1
|
He Y, Zhang X, Zhang X, Fu B, Xing J, Fu R, Lv J, Guo M, Huo X, Liu X, Lu J, Cao L, Du X, Ge Z, Chen Z, Lu X, Li C. Hypoxia exacerbates the malignant transformation of gastric epithelial cells induced by long-term H. pylori infection. Microbiol Spectr 2024; 12:e0031124. [PMID: 38916312 PMCID: PMC11302036 DOI: 10.1128/spectrum.00311-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/14/2024] [Indexed: 06/26/2024] Open
Abstract
Helicobacter pylori is a microaerophilic Gram-negative bacterium that resides in the human stomach and is classified as a class I carcinogen for gastric cancer. Numerous studies have demonstrated that H. pylori infection plays a role in regulating the function of host cells, thereby contributing to the malignant transformation of these cells. However, H. pylori infection is a chronic process, and short-term cellular experiments may not provide a comprehensive understanding of the in vivo situation, especially when considering the lower oxygen levels in the human stomach. In this study, we aimed to investigate the mechanisms underlying gastric cell dysfunction after prolonged exposure to H. pylori under hypoxic conditions. We conducted a co-culture experiment using the gastric cell line GES-1 and H. pylori for 30 generations under intermittent hypoxic conditions. By closely monitoring cell proliferation, migration, invasion, autophagy, and apoptosis, we revealed that sustained H. pylori stimulation under hypoxic conditions significantly influences the function of GES-1 cells. This stimulation induces epithelial-mesenchymal transition and contributes to the propensity for malignant transformation of gastric cells. To confirm the in vitro results, we conducted an experiment involving Mongolian gerbils infected with H. pylori for 85 weeks. All the results strongly suggest that the Nod1 receptor signaling pathway plays a crucial role in H. pylori-related apoptosis and autophagy. In summary, continuous stimulation by H. pylori affects the functioning of gastric cells through the Nod1 receptor signaling pathway, increasing the likelihood of cell carcinogenesis. The presence of hypoxic conditions further exacerbates this process.IMPORTANCEDeciphering the collaborative effects of Helicobacter pylori infection on gastric epithelial cell function is key to unraveling the development mechanisms of gastric cancer. Prior research has solely examined the outcomes of short-term H. pylori stimulation on gastric epithelial cells under aerobic conditions, neglecting the bacterium's nature as a microaerophilic organism that leads to cancer following prolonged stomach colonization. This study mimics a more genuine in vivo infection scenario by repeatedly exposing gastric epithelial cells to H. pylori under hypoxic conditions for up to 30 generations. The results show that chronic exposure to H. pylori in hypoxia substantially increases cell migration, invasion, and epithelial-mesenchymal transition, while suppressing autophagy and apoptosis. This highlights the significance of hypoxic conditions in intensifying the carcinogenic impact of H. pylori infection. By accurately replicating the in vivo gastric environment, this study enhances our comprehension of H. pylori's pathogenic mechanisms in gastric cancer.
Collapse
Affiliation(s)
- Yang He
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
- School of Nursing, Dalian Medical University, Dalian, China
| | - Xiulin Zhang
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
- Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaolu Zhang
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Bo Fu
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Jin Xing
- Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, China
| | - Rui Fu
- Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, China
| | - Jianyi Lv
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Meng Guo
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Xueyun Huo
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Xin Liu
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Jing Lu
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Lixue Cao
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Xiaoyan Du
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Zhongming Ge
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Zhenwen Chen
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Xuancheng Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Changlong Li
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Lin Y, Liu K, Lu F, Zhai C, Cheng F. Programmed cell death in Helicobacter pylori infection and related gastric cancer. Front Cell Infect Microbiol 2024; 14:1416819. [PMID: 39145306 PMCID: PMC11322058 DOI: 10.3389/fcimb.2024.1416819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/08/2024] [Indexed: 08/16/2024] Open
Abstract
Programmed cell death (PCD) plays a crucial role in maintaining the normal structure and function of the digestive tract in the body. Infection with Helicobacter pylori (H. pylori) is an important factor leading to gastric damage, promoting the Correa cascade and accelerating the transition from gastritis to gastric cancer. Recent research has shown that several PCD signaling pathways are abnormally activated during H. pylori infection, and the dysfunction of PCD is thought to contribute to the development of gastric cancer and interfere with treatment. With the deepening of studies on H. pylori infection in terms of PCD, exploring the interaction mechanisms between H. pylori and the body in different PCD pathways may become an important research direction for the future treatment of H. pylori infection and H. pylori-related gastric cancer. In addition, biologically active compounds that can inhibit or induce PCD may serve as key elements for the treatment of this disease. In this review, we briefly describe the process of PCD, discuss the interaction between different PCD signaling pathways and the mechanisms of H. pylori infection or H. pylori-related gastric cancer, and summarize the active molecules that may play a therapeutic role in each PCD pathway during this process, with the expectation of providing a more comprehensive understanding of the role of PCD in H. pylori infection.
