuses on the review of modulation mechanisms of inflammatory microenvironment and combination with nano-targeted therapeutic strategies, providing a comprehensive basis for further research on breast cancer prevention and control.
Collapse
Affiliation(s)
- Meng Lan
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Wenping Lu
- Guang an'men Hospital China Academy of Chinese Medical Sciences, Beijing, China
| | - Tengteng Zou
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Lihong Li
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Fengjie Liu
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Tiange Cai
- College of Life Sciences, Liaoning University, Shenyang, 110036, China.
| | - Yu Cai
- College of Pharmacy, Jinan University, Guangzhou, 510632, China.
- Cancer Research Institute of Jinan University, Guangzhou, China.
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, Guangzhou, China.
| |
Collapse
|
7
|
Wang X, Sun Y, Peng X, Naqvi SMAS, Yang Y, Zhang J, Chen M, Chen Y, Chen H, Yan H, Wei G, Hong P, Lu Y. The Tumorigenic Effect of Sphingosine Kinase 1 and Its Potential Therapeutic Target. Cancer Control 2020; 27:1073274820976664. [PMID: 33317322 PMCID: PMC8480355 DOI: 10.1177/1073274820976664] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sphingosine kinase 1 (SPHK1) regulates cell proliferation and survival by converting sphingosine to the signaling mediator sphingosine 1-phosphate (S1P). SPHK1 is widely overexpressed in most cancers, promoting tumor progression and is associated with clinical prognosis. Numerous studies have explored SPHK1 as a promising target for cancer therapy. However, due to insufficient knowledge of SPHK1 oncogenic mechanisms, its inhibitors’ therapeutic potential in preventing and treating cancer still needs further investigation. In this review, we summarized the metabolic balance regulated by the SPHK1/S1P signaling pathway and highlighted the oncogenic mechanisms of SPHK1 via the upregulation of autophagy, proliferation, and survival, migration, angiogenesis and inflammation, and inhibition of apoptosis. Drug candidates targeting SPHK1 were also discussed at the end. This review provides new insights into the oncogenic effect of SPHK1 and sheds light on the future direction for targeting SPHK1 as cancer therapy.
Collapse
Affiliation(s)
- Xianwang Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yong Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Xiaochun Peng
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Syed Manzar Abbas Shah Naqvi
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yue Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Jing Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Meiwen Chen
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yuan Chen
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Hongyue Chen
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Huizi Yan
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Guangliang Wei
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Peng Hong
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yingying Lu
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
8
|
Zhai C, Feng W, Shi W, Wang J, Zhang Q, Yan X, Wang Q, Li S, Liu L, Pan Y, Zhu Y, Chai L, Li C, Liu P, Chen Y, Li M. Sphingosine-1-phosphate promotes pulmonary artery smooth muscle cells proliferation by stimulating autophagy-mediated E-cadherin/CDH1 down-regulation. Eur J Pharmacol 2020; 884:173302. [PMID: 32659302 DOI: 10.1016/j.ejphar.2020.173302] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023]
Abstract
It has been shown that sphingosine-1-phosphate (S1P) is elevated in patients with pulmonary arterial hypertension (PAH) and promotes the proliferation of pulmonary artery smooth muscle cells (PASMCs). Meanwhile, S1P has been found to induce the activation of autophagy in several types of human diseases including cancers. However, it is still unclear whether activation of autophagy mediates S1P-induced PASMCs proliferation, and detailed mechanisms responsible for these processes are indefinite. The aims of this study are to address these issues. S1P dose- and time-dependently reduced the expression of E-cadherin/CDH1 and stimulated PASMCs proliferation; this was accompanied with the elevation of TNF receptor-associated factor 2 (TRAF2), up-regulation and ubiquitination of BECN1 and the activation of autophagy. Prior silencing TRAF2 or BECN1 using siRNA or pre-incubation of cells with autophagy inhibitor chloroquine phosphate (CQ) suppressed S1P-induced autophagy activation and subsequent CDH1 degradation and further PASMCs proliferation. Taken together, our study indicates that S1P promotes the activation of autophagy by accelerating TRAF2-mediated BECN1 up-regulation and ubiquitination, which in turn results in CDH1 reduction and contributes to PASMCs proliferation.
