1
|
Moon J, Cho KH, Jhun J, Choi J, Na HS, Lee JS, Lee SY, Min JK, Shetty A, Park SH, Kim SJ, Cho ML. Small heterodimer partner-interacting leucine zipper protein suppresses pain and cartilage destruction in an osteoarthritis model by modulating the AMPK/STAT3 signaling pathway. Arthritis Res Ther 2024; 26:199. [PMID: 39533324 PMCID: PMC11555939 DOI: 10.1186/s13075-024-03417-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVE Osteoarthritis (OA) is a degenerative joint disease caused by the breakdown of joint cartilage and adjacent bone. Joint injury, being overweight, differences in leg length, high levels of joint stress, abnormal joint or limb development, and inherited factors have been implicated in the etiology of OA. In addition to physical damage to the joint, a role for inflammatory processes has been identified as well. Small heterodimer partner-interacting leucine zipper protein (SMILE) regulates transcription and many cellular functions. Among the proteins activated by SMILE is the peroxisome proliferator-activated receptor (PPAR) γ, which mediates the activities of CD4 + T helper cells, including Th1, Th2, and Th17, as well as Treg cells. PPAR-γ binds to STAT3 to inhibit its transcription, thereby suppressing the expression of the NF-κB pathway, and in turn, the expression of the inflammatory cytokines interferon (IFN), interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α, which are sub-signals of STAT3 and NF-κB. METHODS OA was induced in control C57BL/6 mice and in C57BL/6-derived SMILE-overexpressing transgenic (SMILE Tg) mice. The protein expression levels in the joint and spleen tissues were analyzed by immunohistochemistry and immunofluorescence images. In addition, flow cytometry was performed for detecting changes of the changes of immune cells. RESULTS Less cartilage damage and significantly reduced levels of OA biomarkers (MMP13, TIMP3 and MCP-1) were observed in SMILE Tg mice. Immunohistochemistry performed to identify the signaling pathway involved in the link between SMILE expression and OA revealed decreased levels of IL-1β, IL-6, TNF-α, and phosphorylated AMPK in synovial tissues as well as a significant decrease in phosphorylated STAT3 in both cartilage and synovium. Changes in systemic immune cells were investigated via flow cytometry to analyze splenocytes isolated from control and SMILE Tg mice. SMILE Tg mice had elevated proportions of CD4 + IL-4 + cells (Th2) and CD4 + CD25 + Foxp3 + cells (Treg) and a notable decrease in CD4 + IL-17 + cells (Th17). CONCLUSION Our results show that overexpressed SMILE attenuates the symptoms of OA, by increasing AMPK signaling and decreasing STAT3, thus reducing the levels of inflammatory immune cells.
Collapse
Affiliation(s)
- Jeonghyeon Moon
- Departments of Immunobiology and Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Keun-Hyung Cho
- Lab of Translational ImmunoMedicine (LaTIM), Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - JooYeon Jhun
- Lab of Translational ImmunoMedicine (LaTIM), Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - JeongWon Choi
- Lab of Translational ImmunoMedicine (LaTIM), Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Hyun-Sik Na
- Lab of Translational ImmunoMedicine (LaTIM), Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Jeong Su Lee
- Lab of Translational ImmunoMedicine (LaTIM), Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Seung Yoon Lee
- Lab of Translational ImmunoMedicine (LaTIM), Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Jun-Ki Min
- Department of Internal Medicine, and the Clinical Medicine Research Institute of Bucheon St. Mary's Hospital, The Catholic University of Korea, Bucheon si, Gyeonggi-do, Korea
| | - Anan Shetty
- Institute of Medical Sciences, Canterbury Christ Church University, Medway Campus, Chatham, Kent, UK
| | - Sung-Hwan Park
- Department of Internal Medicine, Division of Rheumatology, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, 222, Banpo‑daero, Seocho‑gu, Seoul, 06591, Korea
| | - Seok Jung Kim
- Department of Orthopaedic Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Cheonbo-ro, Uijeongbu-si, Gyeonggi-do, 271, Korea
| | - Mi-La Cho
- Lab of Translational ImmunoMedicine (LaTIM), Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.
| |
Collapse
|
2
|
Vinciguerra C, Bellia L, Corbi G, Rengo S, Cannavo A. Resveratrol supplementation as a non-surgical treatment in periodontitis and related systemic conditions. J Tradit Complement Med 2024. [DOI: 10.1016/j.jtcme.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
3
|
Jiang Z, Huang H, Luo L, Jiang B. The Role of Autophagy on Osteogenesis of Dental Follicle Cells Under Inflammatory Microenvironment. Oral Dis 2024. [PMID: 39415618 DOI: 10.1111/odi.15149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 09/05/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVE This study investigated the role of autophagy on osteogenesis of DFCs under inflammatory microenvironment during tooth eruption. METHODS DFCs were isolated and identified. Lipopolysaccharide (LPS) was used to construct the inflammatory microenvironment in vitro and in vivo. Cell viability was examined by CCK-8 assay. Osteogenic differentiation was evaluated by alkaline phosphatase (ALP) staining, alizarin red S (ARS) staining. The gene and protein levels were examined using qRT-PCR and western blot analysis, respectively. We observed the process of tooth eruption after local LPS injection by micro-CT and HE staining. Osteogenesis and autophagy were monitored through qRT-PCR, western blot and histological staining of specific markers. RESULTS LPS at the indicated concentrations did not produce toxic effects on DFCs, and significantly promoted the inflammatory gene expression. LPS inhibited osteogenic differentiation and activated autophagy in DFCs. Blocking autophagy with 3-MA reversed the expression of osteogenic markers in LPS-treated DFCs. Additionally, the eruption of LPS-treated teeth was accelerated and their DFs exhibited an increased expression of TNF-α and Beclin1, and decreased expression of ALP and RUNX2. CONCLUSIONS Autophagy was involved in the suppression of the DFCs osteogenesis in an LPS-induced inflammatory condition, suggesting the pivotal role of autophagy in inflammation-induced premature tooth eruption.
Collapse
Affiliation(s)
- Zhen Jiang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Pediatric Dentistry, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Haiyan Huang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Pediatric Dentistry, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Linjuan Luo
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Pediatric Dentistry, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Beizhan Jiang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Pediatric Dentistry, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| |
Collapse
|
4
|
Wang C, Wang X, Wang W, Chen Y, Chen H, Wang W, Ye T, Dong J, Sun C, Li X, Li C, Li J, Wang Y, Feng X, Ding H, Xu D, Shi J. Single‑cell RNA sequencing analysis of human embryos from the late Carnegie to fetal development. Cell Biosci 2024; 14:118. [PMID: 39267141 PMCID: PMC11395182 DOI: 10.1186/s13578-024-01302-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND The cell development atlas of transition stage from late Carnegie to fetal development (7-9 weeks) remain unclear. It can be seen that the early period of human embryos (7-9 weeks) is a critical research gap. Therefore, we employed single‑cell RNA sequencing to identify cell types and elucidate differentiation relationships. RESULTS The single‑cell RNA sequencing analysis determines eighteen cell clusters in human embryos during the 7-9 weeks period. We uncover two distinct pathways of cellular development and differentiation. Initially, mesenchymal progenitor cells differentiated into osteoblast progenitor cells and neural stem cells, respectively. Neural stem cells further differentiated into neurons. Alternatively, multipotential stem cells differentiated into adipocyte, hematopoietic stem cells and neutrophil, respectively. Additionally, COL1A2-(ITGA1 + ITGB1) mediated the cell communication between mesenchymal progenitor cells and osteoblast progenitor cells. NCAM1-FGFR1 facilitated the cell communication between mesenchymal progenitor cells and neural stem cells. Notably, NCAM1-NCAM1 as a major contributor mediated the cell communication between neural stem cells and neurons. Moreover, CGA-FSHR simultaneously mediated the communication between multipotential stem cells, adipocyte, hematopoietic stem cells and neutrophil. Distinct cell clusters activated specific transcription factors such as HIC1, LMX1B, TWIST1, and et al., which were responsible for their specific functions. These coregulators, such as HOXB13, VSX2, PAX5, and et al., may mediate cell development and differentiation in human embryos. CONCLUSIONS We provide the cell development atlas for human embryos (7-9 weeks). Two distinct cell development and differentiation pathways are revealed.
Collapse
Affiliation(s)
- Chengniu Wang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226001, Jiangsu, China
| | - Xiaorong Wang
- Center for Reproductive Medicine, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, 226018, Jiangsu, China
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, 226018, Jiangsu, China
- Nantong Key Laboratory of Genetics and Reproductive Medicine, Nantong, 226018, Jiangsu, China
| | - Wenran Wang
- Blood Purification Centre, Third People's Hospital of Rugao, Nantong, 226531, Jiangsu, China
| | - Yufei Chen
- Basic Medical Research Centre, Medical School, Nantong University, Nantong, 226001, Jiangsu, China
| | - Hanqing Chen
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226001, Jiangsu, China
| | - Weizhen Wang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226001, Jiangsu, China
| | - Taowen Ye
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226001, Jiangsu, China
| | - Jin Dong
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226001, Jiangsu, China
| | - Chenliang Sun
- Department of Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Xiaoran Li
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226001, Jiangsu, China
| | - Chunhong Li
- Blood Purification Centre, Third People's Hospital of Rugao, Nantong, 226531, Jiangsu, China
| | - Jiaying Li
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226001, Jiangsu, China
| | - Yong Wang
- Department of Neurosurgery, Affiliated Hospital 2 of Nantong University, Nantong, 226006, Jiangsu, China
| | - Xingmei Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Hongping Ding
- Blood Purification Centre, Third People's Hospital of Rugao, Nantong, 226531, Jiangsu, China.
| | - Dawei Xu
- Department of Orthopedics, Affiliated Hospital 2 of Nantong University, Nantong, 226000, Jiangsu, China.
| | - Jianwu Shi
- Basic Medical Research Centre, Medical School, Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
5
|
Xu H, Wang L, Zhu X, Zhang H, Chen H, Zhang H. Jintiange capsule ameliorates glucocorticoid-induced osteonecrosis of the femoral head in rats by regulating the activity and differentiation of BMSCs. J Tradit Complement Med 2024; 14:568-580. [PMID: 39262662 PMCID: PMC11384076 DOI: 10.1016/j.jtcme.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 09/13/2024] Open
Abstract
Background and aim A surplus of glucocorticoids (GC) is a main cause of non-traumatic osteonecrosis of the femoral head (ONFH), and Jintiange (JTG), as one of the traditional Chinese medicines (TCM), also plays an instrumental role in the alleviation of bone loss simultaneously. Therefore, JTG was thought to be able to reverse GC-induced ONFH (GC-ONFH) to a certain extent. Experimental procedure In vivo, the effect of JTG on trabeculae in the subchondral bone of the femoral head was investigated using micro-computed tomography (micro-CT), TdT-mediated dUTP nick end labeling (TUNEL) and histological staining; in vitro, proliferation, viability, apoptosis, and senescence of purified bone mesenchymal stem cells (BMSCs) were examined to demonstrate the direct impact of JTG on these cells. Meanwhile after using a series of interventions, the function of JTG on BMSC differentiation could be assessed by measuring of osteogenic and adipogenic markers at levels of protein and mRNA. Results Our final results demonstrated that with the involvement of Wnt/β-catenin pathway, JTG was able to significantly promote osteogenesis, restrain adipogenesis, delay senescence in BMSCs, reduce osteoclast number, weaken apoptosis, and enhance proliferation of osteocytes, all of which could mitigate the progression of subchondral osteonecrosis. Conclusion According to the results of experiments in vitro and vivo, JTG was deemed to relieve the early GC-ONFH using the prevention of destruction of subchondral bone, which was contributed to regulating the differentiation of BMSCs and the number of osteoclasts.
Collapse
Affiliation(s)
- Hui Xu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lin Wang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xunpeng Zhu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Haigang Zhang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hongwei Chen
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hui Zhang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
6
|
Deng J, Zeng X, Zhang K, Zhang T, Dong Y, Zou J, Wu C, Li Y, Li F, Guan Z. Knockdown of SMYD3 by RNA Interference Regulates the Expression of Autophagy-Related Proteins and Inhibits Bone Formation in Fluoride-Exposed Osteoblasts. Biol Trace Elem Res 2024:10.1007/s12011-024-04327-w. [PMID: 39106008 DOI: 10.1007/s12011-024-04327-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024]
Abstract
This study aimed to explore the role of histone methyltransferase SET and MYND domain containing 3 (SMYD3) in bone metabolism of osteoblasts exposed to fluoride. The levels of urine fluoride, BALP, and OC and the mRNA expression of SMYD3 were determined in patients with skeletal fluorosis and non-fluoride-exposed people on informed consent. The expression of SMYD3 protein, OC contents, and BALP activities were detected in human osteoblast-like MG63 cells and rat primary osteoblasts treated with sodium fluoride (NaF) for 48 h. The autophagosomes were observed by transmission electron microscopy. Then, we knocked down SMYD3 to confirm whether it was involved in the regulation of bone formation and related to autophagy and Wnt/β-catenin pathway. We observed that OC and BALP levels in patients with skeletal fluorosis significantly increased, while the mRNA expression of SMYD3 significantly decreased in the skeletal fluorosis groups. In vitro, the OC contents, BALP activities, and expression of SMYD3 significantly increased, and many autophagosomes were observed in NaF treated osteoblasts. The downregulation of SMYD3 significantly inhibited OC contents, BALP activities, and expression of autophagy-related proteins, but with no significant changes in the Wnt/β-catenin pathway. Our results demonstrated that fluoride exposure with coal-burning pollution caused orthopedic injuries and abnormalities in the levels of OC and BALP and hindered normal bone metabolism. Silencing the SMYD3 gene could significantly reduce OC and BALP levels via inhibiting the increase in autophagy induced by fluoride.
Collapse
Affiliation(s)
- Jie Deng
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education, Guiyang, 550004, Guizhou, China
- Provincial Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Xiaoxiao Zeng
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education, Guiyang, 550004, Guizhou, China
- Provincial Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Kailin Zhang
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education, Guiyang, 550004, Guizhou, China
- Department of Biochemistry and Molecular Biology, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Ting Zhang
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education, Guiyang, 550004, Guizhou, China
- Provincial Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Yangting Dong
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education, Guiyang, 550004, Guizhou, China
- Provincial Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Jian Zou
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education, Guiyang, 550004, Guizhou, China
- Provincial Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Changxue Wu
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education, Guiyang, 550004, Guizhou, China
- Provincial Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Yi Li
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education, Guiyang, 550004, Guizhou, China
- Provincial Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Fucheng Li
- Research Group of Liupanshui Center for Disease Control and Prevention, Liupanshui, 553001, Guizhou, China
| | - Zhizhong Guan
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education, Guiyang, 550004, Guizhou, China.