Collapse
Affiliation(s)
- Yukun Lin
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Kunjing Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fang Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Changming Zhai
- Department of Rheumatism, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Fafeng Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Ge G, Wen Y, Li P, Guo Z, Liu Z. Single-Cell Plasmonic Immunosandwich Assay Reveals the Modulation of Nucleocytoplasmic Localization Fluctuation of ABL1 on Cell Migration. Anal Chem 2023; 95:17502-17512. [PMID: 38050674 DOI: 10.1021/acs.analchem.3c02593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Cell migration is an essential process of cancer metastasis. The spatiotemporal dynamics of signaling molecules influences cellular phenotypic outcomes. It has been increasingly documented that the Abelson (ABL) family kinases play critical roles in solid tumors. However, ABL1's shuttling dynamics in cell migration still remains unexplored. This is mainly because tools permitting the investigation of translocation dynamics of proteins in single living cells are lacking. Herein, to bridge this gap, we developed a unique multifunctional integrated single-cell analysis method that enables long-term observation of cell migration behavior and monitoring of signaling proteins and complexes at the subcellular level. We found that the shuttling of ABL1's to the cytoplasm results in a higher migration speed, while its trafficking back to the nucleus leads to a lower one. Furthermore, our results indicated that fluctuant protein-protein interactions between 14-3-3 and ABL1 modulate ABL1's nucleocytoplasmic fluctuation and eventually affect the cell speed. Importantly, based on these new insights, we demonstrated that disturbing ABL1's nuclear export traffic and 14-3-3-ABL1 complexes formation can effectively suppress cell migration. Thus, our method opens up a new possibility for simultaneous tracking of internal molecular mechanisms and cell behavior, providing a promising tool for the in-depth study of cancer.
Collapse
Affiliation(s)
- Ge Ge
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Yanrong Wen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Pengfei Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Zhanchen Guo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| |
Collapse
|
4
|
Eslami O, Nakhaie M, Rezaei Zadeh Rukerd M, Azimi M, Shahabi E, Honarmand A, Khazaneha M. Global Trend on Machine Learning in Helicobacter within One Decade: A Scientometric Study. Glob Health Epidemiol Genom 2023; 2023:8856736. [PMID: 37600599 PMCID: PMC10439832 DOI: 10.1155/2023/8856736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/29/2023] [Accepted: 08/06/2023] [Indexed: 08/22/2023] Open
Abstract
Purpose This study aims to create a science map, provide structural analysis, investigate evolution, and identify new trends in Helicobacter pylori (H. pylori) research articles. Methods All Helicobacter publications were gathered from the Web of Science (WoS) database from August 2010 to 2021. The data were required for bibliometric analysis. The bibliometric analysis was performed with Bibliometrix R Tool. Bibliometric data were analyzed using the Bibliometrix Biblioshiny R-package software. Results A total of 17,413 articles were reviewed and analyzed, with descriptive characteristics of the H. pylori literature included. In journals, 21,102 keywords plus and 20,490 author keywords were reported. These articles were also written by 56,106 different authors, with 262 being single-author articles. Most authors' abstracts, titles, and keywords included "Helicobacter-pylori." Since 2010, the total number of H. pylori-related publications has been decreasing. Gut, PLOS ONE, and Gastroenterology are the most influential H. pylori journals, according to source impact. China, the United States, and Japan are the countries with most affiliations and subjects. In addition, Seoul National University has published the most articles about H. pylori. According to the cloud word plot, the authors' most frequently used keywords are gastric cancer (GC), H. pylori, gastritis, eradication, and inflammation. "Helicobacter pylori" and "infection" have the steepest slopes in terms of the upward trend of words used in articles from 2010 to 2021. Subjects such as GC, intestinal metaplasia, epidemiology, peptic ulcer, eradication, and clarithromycin are included in the diagram's motor theme section, according to strategic diagrams. According to the thematic evolution map, topics such as Helicobacter pylori infection, B-cell lymphoma, CagA, Helicobacter pylori, and infection were largely discussed between 2010 and 2015. From 2016 to 2021, the top topics covered included Helicobacter pylori, H. pylori infection, and infection.
