1
|
Yan Z, Liu Y, Yuan Y. The plasticity of epithelial cells and its potential in the induced differentiation of gastric cancer. Cell Death Discov 2024; 10:512. [PMID: 39719478 DOI: 10.1038/s41420-024-02275-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 12/26/2024] Open
Abstract
Cell plasticity refers to the deviation of cells from normal terminal differentiation states when faced with environmental and genetic toxic stresses, resulting in the phenomenon of transforming into other cell or tissue phenotypes. Unlocking phenotype plasticity has been defined as a hallmark of malignant tumors. The stomach is one of the organs in the body with the highest degree of self-renewal and exhibits significant cell plasticity. In this paper, based on the review of the characteristics of normal differentiation of gastric epithelial cells and their markers, the four main phenotypes of gastric epithelial cell remodeling and their relationship with gastric cancer (GC) are drawn. Furthermore, we summarize the regulatory factors and mechanisms that affect gastric epithelial cell plasticity and outline the current status of research and future prospection for the treatment targeting gastric epithelial cell plasticity. This study has important theoretical reference value for the in-depth exploration of epithelial cell plasticity and the tumor heterogeneity caused by it, as well as for the precise treatment of GC.
Collapse
Affiliation(s)
- Ziwei Yan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Yingnan Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Łaska G, Sieniawska E, Świątek Ł, Czapiński J, Rivero-Müller A, Kiercul S, Tekwani BL, Pasco DS, Balachandran P. Evaluating the impact of Xanthoparmelia conspersa extracts on signaling in HeLa cells and exploring their diverse biological activities. Sci Rep 2024; 14:28531. [PMID: 39557857 PMCID: PMC11574082 DOI: 10.1038/s41598-024-73599-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/19/2024] [Indexed: 11/20/2024] Open
Abstract
Xanthoparmelia conspersa is rich in specific secondary metabolites but an unexplored lichen species. This work determined the chemical composition and biological activities (anti-microbial, anti-protozoal, and cytotoxic) of its methanolic and hexane extracts. Additionally, we evaluated the potential of these extracts in modulating cancer signaling pathways in HeLa cells. The phytochemical analysis revealed that usnic acid was the predominant constituent in the hexane extract, while stictic acid was in the methanolic one. Among tested cell lines (VERO, FaDu, SCC-25, HeLa), cytotoxic selectivity was detected for X. conspersa hexane extract against the FaDu (SI 7.36) and HeLa (SI 2.19) cells. A noticeably better anti-microbial potential was found for hexane extract, however, the overall anti-microbial activity was relatively weak (28, 21, and 20% inhibition of Candida glabrata, Cryptococcus neoformans, and Escherichia coli, respectively). On the contrary, the anti-parasitic action of hexane extract was significant, with an IC50 value of 2.64 µg/mL against Leishmania donovani - amastigote and 7.18 µg/mL against Trypanosoma brucei. The detailed evaluation of the cancer-related signaling pathways in HeLa cells, done by two distinct methodologies (luciferase reporter tests), revealed that especially the hexane extract and usnic acid exhibited selective inhibition of Stat3, Smad, NF-κB, cMYC, and Notch pathways.
Collapse
Affiliation(s)
- Grażyna Łaska
- Department of Agri-Food Engineering and Environmental Management, Bialystok University of Technology, Bialystok, 15-351, Poland
| | - Elwira Sieniawska
- Department of Natural Products Chemistry, Medical University of Lublin, Lublin, 20-093, Poland.
| | - Łukasz Świątek
- Department of Virology with Viral Diagnostics Laboratory, Medical University of Lublin, Lublin, 20-093, Poland
| | - Jakub Czapiński
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, 20-093, Poland
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, 20-093, Poland
| | - Sylwia Kiercul
- Department of Agri-Food Engineering and Environmental Management, Bialystok University of Technology, Bialystok, 15-351, Poland
| | - Babu Lal Tekwani
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - David S Pasco
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Premalatha Balachandran
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA.