- Departments of Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China.
| |
Collapse
|
7
|
He Y, Liu Y, Li R, Xiang A, Chen X, Yu Q, Su P. The role of autophagy/lipophagy in the response of osteoblastic cells to hyperlipidemia (Review). Exp Ther Med 2024; 28:328. [PMID: 38979020 PMCID: PMC11229398 DOI: 10.3892/etm.2024.12617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/10/2024] [Indexed: 07/10/2024] Open
Abstract
There has been interest in the connection between cardiovascular diseases and osteoporosis, both of which share hyperlipidemia as a common pathological basis. Osteoporosis is a progressive metabolic bone disease characterized by reduced bone mass, deteriorated bone microstructure, increased bone fragility and heightened risk of bone fractures. Dysfunction of osteoblastic cells, vital for bone formation, is induced by excessive internalization of lipids under hyperlipidemic conditions, forming the crux of hyperlipidemia-associated osteoporosis. Autophagy, a process fundamental to cell self-regulation, serves a critical role in osteoblastic cell function and bone formation. When activated by lipids, lipophagy inhibits osteoblastic cell differentiation in response to elevated lipid concentrations, resulting in reduced bone mass and osteoporosis. However, an in-depth understanding of the precise roles and mechanisms of lipophagy in the regulation of osteoblastic cell function is required. Study of the molecular mechanisms governing osteoblastic cell response to excessive lipids can result in a clearer understanding of osteoporosis; therefore, potential strategies for preventing hyperlipidemia-induced osteoporosis can be developed. The present review discusses recent progress in elucidating the molecular mechanisms of lipophagy in the regulation of osteoblastic cell function, offering insights into hyperlipidemia-induced osteoporosis.
Collapse
Affiliation(s)
- Yizhang He
- Shaanxi Provincial Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Yantong Liu
- School of Basic Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Ran Li
- Shaanxi Provincial Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Aoqi Xiang
- Shaanxi Provincial Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Xiaochang Chen
- Shaanxi Provincial Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Qi Yu
- Shaanxi Provincial Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Peihong Su
- Shaanxi Provincial Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| |
Collapse
|
8
|
Deng L, Wu L, Chen D, Cao Y. SNHG1 knockdown promotes osteogenic differentiation of hDFSCs through anti-oxidative stress mediated by autophagy. J Cell Physiol 2024; 239:e31283. [PMID: 38651182 DOI: 10.1002/jcp.31283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/07/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
The long noncoding RNA (lncRNA) small nucleolar RNA host gene 1 (SNHG1) plays a crucial role in tumorigenesis and is frequently employed as a prognostic biomarker. However, its involvement in the osteogenic differentiation of oral stem cells, particularly human dental follicle stem cells (hDFSCs), remains unclear. Our investigation revealed that the absence of SNHG1 enhances the osteogenic differentiation of hDFSCs. Furthermore, the downregulation of SNHG1 induces autophagy in hDFSCs, leading to a reduction in intracellular oxidative stress levels. Notably, this effect is orchestrated through the epigenetic regulation of EZH2. Our study unveils a novel function of SNHG1 in governing the osteogenic differentiation of hDFSCs, offering fresh insights for an in-depth exploration of the molecular mechanisms underlying dental follicle development. These findings not only provide a foundation for advancing the understanding of SNHG1 but also present innovative perspectives for promoting the repair and regeneration of periodontal supporting tissue, ultimately contributing to the restoration of periodontal health and tooth function.
Collapse
Affiliation(s)
- Lidi Deng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liping Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dongru Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yang Cao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Xiao Y, Chen L, Xu Y, Yu R, Lu J, Ke Y, Guo R, Gu T, Yu H, Fang Y, Li Z, Yu J. Circ-ZNF236 mediates stem cells from apical papilla differentiation by regulating LGR4-induced autophagy. Int Endod J 2024; 57:431-450. [PMID: 38240345 DOI: 10.1111/iej.14021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/06/2023] [Accepted: 01/03/2024] [Indexed: 03/07/2024]
Abstract
AIM Human stem cells from the apical papilla (SCAPs) are an appealing stem cell source for tissue regeneration engineering. Circular RNAs (circRNAs) are known to exert pivotal regulatory functions in various cell differentiation processes, including osteogenesis of mesenchymal stem cells. However, few studies have shown the potential mechanism of circRNAs in the odonto/osteogenic differentiation of SCAPs. Herein, we identified a novel circRNA, circ-ZNF236 (hsa_circ_0000857) and found that it was remarkably upregulated during the SCAPs committed differentiation. Thus, in this study, we showed the significance of circ-ZNF236 in the odonto/osteogenic differentiation of SCAPs and its underlying regulatory mechanisms. METHODOLOGY The circular structure of circ-ZNF236 was identified via Sanger sequencing, amplification of convergent and divergent primers. The proliferation of SCAPs was detected by CCK-8, flow cytometry analysis and EdU incorporation assay. Western blotting, qRT-PCR, Alkaline phosphatase (ALP) and Alizarin red staining (ARS) were performed to explore the regulatory effect of circ-ZNF236/miR-218-5p/LGR4 axis in the odonto/osteogenic differentiation of SCAPs in vitro. Fluorescence in situ hybridization, as well as dual-luciferase reporting assays, revealed that circ-ZNF236 binds to miR-218-5p. Transmission electron microscopy (TEM) and mRFP-GFP-LC3 lentivirus were performed to detect the activation of autophagy. RESULTS Circ-ZNF236 was identified as a highly stable circRNA with a covalent closed loop structure. Circ-ZNF236 had no detectable influence on cell proliferation but positively regulated SCAPs odonto/osteogenic differentiation. Furthermore, circ-ZNF236 was confirmed as a sponge of miR-218-5p in SCAPs, while miR-218-5p targets LGR4 mRNA at its 3'-UTR. Subsequent rescue experiments revealed that circ-ZNF236 regulates odonto/osteogenic differentiation by miR-218-5p/LGR4 in SCAPs. Importantly, circ-ZNF236 activated autophagy, and the activation of autophagy strengthened the committed differentiation capability of SCAPs. Subsequently, in vivo experiments showed that SCAPs overexpressing circ-ZNF236 promoted bone formation in a rat skull defect model. CONCLUSIONS Circ-ZNF236 could activate autophagy through increasing LGR4 expression, thus positively regulating SCAPs odonto/osteogenic differentiation. Our findings suggested that circ-ZNF236 might represent a novel therapeutic target to prompt the odonto/osteogenic differentiation of SCAPs.
Collapse
Affiliation(s)
- Ya Xiao
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, China
- Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, China
| | - Luyao Chen
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, China
- Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yunlong Xu
- Endodontic Department, Changzhou Stomatological Hospital, Changzhou, Jiangsu, China
| | - Ruiyang Yu
- School of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Jiamin Lu
- Endodontic Department, Changzhou Stomatological Hospital, Changzhou, Jiangsu, China
| | - Yue Ke
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, China
- Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, China
| | - Rong Guo
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, China
- Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, China
| | - Tingjie Gu
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, China
- Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, China
| | - Haowen Yu
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, China
- Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yuxin Fang
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, China
- Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, China
| | - Zehan Li
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, China
- Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, China
| | - Jinhua Yu
- Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Zhu L, Wang J, Wu Z, Chen S, He Y, Jiang Y, Luo G, Wu Z, Li Y, Xie J, Zou S, Zhou C. AFF4 regulates osteogenic potential of human periodontal ligament stem cells via mTOR-ULK1-autophagy axis. Cell Prolif 2024; 57:e13546. [PMID: 37731335 PMCID: PMC10849782 DOI: 10.1111/cpr.13546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/22/2023] Open
Abstract
Scaffold protein AF4/FMR2 family member 4 (AFF4) has been found to play a role in osteogenic commitment of stem cells. However, function of AFF4 in human periodontal ligament stem cells (hPDLSCs) has not been studied yet. This present study aims to investigate the biological effect of AFF4 on osteogenic differentiation of hPDLSCs and potential mechanistic pathway. First, AFF4 expression profile was evaluated in conditions of periodontitis and osteogenic differentiation of hPDLSCs by immunohistochemical staining, western blot and qRT-PCR. Next, si-RNA mediated knockdown and lentiviral transduction mediated overexpression of AFF4 were adopted to explore impact of AFF4 on osteogenic capacity of hPDLSCs. Then, possible mechanistic pathway was identified. At last, pharmacological agonist of autophagy, rapamycin, was utilized to affirm the role of autophagy in AFF4-regulated osteogenesis of hPDLSCs. First, AFF4 expressions were significantly lower in inflamed periodontal tissues and lipopolysaccharides-treated hPDLSCs than controls, and were up-regulated during osteogenic differentiation of hPDLSCs. Next, osteogenic potential of hPDLSCs was impaired by AFF4 knockdown and potentiated by AFF4 overexpression. Moreover, AFF4 was found to positively regulate autophagic activity in hPDLSCs. At last, rapamycin treatment was shown to be able to partly restore AFF4 knockdown-suppressed osteogenic differentiation. Our study demonstrates that AFF4 regulates osteogenic potential of hPDLSCs via targeting autophagic activity. The involvement of AFF4 in periodontal homeostasis was identified for the first time.
Collapse
Affiliation(s)
- Li Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Jiahe Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Zuping Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityHangzhouChina
| | - Sirui Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Yuying He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Yukun Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Guowen Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Zhuoxuan Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Yuyu Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Jing Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
- Department of Orthodontics, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
- Department of Pediatric Dentistry, West China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
11
|
LI X, LIN X, CHEN D, LIU H. B-cell lymphoma-2 phosphorylation at Ser70 site-related autophagy mediates puerarin-inhibited the apoptosis of MC3T3-E1 cells during osteoblastogenesis. J TRADIT CHIN MED 2024; 44:27-34. [PMID: 38213236 PMCID: PMC10774730 DOI: 10.19852/j.cnki.jtcm.20231024.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2024]
Abstract
OBJECTIVE To explore the relationship between autophagy and apoptosis regulated by puerarin during osteoblastogenesis. METHODS In this study, the effects of puerarin on the autophagic activity and apoptosis level of osteoblast precursors (MC3T3-E1 cells) was observed. Subsequently, the roles of puerarin on B-cell lymphoma-2 (Bcl-2) phosphorylation at different sites in osteoblast precursors were observed. The effect of puerarin on the interaction between Bcl-2 and autophagy regulatory molecule or pro-apoptotic molecule was also investigated using Co-immunoprecipitation assays. In addition, the effect of puerarin on mitochondrial membrane potential of osteoblast precursors was also identified by mitochondrial membrane potential fluorescence probe assays. RESULTS Our results showed that puerarin can promote the autophagic activity and apoptosis level of MC3T3-E1 cells. In addition, puerarin promoted Bcl-2 phosphorylation at Ser70 site, and the dissociation of Bcl-2-Beclin1 complex. Moreover, puerarin could enhance the binding of Bcl-2-Bcl-2-Associated X (Bax) complex in MC3T3-E1 cells. Furthermore, puerarin increased the mitochondrial membrane potential of MC3T3-E1 cells. CONCLUSIONS Therefore, puerarin promotes Beclin1 into autophagy flux through Bcl-2 phosphorylation at Ser70, thereby enhancing autophagy of osteoblast precursors, which mediates its anti-apoptotic role during osteoblastogenesis. Furthermore, the dissociation of Bcl-2-Beclin1 complex is conducive to the binding of Bcl-2-Bax complex, which resists the apoptosis of osteoblast precursors viathe increased mitochondrial membrane potential.
Collapse
Affiliation(s)
- Xi LI
- 1 the Third Clinical Medical College, Fujian Medical University
- 2 Department of Orthopedics, Fuzhou Second Hospital, Fuzhou 350007, China
| | - Xiangquan LIN
- 1 the Third Clinical Medical College, Fujian Medical University
- 2 Department of Orthopedics, Fuzhou Second Hospital, Fuzhou 350007, China
| | - Dongdong CHEN
- 1 the Third Clinical Medical College, Fujian Medical University
- 2 Department of Orthopedics, Fuzhou Second Hospital, Fuzhou 350007, China
| | - Hui LIU
- 1 the Third Clinical Medical College, Fujian Medical University
- 2 Department of Orthopedics, Fuzhou Second Hospital, Fuzhou 350007, China
| |
Collapse
|
12
|
Zhang Y, Ma S, Nie J, Liu Z, Chen F, Li A, Pei D. Journey of Mineral Precursors in Bone Mineralization: Evolution and Inspiration for Biomimetic Design. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2207951. [PMID: 37621037 DOI: 10.1002/smll.202207951] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/27/2023] [Indexed: 08/26/2023]
Abstract
Bone mineralization is a ubiquitous process among vertebrates that involves a dynamic physical/chemical interplay between the organic and inorganic components of bone tissues. It is now well documented that carbonated apatite, an inorganic component of bone, is proceeded through transient amorphous mineral precursors that transforms into the crystalline mineral phase. Here, the evolution on mineral precursors from their sources to the terminus in the bone mineralization process is reviewed. How organisms tightly control each step of mineralization to drive the formation, stabilization, and phase transformation of amorphous mineral precursors in the right place, at the right time, and rate are highlighted. The paradigm shifts in biomineralization and biomaterial design strategies are intertwined, which promotes breakthroughs in biomineralization-inspired material. The design principles and implementation methods of mineral precursor-based biomaterials in bone graft materials such as implant coatings, bone cements, hydrogels, and nanoparticles are detailed in the present manuscript. The biologically controlled mineralization mechanisms will hold promise for overcoming the barriers to the application of biomineralization-inspired biomaterials.