Collapse
Affiliation(s)
- Omid Eslami
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
- Clinical Research Development Unit, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohsen Nakhaie
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Rezaei Zadeh Rukerd
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Azimi
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
- Department of Traditional Medicine, School of Persian Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ellahe Shahabi
- Faculty of Management and Economics, Shahid Bahonar University, Kerman, Iran
| | - Amin Honarmand
- Department of Emergency Medicine, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahdiyeh Khazaneha
- Neurology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
5
|
Lim MCC, Jantaree P, Naumann M. The conundrum of Helicobacter pylori-associated apoptosis in gastric cancer. Trends Cancer 2023:S2405-8033(23)00080-8. [PMID: 37230895 DOI: 10.1016/j.trecan.2023.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
Helicobacter pylori is a human microbial pathogen that colonizes the gastric epithelium and causes type B gastritis with varying degrees of active inflammatory infiltrates. The underlying chronic inflammation induced by H. pylori and other environmental factors may promote the development of neoplasms and adenocarcinoma of the stomach. Dysregulation of various cellular processes in the gastric epithelium and in different cells of the microenvironment is a hallmark of H. pylori infection. We address the conundrum of H. pylori-associated apoptosis and review distinct mechanisms induced in host cells that either promote or suppress apoptosis in gastric epithelial cells, often simultaneously. We highlight key processes in the microenvironment that contribute to apoptosis and gastric carcinogenesis.
Collapse
Affiliation(s)
- Michelle C C Lim
- Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Phatcharida Jantaree
- Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany.
| |
Collapse
|
6
|
Xi Y, Zhang XL, Luo QX, Gan HN, Liu YS, Shao SH, Mao XH. Helicobacter pylori regulates stomach diseases by activating cell pathways and DNA methylation of host cells. Front Cell Dev Biol 2023; 11:1187638. [PMID: 37215092 PMCID: PMC10192871 DOI: 10.3389/fcell.2023.1187638] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
One of the most prevalent malignant tumors of the digestive tract is gastric cancer (GC). Age, high salt intake, Helicobacter pylori (H. pylori) infection, and a diet deficient in fruits and vegetables are risk factors for the illness. A significant risk factor for gastric cancer is infection with H. pylori. Infecting gastric epithelial cells with virulence agents secreted by H. pylori can cause methylation of tumor genes or carcinogenic signaling pathways to be activated. Regulate downstream genes' aberrant expression, albeit the precise mechanism by which this happens is unclear. Oncogene, oncosuppressor, and other gene modifications, as well as a number of different gene change types, are all directly associated to the carcinogenesis of gastric cancer. In this review, we describe comprehensive H. pylori and its virulence factors, as well as the activation of the NF-κB, MAPK, JAK/STAT signaling pathways, and DNA methylation following infection with host cells via virulence factors, resulting in abnormal gene expression. As a result, host-related proteins are regulated, and gastric cancer progression is influenced. This review provides insight into the H. pylori infection, summarizes a series of relevant papers, discusses the complex signaling pathways underlying molecular mechanisms, and proposes new approach to immunotherapy of this important disease.