Collapse
Affiliation(s)
- Cui Zhai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Wei Feng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Wenhua Shi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Jian Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Qianqian Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Xin Yan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Qingting Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Shaojun Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Lu Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Yilin Pan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Yanting Zhu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Limin Chai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Cong Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Pengtao Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Yuqian Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China.
| |
Collapse
|
9
|
Gao F, Zhang J, Ni T, Lin N, Lin H, Luo H, Guo H, Chi J. Herpud1 deficiency could reduce amyloid-β40 expression and thereby suppress homocysteine-induced atherosclerosis by blocking the JNK/AP1 pathway. J Physiol Biochem 2020; 76:383-391. [PMID: 32488540 DOI: 10.1007/s13105-020-00741-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 04/21/2020] [Indexed: 12/23/2022]
Abstract
Homocysteine (Hcy) is considered an independent risk factor for various cardiovascular diseases including atherosclerosis which is associated with lipid metabolism, inflammation, and oxidative stress. Results from our previous study suggested that Hcy-induced atherosclerosis could be reversed by Herpud1 knockout which inhibits vascular smooth muscle cell (VSMC) phenotype switching. Here, we aim to investigate more precise mechanisms behind the improvement in Hcy-induced atherosclerosis. Amyloid-β40 (Aβ40), a vital protein in Alzheimer disease (AD), has been regarded as an important component in the atherosclerosis program in recent years due to the biological similarity between AD and atherosclerosis. Thus, we determined to assess the value of Aβ40 in a Herpud1 knockout Hcy-induced atherosclerosis mouse model by measuring Aβ40 expression in tissue and biomarkers of lipid metabolism, inflammation, and oxidative stress in serum. Additionally, since endothelial dysfunction plays a prominent role in atherosclerosis, we tested human umbilical vein endothelial cell (HUVEC) function following Herpud1 silencing in vitro and evaluated JNK/AP1 signaling activation in our models because of its close relationship with Aβ40. As a result, our animal models showed that Herpud1 knockout reduced Aβ40 expression, inflammation, and oxidative stress levels other than lipid metabolism and alleviated atherosclerosis via JNK/AP1 signaling inhibition. Similarly, our cell experiments implied that Hcy-induced Aβ40 elevation and HUVEC dysfunction involving cell proliferation and apoptosis could be restored by Herpud1 silence through restraining JNK/AP1 pathway. Collectively, our study demonstrates that Herpud1 deficiency could reduce Aβ40 expression, thereby suppressing Hcy-induced atherosclerosis by blocking the JNK/AP1 pathway. This may provide novel potential targets for atherosclerosis prevention or treatment.
Collapse
Affiliation(s)
- Feidan Gao
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang, 312000, China
| | - Jie Zhang
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang, 312000, China
| | - Tingjuan Ni
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang, 312000, China
| | - Na Lin
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang, 312000, China
| | - Hui Lin
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang, 312000, China
| | - Hangqi Luo
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang, 312000, China
| | - Hangyuan Guo
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang, 312000, China
| | - Jufang Chi
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang, 312000, China.
| |
Collapse
|
10
|
Hao Y, Guo M, Feng Y, Dong Q, Cui M. Lysophospholipids and Their G-Coupled Protein Signaling in Alzheimer's Disease: From Physiological Performance to Pathological Impairment. Front Mol Neurosci 2020; 13:58. [PMID: 32351364 PMCID: PMC7174595 DOI: 10.3389/fnmol.2020.00058] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/24/2020] [Indexed: 12/21/2022] Open
Abstract
Lysophospholipids (LPLs) are bioactive signaling lipids that are generated from phospholipase-mediated hydrolyzation of membrane phospholipids (PLs) and sphingolipids (SLs). Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are two of the best-characterized LPLs which mediate a variety of cellular physiological responses via specific G-protein coupled receptor (GPCR) mediated signaling pathways. Considerable evidence now demonstrates the crucial role of LPA and S1P in neurodegenerative diseases, especially in Alzheimer’s disease (AD). Dysfunction of LPA and S1P metabolism can lead to aberrant accumulation of amyloid-β (Aβ) peptides, the formation of neurofibrillary tangles (NFTs), neuroinflammation and ultimately neuronal death. Summarizing LPA and S1P signaling profile may aid in profound health and pathological processes. In the current review, we will introduce the metabolism as well as the physiological roles of LPA and S1P in maintaining the normal functions of the nervous system. Given these pivotal functions, we will further discuss the role of dysregulation of LPA and S1P in promoting AD pathogenesis.
Collapse
Affiliation(s)
- Yining Hao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Min Guo
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiwei Feng
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Mei Cui
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|