Collapse
Affiliation(s)
- Yuchen Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shaoyang Ma
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiaming Nie
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhongbo Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Faming Chen
- School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Dandan Pei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
13
|
Su Z, Chen D, Huang J, Liang Z, Ren W, Zhang Z, Jiang Q, Luo T, Guo L. Isoliquiritin treatment of osteoporosis by promoting osteogenic differentiation and autophagy of bone marrow mesenchymal stem cells. Phytother Res 2024; 38:214-230. [PMID: 37859562 DOI: 10.1002/ptr.8032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/21/2023]
Abstract
Osteoporosis is a chronic progressive bone disease characterized by the decreased osteogenic ability of osteoblasts coupled with increased osteoclast activity. Natural products showing promising therapeutic potential for postmenopausal osteoporosis remain underexplored. In this study, we aimed to analyze the therapeutic effects of isoliquiritin (ISL) on osteoporosis in mice and its possible mechanism of action. An ovariectomy-induced osteoporosis mouse model and bone marrow mesenchymal stem cells (BMSCs) were used to analyze the effects of ISL on bone regeneration in vivo and in vitro, respectively. Mitogen-activated protein kinase (MAPK) and autophagy inhibitors were used, to investigate whether the MAPK signaling pathway and autophagy affect the osteogenic differentiation of BMSCs. ISL significantly improved bone formation and reduced bone resorption in mouse femurs without inducing any detectable toxicity in critical organs such as the liver, kidney, brain, heart, and spleen. In vitro experiments showed that ISL enhanced the proliferation and osteogenic differentiation of BMSCs and that its osteogenic effect was attenuated by p38/extracellular regulated protein kinase (ERK) and autophagy inhibitors. Further studies showed that the inhibition of phosphorylated p38/ERK blocked ISL autophagy in BMSCs. ISL promoted the osteogenic differentiation of BMSCs through the p38/ERK-autophagy pathway and was therapeutically effective in treating osteoporosis in ovariectomized mice without any observed toxicity to vital organs. These results strongly suggest the promising potential of ISL as a safe and efficacious candidate drug for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Zhikang Su
- Department of Prosthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Ding Chen
- Department of Prosthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jiangyon Huang
- Department of Prosthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Zitian Liang
- Department of Dentistry and Endodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Wen Ren
- Department of Prosthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Zeyu Zhang
- Department of Dentistry and Endodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Qianzhou Jiang
- Department of Dentistry and Endodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Tao Luo
- Department of Prosthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Lvhua Guo
- Department of Prosthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
14
|
Xu Y, Wang Y, Xiao H, Li Y. Hypoxia dissociates HDAC6/FOXO1 complex and aggregates them into nucleus to regulate autophagy and osteogenic differentiation. J Periodontal Res 2023; 58:1248-1260. [PMID: 37767803 DOI: 10.1111/jre.13180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/10/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023]
Abstract
OBJECTIVE This research aimed to elucidate the molecular mechanisms underlying the periodontitis-associated bone loss, with particular emphasis on the contributory role of hypoxic microenvironment in this process. BACKGROUND Periodontitis generally causes alveolar bone loss and is often associated with a hypoxic microenvironment, which affects bone homeostasis. However, the regulating mechanism between hypoxia and jaw metabolism remains unclear. Hypoxia triggers autophagy, which is closely related to osteogenic differentiation, but how hypoxia-induced autophagy regulates bone metabolism is unknown. HDAC6 and FOXO1 are closely related to bone metabolism and autophagy, respectively, but whether they are related to hypoxia-induced bone loss and their internal mechanisms is still unclear. METHODS Established rat nasal obstruction model and hypoxia cell model. Immunohistochemistry was performed to detect the expression and localization of HDAC6 and FOXO1 proteins, analysis of autophagic flux and transmission electron microscopy was used to examine the autophagy level and observe the autophagosomes, co-immunoprecipitation and chromatin immunoprecipitation were preformed to investigate the interaction of HDAC6 and FOXO1. RESULTS Hypoxia causes increased autophagy and reduced osteogenic differentiation in rat mandibles and BMSCs, and blocking autophagy can attenuate hypoxia-induced osteogenic differentiation decrease. Moreover, hypoxia dissociated the FOXO1-HDAC6 complex and accumulated them in the nucleus. Knocking down of FOXO1 or HDAC6 alleviated hypoxia-induced autophagy elevation or osteogenic differentiation reduction by binding to related genes, respectively. CONCLUSION Hypoxia causes mandibular bone loss and autophagy elevation. Mechanically, hypoxia dissociates the FOXO1-HDAC6 complex and aggregates them in the nucleus, whereas HDAC6 decreases osteogenic differentiation and FOXO1 enhances autophagy to inhibit osteogenic differentiation.
Collapse
Affiliation(s)
- Yixin Xu
- Department of Orthodontic, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
- Department of Orthodontic, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yixin Wang
- Department of Orthodontic, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Hui Xiao
- Department of Orthodontic, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yongming Li
- Department of Orthodontic, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| |
Collapse
|
15
|
Hemati S, Hatamian-Zarmi A, Halabian R, Ghiasi M, Salimi A. Schizophyllan promotes osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells in vitro. Mol Biol Rep 2023; 50:10037-10045. [PMID: 37902909 DOI: 10.1007/s11033-023-08877-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/02/2023] [Indexed: 11/01/2023]
Abstract
BACKGROUND Bioactive polysaccharides are a promising way for bone disease prevention with high efficiency. Schizophyllan (SPG) is a polysaccharide derived from a species of fungus with anticancer, antitumor, and anti-inflammatory effects. In the present study, for the first time, the cell proliferation, osteogenic markers, mineral deposition, and osteogenic gene expression of human adipose tissue-derived mesenchymal stem cells (hADMSCs) grown on SPG were evaluated by in vitro assays. METHODS AND RESULTS The cytotoxicity of SPG was measured using the MTT assay and acridine orange staining. Differentiation of hADMSCs was assessed using alkaline phosphatase (ALP) activity test, cellular calcium content assay, and mineralized matrix staining. To this end, Alizarin red S, von Kossa staining, and the expression of bone-specific markers, including ALP, Runx2, and osteonectin, were used by real-time RT-PCR over a 2-week period. According to the results, SPG at 10 µg/ml concentration was determined as the optimal dosage for differentiation studies. The results of osteogenic differentiation tests showed that compared to the control groups in vitro, SPG enhanced the osteogenic markers and mineralization as well as upregulation of the expression of bone specific genes in differentiated hADMSCs during differentiation. CONCLUSIONS The results revealed that SPG could be applied as effective factor for osteogenic differentiation in the future. The current study provides insights into the hADMSC-based treatment and introduces promising therapeutic material for individuals who suffer from bone defects and injuries.
Collapse
Affiliation(s)
- Saideh Hemati
- Department of Cellular and Molecular Biology, Faculty of Biology, Science and Research Branch of Islamic Azad University, Tehran, Iran
| | - Ashrafalsadat Hatamian-Zarmi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohsen Ghiasi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Salimi
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Liu Z, Li Q, Wang X, Wu Y, Zhang Z, Mao J, Gong S. Proanthocyanidin enhances the endogenous regeneration of alveolar bone by elevating the autophagy of PDLSCs. J Periodontal Res 2023; 58:1300-1314. [PMID: 37715945 DOI: 10.1111/jre.13186] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/31/2023] [Accepted: 09/01/2023] [Indexed: 09/18/2023]
Abstract
OBJECTIVE This study aimed to investigate the effect of proanthocyanidin (PA) on osteogenesis mediated by periodontal ligament stem cells (PDLSCs) and endogenous alveolar bone regeneration. BACKGROUND Leveraging the osteogenic potential of resident stem cells is a promising strategy for alveolar bone regeneration. PA has been reported to be effective in osteogenesis. However, the effect and mechanism of PA on the osteogenic differentiation of PDLSCs remain elusive. METHODS Human PDLSCs were treated with various doses of PA to assess the cell proliferation using Cell Counting Kit-8. The osteogenic differentiation ability was detected by qRT-PCR analysis, western blot analysis, Alizarin red S staining, and Alkaline Phosphatase staining. The level of autophagy was evaluated by confocal laser scanning microscopy, transmission electron microscopy, and western blot analysis. RNA sequencing was utilized to screen the potential signaling pathway. The alveolar bone defect model of rats was created to observe endogenous bone regeneration. RESULTS PA activated intracellular autophagy in PDLSCs, resulting in enhanced osteogenic differentiation. Moreover, this effect could be abolished by the autophagy inhibitor 3-Methyladenine. Mechanistically, the PI3K/Akt/mTOR pathway was negatively correlated with PA-mediated autophagy activation. Lastly, PA promoted the alveolar bone regeneration in vivo, and this effect was reversed when the autophagy process was blocked. CONCLUSION PA may activate autophagy by inhibiting PI3K/Akt/mTOR signaling pathway to promote the osteogenesis of PDLSCs and enhance endogenous alveolar bone regeneration.
Collapse
Affiliation(s)
- Zhuo Liu
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Qilin Li
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Xiangyao Wang
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yaxin Wu
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Zhixing Zhang
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jing Mao
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Shiqiang Gong
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
17
|
Santilli F, Fabrizi J, Martellucci S, Santacroce C, Iorio E, Pisanu ME, Chirico M, Lancia L, Pulcini F, Manganelli V, Sorice M, Delle Monache S, Mattei V. Lipid rafts mediate multilineage differentiation of human dental pulp-derived stem cells (DPSCs). Front Cell Dev Biol 2023; 11:1274462. [PMID: 38020931 PMCID: PMC10665896 DOI: 10.3389/fcell.2023.1274462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Cell outer membranes contain glycosphingolipids and protein receptors, which are integrated into glycoprotein domains, known as lipid rafts, which are involved in a variety of cellular processes, including receptor-mediated signal transduction and cellular differentiation process. In this study, we analyzed the lipidic composition of human Dental Pulp-Derived Stem Cells (DPSCs), and the role of lipid rafts during the multilineage differentiation process. The relative quantification of lipid metabolites in the organic fraction of DPSCs, performed by Nuclear Magnetic Resonance (NMR) spectroscopy, showed that mono-unsaturated fatty acids (MUFAs) were the most representative species in the total pool of acyl chains, compared to polyunsatured fatty acids (PUFAs). In addition, the stimulation of DPSCs with different culture media induces a multilineage differentiation process, determining changes in the gangliosides pattern. To understand the functional role of lipid rafts during multilineage differentiation, DPSCs were pretreated with a typical lipid raft affecting agent (MβCD). Subsequently, DPSCs were inducted to differentiate into osteoblast, chondroblast and adipoblast cells with specific media. We observed that raft-affecting agent MβCD prevented AKT activation and the expression of lineage-specific mRNA such as OSX, PPARγ2, and SOX9 during multilineage differentiation. Moreover, this compound significantly prevented the tri-lineage differentiation induced by specific stimuli, indicating that lipid raft integrity is essential for DPSCs differentiation. These results suggest that lipid rafts alteration may affect the signaling pathway activated, preventing multilineage differentiation.
Collapse
Affiliation(s)
- Francesca Santilli
- Biomedicine and Advanced Technologies Rieti Center, “Sabina Universitas”, Rieti, Italy
| | - Jessica Fabrizi
- Biomedicine and Advanced Technologies Rieti Center, “Sabina Universitas”, Rieti, Italy
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Stefano Martellucci
- Biomedicine and Advanced Technologies Rieti Center, “Sabina Universitas”, Rieti, Italy
| | - Costantino Santacroce
- Biomedicine and Advanced Technologies Rieti Center, “Sabina Universitas”, Rieti, Italy
| | - Egidio Iorio
- High Resolution NMR Unit, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Elena Pisanu
- High Resolution NMR Unit, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Mattea Chirico
- High Resolution NMR Unit, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Loreto Lancia
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Fanny Pulcini
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Valeria Manganelli
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Maurizio Sorice
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Vincenzo Mattei
- Dipartimento di Scienze della Vita, della Salute e delle Professioni Sanitarie, Link Campus University, Rome, Italy
| |
Collapse
|
18
|
Xue J, Liu L, Liu H, Li Z. LncRNA SNHG14 activates autophagy via regulating miR-493-5p/Mef2c axis to alleviate osteoporosis progression. Commun Biol 2023; 6:1120. [PMID: 37925525 PMCID: PMC10625635 DOI: 10.1038/s42003-023-05493-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023] Open
Abstract
Osteoporosis is a progressive bone disease caused by impaired function of endogenous bone marrow-derived mesenchymal stem cells (BMSCs). Herein, we investigated the mechanism of lncRNA SNHG14 in osteoporosis progression. BMSCs were isolated from BALB/c mice. The osteogenic ability of BMSCs was assessed by Alkaline phosphatase (ALP) and Alizarin Red S Staining (ARS) staining. The interaction between miR-493-5p and SNHG14 or myocyte enhancer factor 2 C (Mef2c) was confirmed by dual-luciferase reporter assay. Bone histomorphometry changes were evaluated to analyze SNHG14'roles in osteoporosis in vivo. Our results illustrated SNHG14 and Mef2c levels were increased in a time-dependent manner in BMSCs, and miR-493-5p expression was decreased. SNHG14 knockdown inhibited osteogenic differentiation of BMSCs, and SNHG14 upregulation had the opposite effect. SNHG14 overexpression elevated bone mineral density and bone trabecular number, and alleviated osteoporosis progression in vivo. Mechanically, miR-493-5p was a target of SNHG14, and miR-493-5p targeted the Mef2c gene directly. SNHG14 overexpression reversed the inhibition of miR-493-5p on the osteogenic ability of BMSCs, and miR-493-5p silencing accelerated BMSCs osteogenesis by activating Mef2c-mediated autophagy to accelerate BMSCs osteogenesis. In short, SNHG14 activated autophagy via regulating miR-493-5p/Mef2c axis to alleviate osteoporosis progression, which might provide a new molecular target for osteoporosis treatment.
Collapse
Affiliation(s)
- Jingbo Xue
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan Province, PR China.
| | - Lulu Liu
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan Province, PR China
| | - Hao Liu
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan Province, PR China
| | - Zepeng Li
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan Province, PR China
| |
Collapse
|
19
|
Petrocelli G, Abruzzo PM, Pampanella L, Tassinari R, Marini S, Zamagni E, Ventura C, Facchin F, Canaider S. Oxytocin Modulates Osteogenic Commitment in Human Adipose-Derived Stem Cells. Int J Mol Sci 2023; 24:10813. [PMID: 37445991 DOI: 10.3390/ijms241310813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Human adipose-derived stem cells (hASCs) are commonly harvested in minimally invasive contexts with few ethical concerns, and exhibit self-renewal, multi-lineage differentiation, and trophic signaling that make them attractive candidates for cell therapy approaches. The identification of natural molecules that can modulate their biological properties is a challenge for many researchers. Oxytocin (OXT) is a neurohypophyseal hormone that plays a pivotal role in the regulation of mammalian behavior, and is involved in health and well-being processes. Here, we investigated the role of OXT on hASC proliferation, migratory ability, senescence, and autophagy after a treatment of 72 h; OXT did not affect hASC proliferation and migratory ability. Moreover, we observed an increase in SA-β-galactosidase activity, probably related to the promotion of the autophagic process. In addition, the effects of OXT were evaluated on the hASC differentiation ability; OXT promoted osteogenic differentiation in a dose-dependent manner, as demonstrated by Alizarin red staining and gene/protein expression analysis, while it did not affect or reduce adipogenic differentiation. We also observed an increase in the expression of autophagy marker genes at the beginning of the osteogenic process in OXT-treated hASCs, leading us to hypothesize that OXT could promote osteogenesis in hASCs by modulating the autophagic process.