Collapse
Affiliation(s)
- Yue Xi
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xiao-Li Zhang
- Department of Clinical Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Wuxi, China
| | - Qing-Xin Luo
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Hai-Ning Gan
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yu-Shi Liu
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shi-He Shao
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xu-Hua Mao
- Department of Clinical Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Wuxi, China
| |
Collapse
|
7
|
Beccaceci G, Sigal M. Unwelcome guests - the role of gland-associated Helicobacter pylori infection in gastric carcinogenesis. Front Oncol 2023; 13:1171003. [PMID: 37152042 PMCID: PMC10160455 DOI: 10.3389/fonc.2023.1171003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023] Open
Abstract
Helicobacter pylori (H. pylori) are Gram-negative bacteria that cause chronic gastritis and are considered the main risk factor for the development of gastric cancer. H. pylori have evolved to survive the harsh luminal environment of the stomach and are known to cause damage and signaling aberrations in gastric epithelial cells, which can result in premalignant and malignant pathology. As well as colonizing the gastric mucus and surface epithelial cells, a subpopulation of H. pylori can invade deep into the gastric glands and directly interact with progenitor and stem cells. Gland colonization therefore bears the potential to cause direct injury to long-lived cells. Moreover, this bacterial subpopulation triggers a series of host responses that cause an enhanced proliferation of stem cells. Here, we review recent insights into how gastric gland colonization by H. pylori is established, the resulting pro-carcinogenic epithelial signaling alterations, as well as new insights into stem cell responses to infection. Together these point towards a critical role of gland-associated H. pylori in the development of gastric cancer.
Collapse
Affiliation(s)
- Giulia Beccaceci
- Medical Department, Division of Gastroenterology and Hepatology, Charité-Universtitätsmedizin Berlin, Berlin, Germany
- The Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Michael Sigal
- Medical Department, Division of Gastroenterology and Hepatology, Charité-Universtitätsmedizin Berlin, Berlin, Germany
- The Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
8
|
Naumann M, Ferino L, Sharafutdinov I, Backert S. Gastric Epithelial Barrier Disruption, Inflammation and Oncogenic Signal Transduction by Helicobacter pylori. Curr Top Microbiol Immunol 2023; 444:207-238. [PMID: 38231220 DOI: 10.1007/978-3-031-47331-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Helicobacter pylori exemplifies one of the most favourable bacterial pathogens worldwide. The bacterium colonizes the gastric mucosa in about half of the human population and constitutes a major risk factor for triggering gastric diseases such as stomach cancer. H. pylori infection represents a prime example of chronic inflammation and cancer-inducing bacterial pathogens. The microbe utilizes a remarkable set of virulence factors and strategies to control cellular checkpoints of inflammation and oncogenic signal transduction. This chapter emphasizes on the pathogenicity determinants of H. pylori such as the cytotoxin-associated genes pathogenicity island (cagPAI)-encoded type-IV secretion system (T4SS), effector protein CagA, lipopolysaccharide (LPS) metabolite ADP-glycero-β-D-manno-heptose (ADP-heptose), cytotoxin VacA, serine protease HtrA, and urease, and how they manipulate various key host cell signaling networks in the gastric epithelium. In particular, we highlight the H. pylori-induced disruption of cell-to-cell junctions, pro-inflammatory activities, as well as proliferative, pro-apoptotic and anti-apoptotic responses. Here we review these hijacked signal transduction events and their impact on gastric disease development.
Collapse
Affiliation(s)
- Michael Naumann
- Institute of Experimental Internal Medicine, Medical Faculty, Otto Von Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Lorena Ferino
- Institute of Experimental Internal Medicine, Medical Faculty, Otto Von Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Irshad Sharafutdinov
- Dept. Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Steffen Backert
- Dept. Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany.
| |
Collapse
|
9
|
Yang H, Wei B, Hu B. Chronic inflammation and long-lasting changes in the gastric mucosa after Helicobacter pylori infection involved in gastric cancer. Inflamm Res 2021; 70:1015-1026. [PMID: 34549319 DOI: 10.1007/s00011-021-01501-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/13/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Helicobacter pylori (H. pylori) infects approximately half of the world's population, as one of the most common chronic infections. H. pylori infection has been widely recognized as a major risk factor for gastric cancer (GC). METHODS Eradication treatment is considered to abolish the inflammatory response and prevent progression to GC. However, only 1-3% of H. pylori-infected patients develop GC, whereas GC can occur even after eradicating H. pylori. In addition, the incidence of GC following H. pylori infection is significantly higher compared to the gross incidence induced by all causes, although eradicating H. pylori reduces the risk of developing GC. RESULTS Therefore, it is reasonable to hypothesize that H. pylori infection results in changes that persist even after its eradication. Several of these changes may not be reversible within a short time, including the status of inflammation, the dysfunction of immunity and apoptosis, mitochondrial changes, aging and gastric dysbacteriosis. CONCLUSION The present review article aimed to discuss these potential long-lasting changes induced by H. pylori infection that may follow the eradication of H. pylori and contribute to the development of GC.