Collapse
Affiliation(s)
- Giovannamaria Petrocelli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Provvidenza Maria Abruzzo
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Luca Pampanella
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | | | - Serena Marini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Elena Zamagni
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", 40138 Bologna, Italy
| | - Carlo Ventura
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB) c/o Eldor Lab, Via Corticella 183, 40129 Bologna, Italy
| | - Federica Facchin
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Silvia Canaider
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| |
Collapse
|
20
|
Zeng C, Wang S, Gu H, Chen F, Wang Z, Li J, Xie Z, Feng P, Shen H, Wu Y. Galangin mitigates glucocorticoid-induced osteoporosis by activating autophagy of BMSCs via triggering the PKA/CREB signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1275-1287. [PMID: 37365870 PMCID: PMC10448057 DOI: 10.3724/abbs.2023063] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/20/2023] [Indexed: 04/05/2023] Open
Abstract
Glucocorticoid-induced osteoporosis (GIOP), one of the most common and serious adverse effects associated with glucocorticoid administration, manifests as decreased bone formation and increased bone resorption, eventually culminating in bone loss. Galangin (GAL) is a flavonoid extracted from the medicinal herbal galangal that possesses a variety of pharmacological activities and can inhibit osteoclastogenesis. However, the effects of GAL on GIOP remain unclear. Our study aims to explore the effects of GAL on GIOP in mice and the underlying mechanism. Our results show that GAL markedly mitigates the severity of dexamethasone (Dex)-induced osteoporosis in mice and potentiates osteogenic differentiation in mouse bone marrow-derived mesenchymal stem cells (BMSCs). Furthermore, GAL also significantly counteracts Dex-mediated suppression of osteogenic differentiation and autophagy in human BMSCs. GAL augments PKA/CREB-mediated autophagic flux in BMSCs and the bones of osteoporotic mice. GAL-mediated osteogenic differentiation in Dex-treated BMSCs is significantly decreased by the PKA inhibitor H89 and autophagy inhibitor 3-methyladenine. Collectively, our data indicate that GAL can ameliorate GIOP, partly by augmenting the mineralization of BMSCs by potentiating PKA/CREB-mediated autophagic flux, highlighting its potential therapeutic use in treating glucocorticoid-related osteoporosis.
Collapse
Affiliation(s)
- Chenying Zeng
- Center for BiotherapyEighth Affiliated Hospital of Sun Yat-sen UniversityShenzhen518033China
| | - Shan Wang
- Center for BiotherapyEighth Affiliated Hospital of Sun Yat-sen UniversityShenzhen518033China
| | - Huimin Gu
- Center for BiotherapyEighth Affiliated Hospital of Sun Yat-sen UniversityShenzhen518033China
| | - Fenglei Chen
- Department of OrthopedicsEighth Affiliated Hospital of Sun Yat-sen UniversityShenzhen518033China
| | - Ziming Wang
- Department of OrthopedicsEighth Affiliated Hospital of Sun Yat-sen UniversityShenzhen518033China
| | - Jinteng Li
- Department of OrthopedicsEighth Affiliated Hospital of Sun Yat-sen UniversityShenzhen518033China
| | - Zhongyu Xie
- Department of OrthopedicsEighth Affiliated Hospital of Sun Yat-sen UniversityShenzhen518033China
| | - Pei Feng
- Center for BiotherapyEighth Affiliated Hospital of Sun Yat-sen UniversityShenzhen518033China
| | - Huiyong Shen
- Department of OrthopedicsEighth Affiliated Hospital of Sun Yat-sen UniversityShenzhen518033China
- Department of OrthopedicsSun Yat-sen Memorial Hospital of Sun Yat-sen UniversityGuangzhou510120China
| | - Yanfeng Wu
- Center for BiotherapyEighth Affiliated Hospital of Sun Yat-sen UniversityShenzhen518033China
| |
Collapse
|
21
|
Soheilifar MH, Nobari S, Hakimi M, Adel B, Masoudi-Khoram N, Reyhani E, Neghab HK. Current concepts of microRNA-mediated regulatory mechanisms in human pulp tissue-derived stem cells: a snapshot in the regenerative dentistry. Cell Tissue Res 2023:10.1007/s00441-023-03792-4. [PMID: 37247032 DOI: 10.1007/s00441-023-03792-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/12/2023] [Indexed: 05/30/2023]
Abstract
One of the most studied class of non-coding RNAs is microRNAs (miRNAs) which regulate more than 60% of human genes. A network of miRNA gene interactions participates in stem cell self-renewal, proliferation, migration, apoptosis, immunomodulation, and differentiation. Human pulp tissue-derived stem cells (PSCs) are an attractive source of dental mesenchymal stem cells (MSCs) which comprise human dental pulp stem cells (hDPSCs) obtained from the dental pulp of permanent teeth and stem cells isolated from exfoliated deciduous teeth (SHEDs) that would be a therapeutic opportunity in stomatognathic system reconstruction and repair of other damaged tissues. The regenerative capacity of hDPSCs and SHEDs is mediated by osteogenic, odontogenic, myogenic, neurogenic, angiogenic differentiation, and immunomodulatory function. Multi-lineage differentiation of PSCs can be induced or inhibited by the interaction of miRNAs with their target genes. Manipulating the expression of functional miRNAs in PSCs by mimicking miRNAs or inhibiting miRNAs emerged as a therapeutic tool in the clinical translation. However, the effectiveness and safety of miRNA-based therapeutics, besides higher stability, biocompatibility, less off-target effects, and immunologic reactions, have received particular attention. This review aimed to comprehensively overview the molecular mechanisms underlying miRNA-modified PSCs as a futuristic therapeutic option in regenerative dentistry.
Collapse
Affiliation(s)
| | - Sima Nobari
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Hakimi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bashir Adel
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Nastaran Masoudi-Khoram
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elahe Reyhani
- Faculty of Dentistry, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hoda Keshmiri Neghab
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| |
Collapse
|
22
|
Wang R, Wang H, Mu J, Yuan H, Pang Y, Wang Y, Du Y, Han F. Molecular events in the jaw vascular unit: A traditional review of the mechanisms involved in inflammatory jaw bone diseases. J Biomed Res 2023; 37:313-325. [PMID: 37226540 PMCID: PMC10541772 DOI: 10.7555/jbr.36.20220266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/28/2023] [Accepted: 03/08/2023] [Indexed: 05/26/2023] Open
Abstract
Inflammatory jaw bone diseases are common in stomatology, including periodontitis, peri-implantitis, medication-related osteonecrosis of the jaw, radiation osteomyelitis of the jaw, age-related osteoporosis, and other specific infections. These diseases may lead to tooth loss and maxillofacial deformities, severely affecting patients' quality of life. Over the years, the reconstruction of jaw bone deficiency caused by inflammatory diseases has emerged as a medical and socioeconomic challenge. Therefore, exploring the pathogenesis of inflammatory diseases associated with jaw bones is crucial for improving prognosis and developing new targeted therapies. Accumulating evidence indicates that the integrated bone formation and dysfunction arise from complex interactions among a network of multiple cell types, including osteoblast-associated cells, immune cells, blood vessels, and lymphatic vessels. However, the role of these different cells in the inflammatory process and the 'rules' with which they interact are still not fully understood. Although many investigations have focused on specific pathological processes and molecular events in inflammatory jaw diseases, few articles offer a perspective of integration. Here, we review the changes and mechanisms of various cell types in inflammatory jaw diseases, with the hope of providing insights to drive future research in this field.
Collapse
Affiliation(s)
- Ruyu Wang
- Department of Oral and Maxillofacial Surgery, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Haoran Wang
- Department of Oral and Maxillofacial Surgery, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Junyu Mu
- International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Hua Yuan
- Department of Oral and Maxillofacial Surgery, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Yongchu Pang
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
- Department of Orthodontics, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yuli Wang
- Department of Oral and Maxillofacial Surgery, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Yifei Du
- Department of Oral and Maxillofacial Surgery, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Feng Han
- International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
23
|
Pan C, Wu Y, Hu S, Li K, Liu X, Shi Y, Lin W, Wang X, Shi Y, Xu Z, Wang H, Chen H. Polystyrene microplastics arrest skeletal growth in puberty through accelerating osteoblast senescence. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121217. [PMID: 36746288 DOI: 10.1016/j.envpol.2023.121217] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/01/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Polystyrene microplastics (PS-MPs) have attracted worldwide attention to their massive accumulation in terrestrial and aquatic ecosystems. It has been demonstrated that MPs are easily to accumulate in organs and exert toxic effects. However, their exposure risk to the skeleton remains unknown. In this study, we observed PS-MPs accumulation in both the long bones and axial bones, leading to reduced body length, as well as femur and tibia length. PS-MPs treated mice exhibited redundant skeletal growth and impaired trabecular bone micro-architecture, which is due to the suppressed osteogenic ability as the number of osteoblasts decreased significantly in PS-MPs treated mice. In histological analysis, we observed the accumulation of senescent osteoblasts in the bone trabecula of PS-MPs treated mice, as well as the impaired autophagy with decreased autophagosome and reduced autophagy-related proteins in the senescent osteoblasts. Re-establishing autophagy effectively reversed the senescent phenotype in osteoblasts and ameliorated PS-MPs induced skeletal growth arrest. Hence, our study reveals the detrimental role of PS-MPs in skeletal growth in puberty through accelerating osteoblast senescence, which may be alleviated by reactivating the autophagy. This study provides new evidence of the PS-MPs on health threats and the potential therapeutic targets to reverse it.
Collapse
Affiliation(s)
- Chun Pan
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Yin Wu
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Sihan Hu
- Huashan Hospital, Fudan University, Shanghai, China
| | - Ke Li
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Xiangyu Liu
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Yu Shi
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Wenzheng Lin
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Xinglong Wang
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Yujie Shi
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Zhuobin Xu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Huihui Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Hao Chen
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.
| |
Collapse
|
24
|
Wang J, Zhang Y, Cao J, Wang Y, Anwar N, Zhang Z, Zhang D, Ma Y, Xiao Y, Xiao L, Wang X. The role of autophagy in bone metabolism and clinical significance. Autophagy 2023:1-19. [PMID: 36858962 PMCID: PMC10392742 DOI: 10.1080/15548627.2023.2186112] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
The skeletal system is the basis of the vertebral body composition, which affords stabilization sites for muscle attachment, protects vital organs, stores mineral ions, supplies places to the hematopoietic system, and participates in complex endocrine and immune system. Not surprisingly, bones are constantly reabsorbed, formed, and remodeled under physiological conditions. Once bone metabolic homeostasis is interrupted (including inflammation, tumors, fractures, and bone metabolic diseases), the body rapidly initiates bone regeneration to maintain bone tissue structure and quality. Macroautophagy/autophagy is an essential metabolic process in eukaryotic cells, which maintains metabolic energy homeostasis and plays a vital role in bone regeneration by controlling molecular degradation and organelle renewal. One relatively new observation is that mesenchymal cells, osteoblasts, osteoclasts, osteocytes, chondrocytes, and vascularization process exhibit autophagy, and the molecular mechanisms and targets involved are being explored and updated. The role of autophagy is also emerging in degenerative diseases (intervertebral disc degeneration [IVDD], osteoarthritis [OA], etc.) and bone metabolic diseases (osteoporosis [OP], osteitis deformans, osteosclerosis). The use of autophagy regulators to modulate autophagy has benefited bone regeneration, including MTOR (mechanistic target of rapamycin kinase) inhibitors, AMPK activators, and emerging phytochemicals. The application of biomaterials (especially nanomaterials) to trigger autophagy is also an attractive research direction, which can exert superior therapeutic properties from the material-loaded molecules/drugs or the material's properties such as shape, roughness, surface chemistry, etc. All of these have essential clinical significance with the discovery of autophagy associated signals, pathways, mechanisms, and treatments in bone diseases in the future.Abbreviations: Δψm: mitochondrial transmembrane potential AMPK: AMP-activated protein kinase ARO: autosomal recessive osteosclerosis ATF4: activating transcription factor 4 ATG: autophagy-related β-ECD: β-ecdysone BMSC: bone marrow mesenchymal stem cell ER: endoplasmic reticulum FOXO: forkhead box O GC: glucocorticoid HIF1A/HIF-1α: hypoxia inducible factor 1 subunit alpha HSC: hematopoietic stem cell HSP: heat shock protein IGF1: insulin like growth factor 1 IL1B/IL-1β: interleukin 1 beta IVDD: intervertebral disc degradation LPS: lipopolysaccharide MAPK: mitogen-activated protein kinase MSC: mesenchymal stem cell MTOR: mechanistic target of rapamycin kinase NP: nucleus pulposus NPWT: negative pressure wound therapy OA: osteoarthritis OP: osteoporosis PTH: parathyroid hormone ROS: reactive oxygen species SIRT1: sirtuin 1 SIRT3: sirtuin 3 SQSTM1/p62: sequestosome 1 TNFRSF11B/OPG: TNF receptor superfamily member 11b TNFRSF11A/RANK: tumor necrosis factor receptor superfamily, member 11a TNFSF11/RANKL: tumor necrosis factor (ligand) superfamily, member 11 TSC1: tuberous sclerosis complex 1 ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Jing Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Yi Zhang
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Jin Cao
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Yi Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Nadia Anwar
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Zihan Zhang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Dingmei Zhang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Yaping Ma
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Yin Xiao
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Queensland, Australia.,School of Medicine and Dentistry & Menzies Health Institute Queensland, Griffith University, Queensland, Australia
| | - Lan Xiao
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia.,Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Xin Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China.,School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia.,Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
25
|
Pampanella L, Abruzzo PM, Tassinari R, Alessandrini A, Petrocelli G, Ragazzini G, Cavallini C, Pizzuti V, Collura N, Canaider S, Facchin F, Ventura C. Cytochalasin B Influences Cytoskeletal Organization and Osteogenic Potential of Human Wharton's Jelly Mesenchymal Stem Cells. Pharmaceuticals (Basel) 2023; 16:289. [PMID: 37259432 PMCID: PMC9966134 DOI: 10.3390/ph16020289] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 09/01/2023] Open
Abstract
Among perinatal stem cells of the umbilical cord, human Wharton's jelly mesenchymal stem cells (hWJ-MSCs) are of great interest for cell-based therapy approaches in regenerative medicine, showing some advantages over other MSCs. In fact, hWJ-MSCs, placed between embryonic and adult MSCs, are not tumorigenic and are harvested with few ethical concerns. Furthermore, these cells can be easily cultured in vitro, maintaining both stem properties and a high proliferative rate for several passages, as well as trilineage capacity of differentiation. Recently, it has been demonstrated that cytoskeletal organization influences stem cell biology. Among molecules able to modulate its dynamics, Cytochalasin B (CB), a cyto-permeable mycotoxin, influences actin microfilament polymerization, thus affecting several cell properties, such as the ability of MSCs to differentiate towards a specific commitment. Here, we investigated for the first time the effects of a 24 h-treatment with CB at different concentrations (0.1-3 μM) on hWJ-MSCs. CB influenced the cytoskeletal organization in a dose-dependent manner, inducing changes in cell number, proliferation, shape, and nanomechanical properties, thus promoting the osteogenic commitment of hWJ-MSCs, as confirmed by the expression analysis of osteogenic/autophagy markers.