Collapse
Affiliation(s)
- Hang Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Bin Wei
- Department of Gastroenterology, The First Hospital of Xi'an City, Xi'an, 710002, Shanxi, People's Republic of China
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
10
|
Prashar A, Capurro MI, Jones NL. Under the Radar: Strategies Used by Helicobacter pylori to Evade Host Responses. Annu Rev Physiol 2021; 84:485-506. [PMID: 34672717 DOI: 10.1146/annurev-physiol-061121-035930] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The body depends on its physical barriers and innate and adaptive immune responses to defend against the constant assault of potentially harmful microbes. In turn, successful pathogens have evolved unique mechanisms to adapt to the host environment and manipulate host defenses. Helicobacter pylori (Hp), a human gastric pathogen that is acquired in childhood and persists throughout life, is an example of a bacterium that is very successful at remodeling the host-pathogen interface to promote a long-term persistent infection. Using a combination of secreted virulence factors, immune subversion, and manipulation of cellular mechanisms, Hp can colonize and persist in the hostile environment of the human stomach. Here, we review the most recent and relevant information regarding how this successful pathogen overcomes gastric epithelial host defense responses to facilitate its own survival and establish a chronic infection. Expected final online publication date for the Annual Review of Physiology, Volume 84 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Akriti Prashar
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada;
| | - Mariana I Capurro
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada;
| | - Nicola L Jones
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada; .,Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, Ontario, Canada.,Departments of Paediatrics and Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Helicobacter pylori CagA Induces Cortactin Y-470 Phosphorylation-Dependent Gastric Epithelial Cell Scattering via Abl, Vav2 and Rac1 Activation. Cancers (Basel) 2021; 13:cancers13164241. [PMID: 34439396 PMCID: PMC8391897 DOI: 10.3390/cancers13164241] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/10/2021] [Accepted: 08/15/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Various microbial pathogens target the actin-binding protein cortactin to promote their own uptake, proliferation and spread, and exhibit proposed roles in human cancerogenesis. We aimed to study the molecular mechanisms of how the gastric pathogen Helicobacter pylori hijacks cortactin phosphorylation via tyrosine kinase Abl to trigger cancer-related signal transduction events. We discovered that cortactin phosphorylated at Y-470 recruits the signaling factor Vav2 to activate the small Rho GTPase Rac1, and finally, a cancer cell motility phenotype. We also demonstrate that phosphorylation of cortactin at Y-470 can be completely inhibited by the well-known Abl inhibitor imatinib. Imatinib is an established oral chemotherapy medication, employed for efficient systemic treatment of various cancers. These results reveal a comprehensive novel pathway for how precisely H. pylori manipulates host signaling in gastric disease development, and may pave the way for new opportunities of treatment of the outcome of infections with this pathogen, i.e., through using imatinib. Abstract The pathogen Helicobacter pylori is the first reported bacterial type-1 carcinogen playing a role in the development of human malignancies, including gastric adenocarcinoma. Cancer cell motility is an important process in this scenario, however, the molecular mechanisms are still not fully understood. Here, we demonstrate that H. pylori subverts the actin-binding protein cortactin through its type-IV secretion system and injected oncoprotein CagA, e.g., by inducing tyrosine phosphorylation of cortactin at Y-470, which triggers gastric epithelial cell scattering and motility. During infection of AGS cells, cortactin was discovered to undergo tyrosine dephosphorylation at residues Y-421 and Y-486, which is mediated through inactivation of Src kinase. However, H. pylori also profoundly activates tyrosine kinase Abl, which simultaneously phosphorylates cortactin at Y-470. Phosphorylated cortactin interacts with the SH2-domain of Vav2, a guanine nucleotide exchange factor for the Rho-family of GTPases. The cortactin/Vav2 complex then stimulates a previously unrecognized activation cascade including the small GTPase Rac1, to effect actin rearrangements and cell scattering. We hypothesize that injected CagA targets cortactin to locally open the gastric epithelium in order to get access to certain nutrients. This may disturb the cellular barrier functions, likely contributing to the induction of cell motility, which is important in gastric cancer development.