Collapse
Affiliation(s)
- Luca Pampanella
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Provvidenza Maria Abruzzo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | | | - Andrea Alessandrini
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Via Campi 213/A, 41125 Modena, Italy
- CNR-Nanoscience Institute-S3, Via Campi 213/A, 41125 Modena, Italy
| | - Giovannamaria Petrocelli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Gregorio Ragazzini
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Via Campi 213/A, 41125 Modena, Italy
- CNR-Nanoscience Institute-S3, Via Campi 213/A, 41125 Modena, Italy
| | | | - Valeria Pizzuti
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Nicoletta Collura
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Silvia Canaider
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Federica Facchin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Carlo Ventura
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB) c/o Eldor Lab, Via Corticella 183, 40129 Bologna, Italy
| |
Collapse
|
26
|
Lin L, Zheng Y, Wang C, Li P, Xu D, Zhao W. Concentration-Dependent Cellular Uptake of Graphene Oxide Quantum Dots Promotes the Odontoblastic Differentiation of Dental Pulp Cells via the AMPK/mTOR Pathway. ACS OMEGA 2023; 8:5393-5405. [PMID: 36816699 PMCID: PMC9933470 DOI: 10.1021/acsomega.2c06508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
As zero-dimension nanoparticles, graphene oxide quantum dots (GOQDs) have broad potential for regulating cell proliferation and differentiation. However, such regulation of dental pulp cells (DPSCs) with different concentrations of GOQDs is insufficiently investigated, especially on the molecular mechanism. The purpose of this study was to explore the effect and molecular mechanism of GOQDs on the odontoblastic differentiation of DPSCs and to provide a theoretical basis for the repair of pulp vitality by pulp capping. CCK-8, immunofluorescence staining, alkaline phosphatase activity assay and staining, alizarin red staining, qRT-PCR, and western blotting were used to detect the proliferation and odontoblastic differentiation of DPSC coculturing with different concentrations of GOQDs. The results indicate that the cellular uptake of low concentration of GOQDs (0.1, 1, and 10 μg/mL) could promote the proliferation and odontoblastic differentiation of DPCSs. Compared with other concentration groups, 1 μg/mL GOQDs show better ability in such promotion. In addition, with the activation of the AMPK signaling pathway, the mTOR signaling pathway was inhibited in DPSCs after coculturing with GOQDs, which indicates that low concentrations of GOQDs could regulate the odontoblastic differentiation of DPSCs by the AMPK/mTOR signaling pathway.
Collapse
|
27
|
Ji C, Zhang Z, Xu X, Song D, Zhang D. Hyperlipidemia impacts osteogenesis via lipophagy. Bone 2023; 167:116643. [PMID: 36513279 DOI: 10.1016/j.bone.2022.116643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/04/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022]
Abstract
The mechanism of the impact of hyperlipidemia on bone tissue homeostasis is unclear, and the role of lipophagy is yet to be investigated. This study investigated changes in lipophagy and osteogenesis levels under hyperlipemic conditions and explored the effects of lipophagy on bone regeneration. In vivo, femurs of mice with diet-induced moderate hyperlipidemia were ground out with a ball drill to create defects. In vitro, mouse osteoblast cell lines were grown in two different concentrations of the high-fat medium. We found that at hyperphysiological of lipid conditions, activation of lipophagy restored osteoblast function in a way, and similar results were observed in mice with diet-induced hyperlipidemia. Still, at suprahyperphysiological concentrations of lipid culture, the activation of lipophagy further inhibited osteogenesis, and inhibition of autophagy instead promoted osteogenesis to a small extent. These results demonstrate that lipophagy functions differently in diverse high-fat environments, suggesting that cellular and organismal changes in response to high-fat stimuli are dynamic. This may provide new ideas for improving bone dysfunction caused by lipid metabolism disorders.
Collapse
Affiliation(s)
- Chonghao Ji
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China; Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Zhanwei Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China; Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Xin Xu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China; Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Dawei Song
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Dongjiao Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China; Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China.
| |
Collapse
|
28
|
Dang H, Chen W, Chen L, Huo X, Wang F. TPPU inhibits inflammation-induced excessive autophagy to restore the osteogenic differentiation potential of stem cells and improves alveolar ridge preservation. Sci Rep 2023; 13:1574. [PMID: 36709403 PMCID: PMC9884285 DOI: 10.1038/s41598-023-28710-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/23/2023] [Indexed: 01/30/2023] Open
Abstract
Inflammation-induced autophagy is a double-edged sword. Dysfunction of autophagy impairs the differentiation capacity of mesenchymal stem cells and enhances inflammation-induced bone loss. Tooth extraction with periodontal and/or endodontic lesions exacerbates horizontal and vertical resorption of alveolar bone during the healing period. Alveolar socket preservation (ASP) procedure following tooth extraction has important clinical implications for future prosthodontic treatments. Studies have shown that epoxyeicosatrienoic acids (EETs) have significant anti-inflammatory effects and participate in autophagy. However, whether EETs can minimize alveolar bone resorption and contribute to ASP by regulating autophagy levels under inflammatory conditions remain elusive. Here, we figured out that LPS-induced inflammatory conditions increased the inflammatory cytokine and inhibited osteogenic differentiation of human dental pulp stem cells (hDPSCs), and led to excessive autophagy of hDPSCs. Moreover, we identified that increased EETs levels using TPPU, a soluble epoxide hydrolase inhibitor, reversed these negative outcomes. We further demonstrated the potential of TPPU to promote early healing of extraction sockets and ASP, and speculated that it was related to autophagy. Taken together, these results suggest that targeting inhibition of soluble epoxide hydrolase using TPPU plays a protective role in the differentiation and autophagy of mesenchymal stem cells and provides potential feasibility for applying TPPU for ASP, especially under inflammatory conditions.
Collapse
Affiliation(s)
- Haixia Dang
- The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China.,School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, China
| | - Weixian Chen
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, China.,Academician Laboratory of Immune and Oral Development and Regeneration, Dalian Medical University, Dalian, 116044, China
| | - Lan Chen
- The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Xinru Huo
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, China
| | - Fu Wang
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, China. .,Academician Laboratory of Immune and Oral Development and Regeneration, Dalian Medical University, Dalian, 116044, China. .,The Affiliated Stomatological Hospital of Dalian Medical University School of Stomatology, Dalian, 116086, China.
| |
Collapse
|
29
|
Luo ED, Jiang HM, Chen W, Wang Y, Tang M, Guo WM, Diao HY, Cai NY, Yang X, Bian Y, Xing SS. Advancements in lead therapeutic phytochemicals polycystic ovary syndrome: A review. Front Pharmacol 2023; 13:1065243. [PMID: 36699064 PMCID: PMC9868606 DOI: 10.3389/fphar.2022.1065243] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine diseases in women of reproductive age and features complex pathological symptoms and mechanisms. Existing medical treatments have, to some extent, alleviated the deterioration of PCOS. However, these strategies only temporarily control symptoms, with a few side effects and no preventive effect. Phytochemicals extracted from medicinal herbs and plants are vital for discovering novel drugs. In recent years, many kinds of research have proven that phytochemicals isolated from traditional Chinese medicine (TCM) and medicinal plants show significant potential in preventing, alleviating, and treating PCOS. Nevertheless, compared to the abundance of experimental literature and minimal specific-topic reviews related to PCOS, there is a lack of systematic reviews to summarize these advancements in this promising field. Under this background, we systematically document the progress of bioactive phytochemicals from TCM and medicinal plants in treating PCOS, including flavonoids, polyphenols, and alkaloids. According to the literature, these valuable phytochemicals demonstrated therapeutic effects on PCOS supported by in vivo and in vitro experiments, mainly depending on anti-inflammatory, antioxidation, improvement of hormone disorder and insulin resistance (IR), and alleviation of hyperinsulinemia. Based on the current progress, future research directions should emphasize 1) exploring bioactive phytochemicals that potentially mediate bone metabolism for the treatment of PCOS; 2) improving unsatisfactory bioavailability by using advanced drug delivery systems such as nanoparticles and antibody-conjugated drugs, as well as a chemical modification; 3) conducting in-depth research on the pathogenesis of PCOS to potentially impact the gut microbiota and its metabolites in the evolution of PCOS; 4) revealing the pharmacological effects of these bioactive phytochemicals on PCOS at the genetic level; and 5) exploring the hypothetical and unprecedented functions in regulating PCOS by serving as proteolysis-targeting chimeras and molecular glues compared with traditional small molecule drugs. In brief, this review aims to provide detailed mechanisms of these bioactive phytochemicals and hopefully practical and reliable insight into clinical applications concerning PCOS.
Collapse
Affiliation(s)
- Er-Dan Luo
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hai-Mei Jiang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Chen
- Traditional Chinese Medicine Department, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Chengdu, China
| | - Mi Tang
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wen-Mei Guo
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao-Yang Diao
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ning-Yuan Cai
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiao Yang
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ying Bian
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Chengdu, China
| | - Sha-Sha Xing
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
30
|
Zeng C, Wang S, Chen F, Wang Z, Li J, Xie Z, Ma M, Wang P, Shen H, Wu Y. Alpinetin alleviates osteoporosis by promoting osteogenic differentiation in BMSCs by triggering autophagy via PKA/mTOR/ULK1 signaling. Phytother Res 2023; 37:252-270. [PMID: 36104214 PMCID: PMC10087978 DOI: 10.1002/ptr.7610] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 01/19/2023]
Abstract
Osteoporosis, a systemic bone disease that is characterized by a reduction in bone mass and destruction of bone microstructure, is becoming a serious problem worldwide. Bone marrow mesenchymal stem cells (BMSCs) can differentiate into bone-forming osteoblasts, and play an important role in maintaining homeostasis of bone metabolism, thus being a potential therapeutic target for osteoporosis. Although the phytochemical alpinetin (APT) has been reported to possess a variety of pharmacological activities, it is still unclear whether APT can influence the osteogenic differentiation of on BMSCs and if it can improve osteoporosis. In this study, we found that APT treatment was able to enhance osteogenic differentiation levels of human BMSCs in vitro and mouse ones in vivo as revealed by multiple osteogenic markers including increased alkaline phosphatase activity and osteocalcin expression. Mechanistically, the protein kinase A (PKA)/mTOR/ULK1 signaling was involved in the action of APT to enhance the osteogenic differentiation of BMSCs. In addition, oral administration of APT significantly mitigated the bone loss in a dexamethasone-induced mouse model of osteoporosis through strengthening PKA signaling and autophagy. Altogether, these data demonstrate that APT promotes osteogenic differentiation in BMSCs by augmenting the PKA/mTOR/ULK1 autophagy signaling, highlighting its potential therapeutic application for treating osteoporotic diseases.
Collapse
Affiliation(s)
- Chenying Zeng
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Shan Wang
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Fenglei Chen
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Ziming Wang
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Jinteng Li
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Zhongyu Xie
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Mengjun Ma
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Peng Wang
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Huiyong Shen
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China.,Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yanfeng Wu
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China
| |
Collapse
|
31
|
Ding Y, Zhao J, Xu X, Zuo Q, Zhang Y, Jin K, Han W, Li B. Inhibition of Autophagy Maintains ESC Pluripotency and Inhibits Primordial Germ Cell Formation in Chickens. Stem Cells Int 2023; 2023:4956871. [PMID: 37056458 PMCID: PMC10089774 DOI: 10.1155/2023/4956871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 04/15/2023] Open
Abstract
Autophagy plays an important role in the pluripotency and differentiation of stem cells. Transcriptome data showed that the autophagy genes MAP1LC3A and MAP1LC3B were significantly upregulated in primordial germ cells (PGCs). The Kyoto Encyclopedia of Genes and Genome (KEGG) results showed that the lysosome signaling pathway, which is related to autophagy, was significantly enriched in PGCs. Quantitative RT-PCR, western blotting, and transmission electron microscopy (TEM) results showed that autophagy was expressed in both embryonic stem cells (ESCs) and PGCs but was significantly activated in PGCs. To explore the role of autophagy in the differentiation of chicken ESCs into PGCs, autophagy was activated and inhibited using rapamycin and bafilomycin A1, respectively. Results of qRT-PCR, flow cytometry, and indirect immunofluorescence showed that the efficiency of PGC formation significantly decreased after autophagy inhibition. Our results showed, for the first time, that autophagy plays an indispensable role in the formation of chicken PGCs, which lays the foundation for studying the mechanism of autophagy in chicken PGCs and in bird gene editing and the rescue of endangered birds.
Collapse
Affiliation(s)
- Ying Ding
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Juanjuan Zhao
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xianshuai Xu
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Qisheng Zuo
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yani Zhang
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Kai Jin
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Wei Han
- Poultry Research Institute, Chinese Academy of Agricultural Science/Jiangsu Institute of Poultry Science, Yangzhou 225009, China
| | - Bichun Li
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
32
|
Xia H, Gao M, Chen J, Huang G, Xiang X, Wang Y, Huang Z, Li Y, Su S, Zhao Z, Zeng Q, Ruan Y. M1 macrophage-derived extracellular vesicle containing tsRNA-5006c promotes osteogenic differentiation of aortic valve interstitial cells through regulating mitophagy. PeerJ 2022; 10:e14307. [PMID: 36518291 PMCID: PMC9744173 DOI: 10.7717/peerj.14307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/05/2022] [Indexed: 12/03/2022] Open
Abstract
Background Osteogenic differentiation of aortic valve interstitial cells (AVICs) plays a key role in the calcific aortic valve disease progression. Extracellular vesicles (EVs)-derived from M1-polarized macrophages (M1-EVs) orchestrated intercellular communication by delivering non-coding RNAs such as tRNA-derived small RNAs (tsRNAs) is crucial for cardiovascular disease. However, the role and mechanism of M1-EVs tsRNAs in osteogenic differentiation of AVICs remains largely unclear. Methods M1-EVs and PBS treated-RAW 264.7 cell-derived EVs (NC-EVs) were incubated with AVICs and subjected to small RNA sequencing. Candidate tsRNA in M1-EVs was silenced to explore their effects on AVIC osteogenic differentiation and mitophagy. Results DiI-labeled M1-EVs were internalized by AVICs, resulting in significantly increased calcium nodule formation and expression of osteogenesis-related genes in AVICs, including RUNX2, BMP2, osteopontin, and SPP1, compared with NC-EVs. Small RNA sequencing revealed that 17 tsRNAs were significantly up-regulated such as tsRNA-5006c, while 28 tsRNAs were significantly down-regulated in M1-EVs compared with NC-EVs. Intriguingly, tsRNA-5006c-deleted M1-EVs treatment significantly reduced calcium nodule formation and expression of osteogenesis-related genes in AVICs relative to control group. Moreover, target genes of tsRNA-5006c were mainly involved in autophagy-related signaling pathways, such as MAPK, Ras, Wnt, and Hippo signaling pathway. Hallmarks of mitophagy activation in AVICs including mitophagosome formation, TMRM fluorescence, expression of LC3-II, BINP3, and PGC1α, were significantly elevated in the M1-EVs group compared with NC-EVs group, whereas M1-EVs tsRNA-5006c inhibitor led to a significant reduction in these indicators. Conclusion M1-EVs carried tsRNA-5006c regulates AVIC osteogenic differentiation from the perspective of mitophagy, and we provide a new target for the prevention and treatment of aortic valve calcification.
Collapse
Affiliation(s)
- Hao Xia
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mingjian Gao
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jun Chen
- Department of Cardiology, Southern University of Science and Technology Hospital, Shenzhen, Guangdong, China
| | - Guanshen Huang
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiuting Xiang
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuyan Wang
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhaohui Huang
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yongchun Li
- Department of traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shuang Su
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zewei Zhao
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qingchun Zeng
- Department of Cardiology, Southern University of Science and Technology Hospital, Shenzhen, Guangdong, China
| | - Yunjun Ruan
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
33
|
Xing L, Li Y, Li W, Liu R, Geng Y, Ma W, Qiao Y, Li J, Lv Y, Fang Y, Xu P. Expression of RUNX2/LAPTM5 in the Induction of MC3T3-e1 Mineralization and Its Possible Relationship with Autophagy. Tissue Eng Regen Med 2022; 19:1223-1235. [PMID: 36121636 PMCID: PMC9679133 DOI: 10.1007/s13770-022-00477-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/13/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The study aims to correlate osteogenesis with autophagy during the mineralization induction of MC3T3-e1 through exploring the expression of runt-related transcription factor 2 (RUNX2)/lysosomal-associated transmembrane protein 5 (LAMPT5). METHODS The induction of mineralization in MC3T3-e1 was followed by detecting the expressions of osteogenesis-related indexes such as RUNX2, alkaline phosphatase (ALP), osteocalcin (OCN), and LAPTM5 using RT-qPCR and Western blot from 0 to 14 days. Transmission electron microscope was utilised in visualizing the alterations of autophagosomes, which was followed by immunofluorescence detecting the subcellular localization of autophagy-related index sequestosome 1 (P62) and microtubule-associated protein 1 light 3 (LC3) protein and scrutinising the expression of P62 mRNA and P62 and LC3 proteins. RESULTS Induction of MC3T3-e1 mineralization demonstrated an increased expression of osteogenesis-related indicators such as RUNX2, ALP, OCN, and LAPTM5 (p < 0.05), as evident from the results of RT-qPCR and Western blot. Meanwhile, the expression of autophagosomes increased one day after mineralization induction and then experienced a gradual decline, and enhanced expression of LC3 protein was noted on days 1-2 of mineralization induction but was then followed by a corresponding reduce. In contrast, a continuous increase was reported in the expression of P62 mRNA and protein, respectively (p < 0.05). Up- and down-regulating RUNX2/LAPTM5 expression alone confirmed the aforementioned results. CONCLUSION It was therefore proposed that RUNX2 may be responsible for an early increase and then a gradual decrease in LAPTM5-mediated autophagy through the regulation of its high expression. Meanwhile, increased LAPTM5 expression in osteogenic mineralization presumed that RUNX2/LAPTM5 promoted autophagy and osteogenic expression, which may play a bridging role in the regulation of autophagy and osteogenesis.
Collapse
Affiliation(s)
- Lei Xing
- Department of Dental Implantology, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510150, China
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yanqin Li
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Wenhao Li
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Rong Liu
- Department of Dental Implantology, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510150, China
| | - Yuanming Geng
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Weiqun Ma
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yu Qiao
- Department of Dental Implantology, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510150, China
| | - Jianwen Li
- Department of Dental Implantology, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510150, China
| | - Yingtao Lv
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Ying Fang
- Department of Dental Implantology, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510150, China.
| | - Pingping Xu
- Stomatological Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
34
|
Wang G, Luo J, Qiao Y, Zhang D, Liu Y, Zhang W, Liu X, Jiang X. AMPK/mTOR Pathway Is Involved in Autophagy Induced by Magnesium-Incorporated TiO 2 Surface to Promote BMSC Osteogenic Differentiation. J Funct Biomater 2022; 13:jfb13040221. [PMID: 36412862 PMCID: PMC9680369 DOI: 10.3390/jfb13040221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022] Open
Abstract
Magnesium has been extensively utilized to modify titanium implant surfaces based on its important function in promoting osteogenic differentiation. Autophagy has been proven to play a vital role in bone metabolism. Whether there is an association between autophagy and magnesium in promoting osteogenic differentiation remains unclear. In the present study, we focused on investigating the role of magnesium ions in early osteogenic activity and the underlying mechanism related to autophagy. Different concentrations of magnesium were embedded in micro-structured titanium surface layers using the micro-arc oxidation (MAO) technique. The incorporation of magnesium benefited cell adhesion, spreading, and viability; attenuated intracellular ATP concentrations and p-mTOR levels; and upregulated p-AMPK levels. This indicates the vital role of the ATP-related AMPK/mTOR signaling pathway in the autophagy process associated with osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) induced by magnesium modification on titanium surfaces. The enhanced osteogenic differentiation and improved cellular autophagy activity of BMSCs in their extraction medium further confirmed the function of magnesium ions. The results of the present study advance our understanding of the mechanism by which magnesium regulates BMSC osteogenic differentiation through autophagy regulation. Moreover, endowing implants with the ability to activate autophagy may be a promising strategy for enhancing osseointegration in the translational medicine field in the future.
Collapse
Affiliation(s)
- Guifang Wang
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, 639 Zhizaoju Road, Shanghai 200011, China
| | - Jiaxin Luo
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, 639 Zhizaoju Road, Shanghai 200011, China
| | - Yuqin Qiao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, No. 1295 Dingxi Road, Shanghai 200050, China
- Correspondence: (Y.Q.); (X.J.)
| | - Dongdong Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, No. 1295 Dingxi Road, Shanghai 200050, China
| | - Yulan Liu
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, 639 Zhizaoju Road, Shanghai 200011, China
| | - Wenjie Zhang
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, 639 Zhizaoju Road, Shanghai 200011, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, No. 1295 Dingxi Road, Shanghai 200050, China
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, 639 Zhizaoju Road, Shanghai 200011, China
- Correspondence: (Y.Q.); (X.J.)
| |
Collapse
|
35
|
Li Y, Yao X, Lin Y, Xing Y, Liu C, Xu J, Wu D. Identification and validation of autophagy-related genes during osteogenic differentiation of bone marrow mesenchymal stem cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:1364-1372. [PMID: 36474568 PMCID: PMC9699953 DOI: 10.22038/ijbms.2022.65528.14420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/10/2022] [Indexed: 01/25/2023]
Abstract
OBJECTIVES Osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) is an essential stage in bone formation. Autophagy plays a pivotal role in the self-renewal potential and pluripotency of stem cells. This study aimed to explore the function of autophagy-related genes during osteogenic differentiation of BMSCs. MATERIALS AND METHODS The differentially expressed autophagy-related genes (ARGs) were obtained from the GEO and HADb databases. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed using R software. The PPI and hub gene mining networks were constructed using the STRING database and Cytoscape. Finally, the RT-qPCR was conducted to validate the expression level of ARGs in BMSCs. RESULTS Thirty-seven differentially expressed ARGs were finally obtained, including 12 upregulated and 25 downregulated genes. GO and KEGG enrichment analysis showed that most of these genes were enriched in apoptosis and autophagy. The PPI network revealed strong interactions between differentially expressed ARGs. The expression level of differentially expressed ARGs tested by RT-qPCR showed 6 upregulated ARGs, including FOXO1, MAP1LC3C, CTSB, FOXO3, CALCOCO2, FKBP1A, and 4 downregulated ARGs, including MAPK8IP1, NRG1, VEGFA, and ITGA6 were consistent with the expression of high-throughput sequencing data. CONCLUSION We identified 37 ARGs during osteogenic differentiation using bioinformatics analysis. FOXO1, MAP1LC3C, CTSB, FOXO3, CALCOCO2, FKBP1A, MAPK8IP1, NRG1, VEGFA, and ITGA6 may regulate osteogenic differentiation of hBMSCs by involving autophagy pathway. This study provides new insight into the osteogenic differentiation of hBMSCs and may be available in developing therapeutic strategies for maxillofacial bone defects.
Collapse
Affiliation(s)
- Yan Li
- Provincial Engineering Research Center of Oral Biomaterial, Fujian Medical University, Fuzhou, Fujian, 350001, China,Department of Oral Implantology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, 350001, China,Research Center of Dental and Craniofacial Implants, Fujian Medical University, Fuzhou, Fujian, 350001, China,These authors contributed eqully to this work
| | - Xiu Yao
- Provincial Engineering Research Center of Oral Biomaterial, Fujian Medical University, Fuzhou, Fujian, 350001, China,Department of Implantology, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, 200433, China,These authors contributed eqully to this work
| | - Yanjun Lin
- Provincial Engineering Research Center of Oral Biomaterial, Fujian Medical University, Fuzhou, Fujian, 350001, China,Department of Oral Implantology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Yifeng Xing
- Provincial Engineering Research Center of Oral Biomaterial, Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Chaowei Liu
- Provincial Engineering Research Center of Oral Biomaterial, Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Jianghan Xu
- Provincial Engineering Research Center of Oral Biomaterial, Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Dong Wu
- Department of Oral Implantology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, 350001, China,Research Center of Dental and Craniofacial Implants, Fujian Medical University, Fuzhou, Fujian, 350001, China,Corresponding author: Dong Wu. Research Center of Dental and Craniofacial Implants, Fujian Medical University, No. 246, Yangqiao Road, Gulou District, Fuzhou, Fujian 350001, China.
| |
Collapse
|
36
|
Jiao Y, Sun YT, Chen NF, Zhou LN, Guan X, Wang JY, Wei WJ, Han C, Jiang XL, Wang YC, Zou W, Liu J. Human umbilical cord-derived mesenchymal stem cells promote repair of neonatal brain injury caused by hypoxia/ischemia in rats. Neural Regen Res 2022; 17:2518-2525. [PMID: 35535905 PMCID: PMC9120712 DOI: 10.4103/1673-5374.339002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Administration of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) is believed to be an effective method for treating neurodevelopmental disorders. In this study, we investigated the possibility of hUC-MSCs treatment of neonatal hypoxic/ischemic brain injury associated with maternal immune activation and the underlying mechanism. We established neonatal rat models of hypoxic/ischemic brain injury by exposing pregnant rats to lipopolysaccharide on day 16 or 17 of pregnancy. Rat offspring were intranasally administered hUC-MSCs on postnatal day 14. We found that polypyrimidine tract-binding protein-1 (PTBP-1) participated in the regulation of lipopolysaccharide-induced maternal immune activation, which led to neonatal hypoxic/ischemic brain injury. Intranasal delivery of hUC-MSCs inhibited PTBP-1 expression, alleviated neonatal brain injury-related inflammation, and regulated the number and function of glial fibrillary acidic protein-positive astrocytes, thereby promoting plastic regeneration of neurons and improving brain function. These findings suggest that hUC-MSCs can effectively promote the repair of neonatal hypoxic/ischemic brain injury related to maternal immune activation through inhibition of PTBP-1 expression and astrocyte activation.
Collapse
Affiliation(s)
- Yang Jiao
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cells and Precision Medicine; Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Yue-Tong Sun
- College of Life Science, Liaoning Normal University, Dalian, Liaoning Province, China
| | - Nai-Fei Chen
- College of Life Science, Liaoning Normal University, Dalian, Liaoning Province, China
| | - Li-Na Zhou
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center; Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Xin Guan
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cells and Precision Medicine, Dalian, Liaoning Province, China
| | - Jia-Yi Wang
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cells and Precision Medicine, Dalian, Liaoning Province, China
| | - Wen-Juan Wei
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cells and Precision Medicine, Dalian, Liaoning Province, China
| | - Chao Han
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cells and Precision Medicine, Dalian, Liaoning Province, China
| | - Xiao-Lei Jiang
- College of Life Science, Liaoning Normal University, Dalian, Liaoning Province, China
| | - Ya-Chen Wang
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cells and Precision Medicine, Dalian, Liaoning Province, China
| | - Wei Zou
- Dalian Innovation Institute of Stem Cells and Precision Medicine; College of Life Science, Liaoning Normal University, Dalian, Liaoning Province, China
| | - Jing Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cells and Precision Medicine, Dalian, Liaoning Province, China
| |
Collapse
|
37
|
Zhuang Z, Jin C, Li X, Han Y, Yang Q, Huang Y, Zheng Y, Li W. Knockdown of circHIPK3 promotes the osteogenic differentiation of human bone marrow mesenchymal stem cells through activating the autophagy flux. FASEB J 2022; 36:e22590. [PMID: 36208289 DOI: 10.1096/fj.202200832r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/07/2022] [Accepted: 09/23/2022] [Indexed: 11/11/2022]
Abstract
Many circular RNAs (circRNAs) involved in the osteogenesis of human bone marrow mesenchymal stem cells (hBMSCs) have recently been discovered. The role of circHIPK3 in osteogenesis has yet to be determined. Cell transfection was conducted using small-interfering RNAs (siRNAs). Expression of osteogenic markers were detected by quantitative reverse transcription-polymerase chain reaction, western blotting analysis, and immunofluorescence staining. Ectopic bone formation models in nude mice were used to examined the bone formation ability in vivo. The autophagy flux was examined via western blotting analysis, immunofluorescence staining and transmission electron microscopy analysis. RNA immunoprecipitation (RIP) analysis was carried out to analyze the binding between human antigen R (HUR) and circHIPK3 or autophagy-related 16-like 1 (ATG16L1). Actinomycin D was used to determine the mRNA stability. Our results demonstrated that silencing circHIPK3 promoted the osteogenesis of hBMSCs while silencing the linear mHIPK3 did not affect osteogenic differentiation, both in vivo and in vitro. Moreover, we found that knockdown of circHIPK3 activated autophagy flux. Activation of autophagy enhanced the osteogenesis of hBMSCs and inhibition of autophagy reduced the osteogenesis through using autophagy regulators chloroquine and rapamycin. We also discovered that circHIPK3 and ATG16L1 both bound to HUR. Knockdown of circHIPK3 released the binding sites of HUR to ATG16L1, which stabilized the mRNA expression of ATG16L1, resulting in the upregulation of ATG16L1 and autophagy activation. CircHIPK3 functions as an osteogenesis and autophagy regulator and has the potential for clinical application in the future.
Collapse
Affiliation(s)
- Ziyao Zhuang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Chanyuan Jin
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China.,Second Clinical Division, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaobei Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Yineng Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Qiaolin Yang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Yiping Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| |
Collapse
|
38
|
Li X, Zhu Y, Lin X, Chen C, Liu H, Shi Y. Beclin1- and Atg13-dependent autophagy activation and morroniside have synergistic effect on osteoblastogenesis. Exp Biol Med (Maywood) 2022; 247:1764-1775. [PMID: 35957534 PMCID: PMC9638960 DOI: 10.1177/15353702221116879] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Morroniside is known to improve osteoporosis by promoting osteoblastogenesis. The activation of PI3K/Akt/mTOR signaling is a significant mechanism in morroniside-promoted osteoblastogenesis. It is well known that protective autophagy is an important factor in osteoblastogenesis. However, the activation of mTOR signaling can inhibit autophagy. This study aimed to investigate the relationship between mTOR signaling and autophagy in morroniside-regulated osteoblastogenesis. In this study, we investigated the effect of morroniside on the autophagic activity (LC3 conversion rate, LC3-puncta formation, and autophagosome number) of differentiated osteoblast precursors (MC3T3-E1 cells). Then, we identified the roles of mTOR knockdown in morroniside-regulated alterations of autophagy and osteogenic parameters in MC3T3-E1 cells. Next, mTOR knockdown and overexpression were used to observe the roles of mTOR in morroniside-regulated alterations of autophagic molecules (Atg7, Atg13, and Beclin1). Subsequently, the additional value of the above autophagic molecules on morroniside-regulated osteogenic parameters in MC3T3-E1 cells was analyzed based on lentiviral transduction. Finally, combined with morroniside and TAT-Beclin1, the roles of Beclin1 upregulation in the in vivo effects of morroniside was investigated. Our experimental data showed that morroniside promoted both the mTOR activity and autophagy in MC3T3-E1 cells. Morroniside-upregulated autophagic activity and Atg13 or Beclin1 protein level in MC3T3-E1 cells were enhanced by mTOR knockdown. Furthermore, Morroniside-upregulated Atg13 and Beclin1 expression was reversed by mTOR overexpression. Importantly, autophagy upregulation with overexpression of the autophagic gene, Atg13 or BECN1 (gene form of Beclin1), significantly promoted osteoblastogenesis regulated by morroniside. The promotional effect of morroniside on bone microarchitecture, bone mass, and bone parameters (including trabecular bone area and OCN expression in trabecular bone) in ovariectomized (OVX) mice was enhanced by TAT-Beclin1 administration. In conclusion, the autophagy-enhancing drugs related to Beclin1 or Atg13 may be an effective adjuvant therapy in the treatment of osteoporosis with morroniside.