Collapse
|
12
|
Gastric Cancer: Advances in Carcinogenesis Research and New Therapeutic Strategies. Int J Mol Sci 2021; 22:ijms22073418. [PMID: 33810350 PMCID: PMC8037554 DOI: 10.3390/ijms22073418] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022] Open
Abstract
Gastric cancer’s bad incidence, prognosis, cellular and molecular heterogeneity amongst others make this disease a major health issue worldwide. Understanding this affliction is a priority for proper patients’ management and for the development of efficient therapeutical strategies. This review gives an overview of major scientific advances, made during the past 5-years, to improve the comprehension of gastric adenocarcinoma. A focus was made on the different actors of gastric carcinogenesis, including, Helicobacter pylori cancer stem cells, tumour microenvironment and microbiota. New and recent potential biomarkers were assessed as well as emerging therapeutical strategies involving cancer stem cells targeting as well as immunotherapy. Finally, recent experimental models to study this highly complex disease were discussed, highlighting the importance of gastric cancer understanding in the hard-fought struggle against cancer relapse, metastasis and bad prognosis.
Collapse
|
13
|
He Y, Wang C, Zhang X, Lu X, Xing J, Lv J, Guo M, Huo X, Liu X, Lu J, Du X, Li C, Chen Z. Sustained Exposure to Helicobacter pylori Lysate Inhibits Apoptosis and Autophagy of Gastric Epithelial Cells. Front Oncol 2020; 10:581364. [PMID: 33194715 PMCID: PMC7658535 DOI: 10.3389/fonc.2020.581364] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori is designated as a class I carcinogen of human gastric cancer following long-term infection. During this process, H. pylori bacteria persist in proliferation and death, and release bacterial components that come into contact with gastric epithelial cells and regulate host cell function. However, the impact of long-term exposure to H. pylori lysate on the pathological changes of gastric cells is not clear. In this study, we aimed to investigate the regulation and mechanisms involved in gastric cell dysfunction following continuous exposure to H. pylori lysate. We co-cultured gastric cell lines GES-1 and MKN-45 with H. pylori lysate for 30 generations, and we found that sustained exposure to H. pylori lysate inhibited GES-1 cell invasion, migration, autophagy, and apoptosis, while it did not inhibit MKN-45 cell invasion or migration. Furthermore, Mongolian gerbils infected with H. pylori ATCC 43504 strains for 90 weeks confirmed the in vitro results. The clinical and in vitro data indicated that sustained exposure to H. pylori lysate inhibited cell apoptosis and autophagy through the Nod1-NF-κB/MAPK-ERK/FOXO4 signaling pathway. In conclusion, sustained exposure to H. pylori lysate promoted proliferation of gastric epithelial cells and inhibited autophagy and apoptosis via Nod1-NF-κB/MAPK-ERK/FOXO4 signaling pathway. In the process of H. pylori-induced gastric lesions, H. pylori lysate plays as an “accomplice” to carcinogenesis.