Collapse
Affiliation(s)
- Xi Li
- Department of Orthopedics, Fuzhou Second Hospital, Fuzhou 350007, China
| | - Yunrong Zhu
- Department of Orthopedics, Affiliated Jiangyin Hospital of Nantong University, Jiangyin 214400, China
| | - Xiangquan Lin
- Department of Orthopedics, Fuzhou Second Hospital, Fuzhou 350007, China
| | - Chuanyuan Chen
- Department of Orthopedics, Fuzhou Second Hospital, Fuzhou 350007, China
| | - Hui Liu
- Department of Orthopedics, Fuzhou Second Hospital, Fuzhou 350007, China
| | - Yi Shi
- Department of Orthopedics, Fuzhou Second Hospital, Fuzhou 350007, China,Yi Shi. ; Hui Liu.
| |
Collapse
|
39
|
Liu Z, Yan N, Chen Y, Hu B. Hepatocyte Growth Factor Promotes Differentiation Potential and Stress Response of Human Stem Cells from Apical Papilla. Cells Tissues Organs 2022; 213:40-54. [PMID: 36170806 DOI: 10.1159/000527212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/13/2022] [Indexed: 11/19/2022] Open
Abstract
Harsh local microenvironment, such as hypoxia and lack of instructive clues for transplanted stem cells, presents the serious obstacle for stem cell therapies' efficacy. Therefore, continued efforts have been taken to improve stem cells' viability and plasticity. Hepatocyte growth factor (HGF) has previously been reported to mitigate the complications of various human diseases in animal model studies and in some clinical trials. Besides, human stem cells from the root apical papilla (SCAP) are deemed a better resource of mesenchymal stem cells due to derived stem cells holding greater amplification ability in vitro compared with those from other dental resources. To move forward, evaluating effects and understanding underlying molecular mechanisms of HGF on SCAP for periodontal regeneration are needed. In this study, HGF was transgenically expressed in SCAP, and it was found that HGF enhanced osteo/dentinogenic differentiation capacity of SCAP compared with those of non-treated control in an ectopic mineralization model. Moreover, HGF reduced the apoptosis of SCAP under both normoxic and hypoxic conditions, whereas the combination of HGF and hypoxia exposure had inhibitory effects on cell proliferation during an 8-day in vitro culture period. Transcriptome analysis further revealed that suppressed cell cycle progression and activated BMP/TGFβ, Hedgehog, WNT, FGF, HOX, and other morphogen family members result upon HGF overexpression, which may render SCAP recapitulate part of neural crest stem cell characteristics. Moreover, strengthened stress response modulation such as unfolded protein response, macroautophagy, and anti-apoptotic molecules might explain the increased viability of SCAP. In all, our results imply that these potential mechanisms underlying HGF-promoting SCAP differentiation could be further elucidated and harnessed to improve periodontal tissue regeneration.
Collapse
Affiliation(s)
- Zhenhai Liu
- Department of Stomatology, Beijing Jishuitan Hospital, Beijing, China
| | - Na Yan
- Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences. National Center for Nanoscience and Technology, Beijing, China
| | - Ying Chen
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Wuxi, China
| | - Bin Hu
- Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences. National Center for Nanoscience and Technology, Beijing, China
| |
Collapse
|
40
|
Khan MI, Siddiqui S, Barkat MA, Alhodieb FS, Ashfaq F, Barkat HA, Alanezi AA, Arshad M. Moringa oleifera leaf extract induces osteogenic-like differentiation of human osteosarcoma SaOS2 cells. J Tradit Complement Med 2022; 12:608-618. [PMID: 36325245 PMCID: PMC9618397 DOI: 10.1016/j.jtcme.2022.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 08/14/2022] [Accepted: 08/27/2022] [Indexed: 12/04/2022] Open
Abstract
Introduction Moringa oleifera is known as a ‘natural nutrition of the tropics’ because it provides vital nutritional supplements and a variety of pharmacological benefits. The focus of this study was to elucidate the dose dependent effects of Moringa oleifera leaf (MOL) extract on the growth of the human osteoblast-like osteosarcoma SaOS-2 cell line and primary osteoblast cells. Methods Trypan blue & tetrazolium assay, intracellular ROS generation, chromatin condensation, cell cycle analysis, alkaline phosphatase (ALP), mineralization, and osteogenic gene expression were tested on both treated and untreated osteosarcoma SaOS-2 cells. Results As revealed by cell viability assay, growth activity was observed at concentrations 25 and 50 μg/mL of MOL extract, whereas 100 and 200 μg/mL doses decreased the proliferation activity, resulting in ROS production and chromatin condensation. Cell cycle study revealed that MOL extract at 50 and 100 μg/mL concentrations arrested the cells in the G2/M phase. Low doses increased the ALP levels, mineralization, and expression of the bone morphogenetic protein 2 (BMP2) and runt-related transcription factor 2 (Runx2) genes in osteoblast-like SaOS-2 cells, however, high doses inhibited the proliferation properties of MOL extract. Through AutoDock Vina and iGEMDOCK 2.1, the interaction of active components of MOL, such as β-sitosterol, quercetin and kaempferol, with BMP2 and Runx2 proteins revealed a reasonable binding affinity. Moreover, these components did not show any Lipinski's rule of five violation and showed predictable pharmacokinetic properties. Conclusion The results of the biphasic dose-response of MOL extract on the growth activity of osteoblast-like SaOS-2 cells and in silico binding interface, may provide a therapeutic and/or preventive implication in prospective drug development. Low doses of Moringa oleifera leaf (MOL) extract increased the cell viability of SaOS-2 cells and primary osteoblasts. High doses decreased the growth, resulting in ROS production and chromatin condensation and cell cycle arrest. Small doses increased the ALP levels, mineralization, and BMP2 and Runx2 genes expression, and vice versa. In silico analysis showed good binding interaction of active components of MOL with BMP2 and Runx2 proteins. The biphasic dose-response of MOL and in silico analysis may provide an implication for prospective drug development.
Collapse
|
41
|
Effects of Resveratrol, Curcumin and Quercetin Supplementation on Bone Metabolism—A Systematic Review. Nutrients 2022; 14:nu14173519. [PMID: 36079777 PMCID: PMC9459740 DOI: 10.3390/nu14173519] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Phenolic compounds are natural phytochemicals that have recently reported numerous health benefits. Resveratrol, curcumin, and quercetin have recently received the most attention among these molecules due to their documented antioxidant effects. The review aims to investigate the effects of these molecules on bone metabolism and their role in several diseases such as osteopenia and osteoporosis, bone tumours, and periodontitis. The PubMed/Medline, Web of Science, Google Scholar, Scopus, Cochrane Library, and Embase electronic databases were searched for papers in line with the study topic. According to an English language restriction, the screening period was from January 2012 to 3 July 2022, with the following Boolean keywords: (“resveratrol” AND “bone”); (“curcumin” AND “bone”); (“quercetin” AND “bone”). A total of 36 papers were identified as relevant to the purpose of our investigation. The studies reported the positive effects of the investigated phenolic compounds on bone metabolism and their potential application as adjuvant treatments for osteoporosis, bone tumours, and periodontitis. Furthermore, their use on the titanium surfaces of orthopaedic prostheses could represent a possible application to improve the osteogenic processes and osseointegration. According to the study findings, resveratrol, curcumin, and quercetin are reported to have a wide variety of beneficial effects as supplement therapies. The investigated phenolic compounds seem to positively mediate bone metabolism and osteoclast-related pathologies.
Collapse
|
42
|
Yin Y, Tian BM, Li X, Yu YC, Deng DK, Sun LJ, Qu HL, Wu RX, Xu XY, Sun HH, An Y, He XT, Chen FM. Gold nanoparticles targeting the autophagy-lysosome system to combat the inflammation-compromised osteogenic potential of periodontal ligament stem cells: From mechanism to therapy. Biomaterials 2022; 288:121743. [PMID: 36030103 DOI: 10.1016/j.biomaterials.2022.121743] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 12/09/2022]
Abstract
Although substantial data indicate that the osteogenic potential of periodontal ligament stem cells (PDLSCs) is compromised under inflammatory conditions, the underlying mechanism remains largely unexplored. In this study, we found that both the autophagy levels and autophagic flux levels were decreased in PDLSCs incubated under inflammatory conditions (I-PDLSCs). Based on the increased expression of LC3 II (at an autophagy level) and decreased accumulation of LC3 II (at an autophagic flux level) in I-PDLSCs, we speculated that the disruption of I-PDLSC autophagy arose from dysfunction of the cellular autophagy-lysosome system. Subsequently, our hypothesis was demonstrated by inhibited autophagosome-lysosome fusion, damaged lysosomal function, and suppressed activation of transcription factor EB (TFEB, a master regulator of the autophagy-lysosome system) in I-PDLSCs and verified by TFEB overexpression in I-PDLSCs. We found that gold nanoparticle (Au NP) treatment rescued the osteogenic potential of I-PDLSCs by restoring the inflammation-compromised autophagy-lysosome system. In this context, Au NP ceased to be effective when TFEB was knocked down in PDLSCs. Our data demonstrate the crucial role of the autophagy-lysosome system in cellular osteogenesis under inflammatory conditions and suggest a new target for rescuing inflammation-induced cell dysfunction using nanomaterials to aid cell biology and tissue regeneration.
Collapse
Affiliation(s)
- Yuan Yin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Bei-Min Tian
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xuan Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yao-Cheng Yu
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Dao-Kun Deng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Li-Juan Sun
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Hong-Lei Qu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Rui-Xin Wu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xin-Yue Xu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Hai-Hua Sun
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Ying An
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xiao-Tao He
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Fa-Ming Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
43
|
Li S, Gao L, Zhang W, Yu Y, Zheng J, Liang X, Xin S, Ren W, Zhi K. MiR-152-5p suppresses osteogenic differentiation of mandible mesenchymal stem cells by regulating ATG14-mediated autophagy. Stem Cell Res Ther 2022; 13:359. [PMID: 35883156 PMCID: PMC9327198 DOI: 10.1186/s13287-022-03018-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 04/17/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Osteoporosis affects the mandible resulting in bone loss. Though impairments are not life threatening, they affect a person's quality-of-life particularly vulnerable elderly. MicroRNAs (miRNAs) are novel regulatory factors that play an important role in regulating bone metabolism. Autophagy is evolutionarily conserved intracellular self-degradation process and is vital in the maintenance of both miRNA and bone homeostasis. However, the role of autophagy in the pathogenesis of miRNA regulating osteoporosis remains unclear. METHODS In the study, we established a rat osteoporosis model induced by ovariectomy (OVX) and isolated mesenchymal stem cells from mandible (MMSCs-M). Several miRNAs were identified to regulate osteoporosis in some studies. qRT-PCR was applied to examine the expression of miRNA, autophagy and osteogenic differentiation-related genes. Western blotting assays were performed to detect the expression of autophagy and osteogenic differentiation proteins. Immunofluorescence and transmission electron microscope were used to verify the autophagy activity. Transfecting technology was used to enhance or suppress the expression of miR-152-5p which enable us to observe the relationship between miR-152-5p, autophagy and osteogenic differentiation. Additionally, the measurement of reactive oxygen species was used to investigate the mechanism of autophagy affecting osteogenic differentiation. RESULTS We found an upregulated expression of miR-152-5p in MMSCs-M in OVX group. Downregulated autophagy-related gene, proteins and autophagosome were detected in vitro of OVX group compared with sham group. Moreover, downregulation of miR-152-5p promoted osteogenic differentiation of MMSCs-M as well as enhanced autophagy-related proteins in OVX group. Conversely, overexpression of miR-152-5p showed opposite effect in sham group. Meanwhile, we found Atg14 (autophagy-related protein homolog 14) was identified to be a direct target of miR-152-5p theoretically and functionally. In other words, we confirmed inhibition of miR-152-5p promoted the osteogenic differentiation via promoting ATG14-mediated autophagy. Furthermore, miR-152-5p/ATG14-mediated autophagy regulated osteogenic differentiation by reducing the endogenous ROS accumulation and maintaining cellular redox homeostasis. CONCLUSION Our data suggest that miR-152-5p is the first identified to regulate osteogenic differentiation by directly targeting autophagy-related protein ATG14 and regulating oxidative stress and therapeutic inhibition of miR-152-5p may be an efficient anabolic strategy for osteoporosis.