Collapse
Affiliation(s)
- Yang He
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
| | - Cunlong Wang
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
| | - Xiulin Zhang
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
| | - Xuancheng Lu
- Laboratory Animal Center, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jin Xing
- Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, China
| | - Jianyi Lv
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
| | - Meng Guo
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
| | - Xueyun Huo
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
| | - Xin Liu
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
| | - Jing Lu
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
| | - Xiaoyan Du
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
| | - Changlong Li
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
| | - Zhenwen Chen
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
| |
Collapse
|
14
|
TAZ Controls Helicobacter pylori-Induced Epithelial-Mesenchymal Transition and Cancer Stem Cell-Like Invasive and Tumorigenic Properties. Cells 2020; 9:cells9061462. [PMID: 32545795 PMCID: PMC7348942 DOI: 10.3390/cells9061462] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/01/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori infection, the main risk factor for gastric cancer (GC), leads to an epithelial–mesenchymal transition (EMT) of gastric epithelium contributing to gastric cancer stem cell (CSC) emergence. The Hippo pathway effectors yes-associated protein (YAP) and transcriptional co-activator with PDZ binding motif (TAZ) control cancer initiation and progression in many cancers including GC. Here, we investigated the role of TAZ in the early steps of H. pylori-mediated gastric carcinogenesis. TAZ implication in EMT, invasion, and CSC-related tumorigenic properties were evaluated in three gastric epithelial cell lines infected by H. pylori. We showed that H. pylori infection increased TAZ nuclear expression and transcriptional enhancer TEA domain (TEAD) transcription factors transcriptional activity. Nuclear TAZ and zinc finger E-box-binding homeobox 1 (ZEB1) were co-overexpressed in cells harboring a mesenchymal phenotype in vitro, and in areas of regenerative hyperplasia in gastric mucosa of H. pylori-infected patients and experimentally infected mice, as well as at the invasive front of gastric carcinoma. TAZ silencing reduced ZEB1 expression and EMT phenotype, and strongly inhibited invasion and tumorsphere formation induced by H. pylori. In conclusion, TAZ activation in response to H. pylori infection contributes to H. pylori-induced EMT, invasion, and CSC-like tumorigenic properties. TAZ overexpression in H. pylori-induced pre-neoplastic lesions and in GC could therefore constitute a biomarker of early transformation in gastric carcinogenesis.
Collapse
|
15
|
Chichirau BE, Diechler S, Posselt G, Wessler S. Tyrosine Kinases in Helicobacter pylori Infections and Gastric Cancer. Toxins (Basel) 2019; 11:toxins11100591. [PMID: 31614680 PMCID: PMC6832112 DOI: 10.3390/toxins11100591] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/02/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori (H. pylori) has been identified as a leading cause of gastric cancer, which is one of the most frequent and malignant types of tumor. It is characterized by its rapid progression, distant metastases, and resistance to conventional chemotherapy. A number of receptor tyrosine kinases and non-receptor tyrosine kinases have been implicated in H. pylori-mediated pathogenesis and tumorigenesis. In this review, recent findings of deregulated EGFR, c-Met, JAK, FAK, Src, and c-Abl and their functions in H. pylori pathogenesis are summarized.
Collapse
Affiliation(s)
- Bianca E Chichirau
- Department of Biosciences, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria.
| | - Sebastian Diechler
- Department of Biosciences, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria.
| | - Gernot Posselt
- Department of Biosciences, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria.
| | - Silja Wessler
- Cancer Cluster Salzburg, Department of Biosciences, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria.
| |
Collapse
|
16
|
Abstract
In this review, we shall focus on the last year progression understanding the pathogenesis of Helicobacter pylori infection in the light of recent data related to adaptation of H pylori to the harsh acidic environment in the stomach, colonization of gastric mucosa via interaction with mucin 5 (MUC5AC) and other host cell receptors, the ability to form biofilm, interference with the host metabolic pathways, and induction of neuroimmune cross-talk as well as downregulation of gastric barrier homeostasis and its consequences for the disease development. The role of the membrane vesicles of these bacteria has been emphasized as an important source of virulence factors. Furthermore, we shall describe molecular and functional studies on new aspects of VacA and CagA virulence, including the role of urease in the upregulation of VacA toxicity, an epithelial-mesenchymal transition mediated by CagA, and the role of interaction of HopQ adhesin with carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) in CagA translocation into the host cells by the type IV secretion system (T4SS). The role of molecular mimicry between a common sequence (ATVLA) of H pylori heat shock protein (Hsp) B and human Hsp60 in the induction of potentially autoreactive antibodies is discussed. All these new data illustrate further progress in understanding H pylori pathogenicity and facilitate the search for new therapeutic targets as well as development of immunoprophylaxis methods based on new chimeric UreB and HpA proteins.
Collapse
Affiliation(s)
- Magdalena Chmiela
- Laboratory of GastroimmunologyDepartment of Immunology and Infectious BiologyInstitute of Microbiology, Biotechnology and ImmunologyFaculty of Biology and Environmental ProtectionUniversity of ŁódźŁódźPoland
| | - Juozas Kupcinskas
- Institute for Digestive ResearchAcademy of MedicineLithuanian University of Health SciencesKaunasLithuania
- Department of GastroenterologyAcademy of MedicineLithuanian University of Health ScienceKaunasLithuania
| |
Collapse
|