Collapse
Affiliation(s)
- Shaoming Li
- grid.412521.10000 0004 1769 1119Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, 1677 Wutaishan Road, Huangdao district, Qingdao, 266555 Shandong China ,grid.410645.20000 0001 0455 0905School of Stomatology, Qingdao University, Qingdao, 266003 China
| | - Ling Gao
- grid.412521.10000 0004 1769 1119Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, 1677 Wutaishan Road, Huangdao district, Qingdao, 266555 Shandong China ,grid.412521.10000 0004 1769 1119Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266555 China
| | - Weidong Zhang
- grid.412521.10000 0004 1769 1119Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, 1677 Wutaishan Road, Huangdao district, Qingdao, 266555 Shandong China ,grid.410645.20000 0001 0455 0905School of Stomatology, Qingdao University, Qingdao, 266003 China
| | - Yanbin Yu
- grid.412508.a0000 0004 1799 3811College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590 China
| | - Jingjing Zheng
- grid.412521.10000 0004 1769 1119Department of Endodontics, The Affiliated Hospital of Qingdao University, Qingdao, 266003 China
| | - Xiao Liang
- grid.412008.f0000 0000 9753 1393Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Shanshan Xin
- grid.412521.10000 0004 1769 1119Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, 1677 Wutaishan Road, Huangdao district, Qingdao, 266555 Shandong China ,grid.410645.20000 0001 0455 0905School of Stomatology, Qingdao University, Qingdao, 266003 China
| | - Wenhao Ren
- grid.412521.10000 0004 1769 1119Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, 1677 Wutaishan Road, Huangdao district, Qingdao, 266555 Shandong China
| | - Keqian Zhi
- grid.412521.10000 0004 1769 1119Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, 1677 Wutaishan Road, Huangdao district, Qingdao, 266555 Shandong China ,grid.412521.10000 0004 1769 1119Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266555 China
| |
Collapse
|
44
|
Resveratrol Synergistically Promotes BMP9-Induced Osteogenic Differentiation of Mesenchymal Stem Cells. Stem Cells Int 2022; 2022:8124085. [PMID: 35923297 PMCID: PMC9343184 DOI: 10.1155/2022/8124085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/21/2022] [Indexed: 01/03/2023] Open
Abstract
Background. Mesenchymal stem cells (MSCs) differentiate into osteocytes, adipocytes, and chondrocytes. Resveratrol and bone morphogenetic protein 9 (BMP9) are known osteogenic induction factors of MSCs, but the effect of both resveratrol and BMP9 on osteogenesis is unknown. Herein, we explored whether resveratrol cooperates with BMP9 to improve osteogenic induction. Methods. The osteogenic induction of resveratrol and BMP9 on C3H10T1/2 cells was evaluated by detecting the staining and activity of the early osteogenic marker alkaline phosphatase (ALP). In addition, the late osteogenic effect was measured by the mRNA and protein levels of osteogenic markers, such as osteopontin (OPN) and osteocalcin (OCN). To assess the bone formation function of resveratrol plus BMP9 in vivo, we transplanted BMP9-infected C3H10T1/2 cells into nude mice followed by intragastric injection of resveratrol. Western blot (WB) analysis was utilized to elucidate the mechanism of resveratrol plus BMP9. Results. Resveratrol not only enhanced osteogenic induction alone but also improved BMP9-induced ALP at 3, 5, and 7 d postinduction. Both the early osteogenic markers (ALP, Runx2, and SP7) and the late osteogenic markers (OPN and OCN) were significantly increased when resveratrol was combined with BMP9. The fetal limb explant culture further verified these results. The in vivo bone formation experiment, which involved transplanting BMP9-overexpressing C3H10T1/2 cells into nude mice, also confirmed that resveratrol synergistically enhanced the BMP9-induced bone formation function. Resveratrol phosphorylated adenosine monophosphate- (AMP-) activated protein kinase (AMPK) and stimulated autophagy, but these effects were abolished by inhibiting AMPK and Beclin1 using an inhibitor or siRNA. Conclusions. Resveratrol combined with BMP9 significantly improves the osteogenic induction of C3H10T1/2 cells by activating AMPK and autophagy.
Collapse
|
45
|
Morsczeck C. Mechanisms during Osteogenic Differentiation in Human Dental Follicle Cells. Int J Mol Sci 2022; 23:ijms23115945. [PMID: 35682637 PMCID: PMC9180518 DOI: 10.3390/ijms23115945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022] Open
Abstract
Human dental follicle cells (DFCs) as periodontal progenitor cells are used for studies and research in regenerative medicine and not only in dentistry. Even if innovative regenerative therapies in medicine are often considered the main research area for dental stem cells, these cells are also very useful in basic research and here, for example, for the elucidation of molecular processes in the differentiation into mineralizing cells. This article summarizes the molecular mechanisms driving osteogenic differentiation of DFCs. The positive feedback loop of bone morphogenetic protein (BMP) 2 and homeobox protein DLX3 and a signaling pathway associated with protein kinase B (AKT) and protein kinase C (PKC) are presented and further insights related to other signaling pathways such as the WNT signaling pathway are explained. Subsequently, some works are presented that have investigated epigenetic modifications and non-coding ncRNAs and their connection with the osteogenic differentiation of DFCs. In addition, studies are presented that have shown the influence of extracellular matrix molecules or fundamental biological processes such as cellular senescence on osteogenic differentiation. The putative role of factors associated with inflammatory processes, such as interleukin 8, in osteogenic differentiation is also briefly discussed. This article summarizes the most important insights into the mechanisms of osteogenic differentiation in DFCs and is intended to be a small help in the direction of new research projects in this area.
Collapse
Affiliation(s)
- Christian Morsczeck
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
46
|
Tong X, Yu G, Liu Q, Zhang X, Bian J, Liu Z, Gu J. Puerarin alleviates cadmium-induced oxidative damage to bone by reducing autophagy in rats. ENVIRONMENTAL TOXICOLOGY 2022; 37:720-729. [PMID: 34897960 DOI: 10.1002/tox.23437] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/28/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Autophagy is a regulatory mechanism involved in cadmium (Cd)-induced bone toxicity and is suppressed by various stimuli, including oxidative stress. Puerarin is an isoflavonoid compound isolated from Pueraria, a plant used in traditional Chinese medicine. The underlying mechanisms of action of puerarin remain unclear. The objective of this study was to explore the mitigating effects of puerarin on cadmium-induced oxidative damage in the bones of rats. Cadmium exposure increased oxidative damage in rat bones; this was markedly decreased by puerarin treatment, as demonstrated by changes in the activity of antioxidative enzymes. Cadmium-induced blockage of the expression of key bone regulatory proteins, autophagy-related markers, and signaling molecules was also alleviated by puerarin treatment. Additionally, cadmium reduced expression of the autophagic protein Rab7 and of late endosomal/lysosomal adaptor and MAPK and mTOR activator 1 (LAMTOR1); the decrease in these proteins was not restored by puerarin treatment. We speculate that puerarin relieves the inhibition of fusion of autophagosomes with lysosomes that is induced by cadmium; however, this specific effect of puerarin and downstream effects on bone regulatory mechanisms require further investigation. In conclusion, puerarin alleviates cadmium-induced oxidative damage in the bones of rats by attenuating autophagy, which is likely associated with the antioxidant activity of puerarin.
Collapse
Affiliation(s)
- Xishuai Tong
- Institutes of Agricultural Science and Technology Development, Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, P. R. China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P. R. China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, P. R. China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, P. R. China
| | - Gengsheng Yu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P. R. China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, P. R. China
| | - Qingyang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P. R. China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, P. R. China
| | - Xueqing Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P. R. China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, P. R. China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P. R. China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, P. R. China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, P. R. China
| | - Zongping Liu
- Institutes of Agricultural Science and Technology Development, Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, P. R. China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P. R. China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, P. R. China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, P. R. China
| | - Jianhong Gu
- Institutes of Agricultural Science and Technology Development, Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, P. R. China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P. R. China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, P. R. China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, P. R. China
| |
Collapse
|
47
|
Sekaran S, Thangavelu L. Re-appraising the role of flavonols, flavones and flavonones on osteoblasts and osteoclasts- A review on its molecular mode of action. Chem Biol Interact 2022; 355:109831. [PMID: 35120918 DOI: 10.1016/j.cbi.2022.109831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/02/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022]
Abstract
Bone disorders have become a global concern illustrated with decreased bone mineral density and disruption in microarchitecture of natural bone tissue organization. Natural compounds that promote bone health by augmenting osteoblast functions and suppressing osteoclast functions has gained much attention and offer greater therapeutic value compared to conventional therapies. Amongst several plant-based molecules, flavonoids act as a major combatant in promoting bone health through their multi-faceted biological activities such as antioxidant, anti-inflammatory, and osteogenic properties. They protect bone loss by regulating the signalling cascades involved in osteoblast and osteoclast functions. Flavonoids augment osteoblastogenesis and inhibits osteoclastogenesis through their modulation of various signalling pathways. This review discusses the role of various flavonoids and their molecular mechanisms involved in maintaining bone health by regulating osteoblast and osteoclast functions.
Collapse
Affiliation(s)
- Saravanan Sekaran
- Centre for Trans-disciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute for Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India.
| | - Lakshmi Thangavelu
- Centre for Trans-disciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute for Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India
| |
Collapse
|
48
|
Chen M, Jing D, Ye R, Yi J, Zhao Z. PPARβ/δ accelerates bone regeneration in diabetic mellitus by enhancing AMPK/mTOR pathway-mediated autophagy. Stem Cell Res Ther 2021; 12:566. [PMID: 34736532 PMCID: PMC8567548 DOI: 10.1186/s13287-021-02628-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/16/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Diabetic patients are more vulnerable to skeletal complications. Peroxisome proliferators-activated receptor (PPAR) β/δ has a positive regulatory effect on bone turnover under physiologic glucose concentration; however, the regulatory effect in diabetes mellitus has not been investigated yet. Herein, we explored the effects of PPARβ/δ agonist on the regeneration of diabetic bone defects and the osteogenic differentiation of rat bone marrow mesenchymal stem cells (rBMSCs) under a pathological high-glucose condition. METHODS We detected the effect of PPARβ/δ agonist on osteogenic differentiation of rBMSCs in vitro and investigated the bone healing process in diabetic rats after PPARβ/δ agonist treatment in vivo. RNA sequencing was performed to detect the differentially expressed genes and enriched pathways. Western blot was performed to detect the autophagy-related protein level. Laser confocal microscope (LSCM) and transmission electron microscope (TEM) were used to observe the formation of autophagosomes. RESULTS Our results demonstrated that the activation of PPARβ/δ can improve the osteogenic differentiation of rBMSCs in high-glucose condition and promote the bone regeneration of calvarial defects in diabetic rats, while the inhibition of PPARβ/δ alleviated the osteogenic differentiation of rBMSCs. Mechanistically, the activation of PPARβ/δ up-regulates AMPK phosphorylation, yielding mTOR suppression and resulting in enhanced autophagy activity, which further promotes the osteogenic differentiation of rBMSCs in high-glucose condition. The addition of AMPK inhibitor Compound C or autophagy inhibitor 3-MA inhibited the osteogenesis of rBMSCs in high-glucose condition, suggesting that PPARβ/δ agonist promotes osteogenic differentiation of rBMSCs through AMPK/mTOR-regulated autophagy. CONCLUSION In conclusion, our study demonstrates the potential role of PPARβ/δ as a molecular target for the treatment of impaired bone quality and delayed bone healing in diabetic patients for the first time.
Collapse
Affiliation(s)
- Miao Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China
| | - Dian Jing
- Department of Orthodontics, Shanghai Ninth People's Hospital, Collage of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Ye
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China
| | - Jianru Yi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China.
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
49
|
Ke D, Wang X, Lin Y, Wei S. Lactoferrin promotes the autophagy activity during osteoblast formation via BCL2-Beclin1 signaling. Mol Biol Rep 2021; 49:259-266. [PMID: 34716503 DOI: 10.1007/s11033-021-06866-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/20/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Lactoferrin, as the main component of milk, can maintain osteoblast formation, which is conducive to the prevention and treatment of osteoporosis. Lactoferrin also serves as an autophagy regulator, especially in osteoblasts. This study aimed to explore the significance of autophagy in osteoblast formation regulated by lactoferrin and the internal mechanism. METHODS AND RESULTS In this study, we firstly explored the roles of lactoferrin in the autophagy activity of primary osteoblasts (LC3 transformation rate, autophagosome formation). Subsequently, we further investigated the effects of lactoferrin on the BCL2 expression and BCL2-Beclin1 complex. Ultimately, the significance of BCL2 overexpression and Beclin1 silencing on lactoferrin-regulated osteoblast autophagy and osteogenic parameters (ALP activity and mRNA expression of PCNA, Col1, BGLAP and OPN) was observed by gene processing, respectively. Our results showed that lactoferrin enhanced the autophagy activity of osteoblasts. Importantly, lactoferrin inhibited BCL2 expression and the co-immunoprecipitation of BCL2 and Beclin1 in osteoblasts. Moreover, lactoferrin-promoted autophagy and osteogenic parameters was reversed by BCL2 overexpression or Beclin1 silencing in osteoblasts. CONCLUSIONS In conclusion, lactoferrin can inhibit BCL2 expression in osteoblasts, further enhancing Beclin1-dependent autophagy activation.
Collapse
Affiliation(s)
- Dianshan Ke
- Department of Orthopedics, The People's Hospital of JiangMen, No. 172 Gaodi Li, Pengjiang District, Jiangmen, 529000, Guangdong, China
- Academy of Orthopedics in Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, Guangdong, China
| | - Xinwen Wang
- Department of Orthopedics, The People's Hospital of JiangMen, No. 172 Gaodi Li, Pengjiang District, Jiangmen, 529000, Guangdong, China
| | - Yinquan Lin
- Department of Orthopedics, The People's Hospital of JiangMen, No. 172 Gaodi Li, Pengjiang District, Jiangmen, 529000, Guangdong, China.
| | - Shengwang Wei
- Department of Orthopedics, Liuzhou Workers Hospital, No.47, Zone 4, Hongyan Road, Liunan District, Liuzhou, 545005, Guangxi, China.
| |
Collapse
|
50
|
Yang K, Xie D, Lin W, Xiang P, Peng C. Adipose mesenchymal stem cells and gingival mesenchymal stem cells have a comparable effect in endothelium repair. Exp Ther Med 2021; 22:1415. [PMID: 34676008 PMCID: PMC8524764 DOI: 10.3892/etm.2021.10851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 07/14/2021] [Indexed: 12/14/2022] Open
Abstract
Restenosis is the major factor influencing the long-term success rate of angioplasty and stent implantation and effective strategies to prevent restenosis remain limited. Mesenchymal stem cells (MSCs) are pluripotent stem cells capable of self-renewal and multidirectional differentiation, which may be able to promote endothelium repair, thereby reducing restenosis. The present study aimed to evaluate the effects of adipose MSCs (AMSCs) and gingival MSCs (GMSCs) on endothelium repair. MSCs were isolated from two human tissue types, namely adipose tissue and gingival tissue, and the effects of AMSCs and GMSCs in ex vivo endothelium repair and on vascular smooth muscle cell (SMC) growth were examined. To compare the feasibility of using AMSCs and GMSCs for the repair of endothelium damage in endothelial cell (EC) damage and vasoproliferative disorders, an ex vivo model of endothelium repair in a co-culture system was developed. It was indicated that AMSCs and GMSCs expressed characteristic MSC markers (CD105 and CD166). 3H-thymidine incorporation in the co-culture group of AMSCs and SMCs in the presence of ECs was lower compared with that in the GMSC and SMC co-culture group. The protein expression level of proliferating cell nuclear antigen in the co-culture group of AMSCs and SMCs in the presence of ECs were lower compared with that in the GMSC and SMC co-culture group. After co-culture with ECs for 5 days, 25.71±3.08% of AMSCs began to express CD31 protein and 20.06±2.09% of GMSCs began to express CD31 protein. Furthermore, anti-VEGF antibody was able to inhibit MSC differentiation. Collectively, the present results suggested that seeding of AMSCs had a stronger effect to inhibit the proliferation and migration of SMCs compared with GMSCs.
Collapse
Affiliation(s)
- Ke Yang
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Dongmei Xie
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Wanwen Lin
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Peng Xiang
- Key Laboratory for Stem Cells and Tissue Engineering, Center for Stem Cell Biology and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510600, P.R. China
| | - Chaoquan Peng
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|