| |
Collapse
|
3
|
Cao L, Lin G, Fan D, Weng K, Chen Y, Wang J, Li P, Zheng C, Huang C, Xie J. NUAK1 activates STAT5/GLI1/SOX2 signaling to enhance cancer cell expansion and drives chemoresistance in gastric cancer. Cell Rep 2024; 43:114446. [PMID: 38996065 DOI: 10.1016/j.celrep.2024.114446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 06/02/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
The gene encoding the NUAK family kinase 1 (NUAK1) is frequently amplified and its expression is upregulated, activating oncogenic signaling in various cancers. However, little is known about its role in gastric cancer (GC). We investigate the mechanistic links among NUAK1, Hedgehog signaling, and tumorigenesis in GC. NUAK1 overexpression is validated in local and public GC cohorts. Patient-derived xenograft and transgenic mouse models demonstrate that NUAK1 depletion or inhibition dramatically ameliorates gastric tumorigenesis. NUAK1 upregulates GLI1 expression by activating STAT5-mediated transcription and stabilizing GLI1 protein. NUAK1 depletion or inhibition impairs cancer cell expansion, tumor formation, and chemotherapy resistance in in vitro and in vivo models. Clinicopathological analysis confirms that upregulated NUAK1 expression correlates with poor prognosis and chemotherapy resistance in human GC. Our findings demonstrate that the signaling axis NUAK1/STAT5/GLI1 promotes cancer cell expansion and tumorigenesis and indicate that NUAK1 is an attractive therapeutic target and prognostic factor in GC.
Collapse
Affiliation(s)
- Longlong Cao
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, China.
| | - Guangtan Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, China
| | - Denghui Fan
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, China
| | - Kai Weng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, China
| | - Yujing Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, China
| | - Jiabin Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, China
| | - Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, China
| | - Chaohui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, China
| | - Changming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, China.
| | - Jianwei Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
4
|
Sun J, Zhu W, Luan M, Xing Y, Feng Z, Zhu J, Ma X, Wang Y, Jia Y. Positive GLI1/INHBA feedback loop drives tumor progression in gastric cancer. Cancer Sci 2024; 115:2301-2317. [PMID: 38676428 PMCID: PMC11247559 DOI: 10.1111/cas.16193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
GLI1, a key transcription factor of the Hedgehog (Hh) signaling pathway, plays an important role in the development of cancer. However, the function and mechanisms by which GLI1 regulates gene transcription are not fully understood in gastric cancer (GC). Here, we found that GLI1 induced the proliferation and metastasis of GC cells, accompanied by transcriptional upregulation of INHBA. This increased INHBA expression exerted a promoting activity on Smads signaling and then transcriptionally activated GLI1 expression. Notably, our results demonstrate that disrupting the interaction between GLI1 and INHBA could inhibit GC tumorigenesis in vivo. More intriguingly, we confirmed the N6-methyladenosine (m6A) activation mechanism of the Helicobacter pylori/FTO/YTHDF2/GLI1 pathway in GC cells. In conclusion, our study confirmed that the GLI1/INHBA positive feedback loop influences GC progression and revealed the mechanism by which H. pylori upregulates GLI1 expression through m6A modification. This positive GLI1/INHBA feedback loop suggests a novel noncanonical mechanism of GLI1 activity in GC and provides potential therapeutic targets for GC treatment.
Collapse
Affiliation(s)
- Jingguo Sun
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wenshuai Zhu
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Muhua Luan
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, China
| | - Yuanxin Xing
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhaotian Feng
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jingyu Zhu
- Department of Gastroenterology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoli Ma
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yunshan Wang
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yanfei Jia
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
5
|
Chen M, Liu Y, Xing W. SALL4 upregulates brain-derived neurotrophic factor to mediate Hedgehog signaling to inhibit carboplatin sensitivity in colon adenocarcinoma. Pharmacogenomics 2024; 25:231-240. [PMID: 38884945 PMCID: PMC11388137 DOI: 10.1080/14622416.2024.2344429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/12/2024] [Indexed: 06/18/2024] Open
Abstract
Aim: This study aimed to investigate the role of brain-derived neurotrophic factor (BDNF) in colon adenocarcinoma, specifically its impact on sensitivity to carboplatin.Methods: mRNA and clinical information of colon adenocarcinoma samples were obtained from TCGA database. Differential expression analysis, transcription factor prediction, gene set enrichment analysis were performed in silico. qRT-PCR, western blot, CCK-8 and CHIP assay were employed.Results: BDNF demonstrated high expression in colon adenocarcinoma. Silencing of BDNF enhanced carboplatin sensitivity, while exerting opposite effects on epithelial-mesenchymal transition (EMT). BDNF was enriched in Hedgehog (HH) signaling pathway. SALL4 was identified as an upstream regulator of BDNF. Upregulation of BDNF by SALL4 promoted EMT and inhibited carboplatin sensitivity.Conclusion: SALL4 promoted BDNF expression to facilitate the aggressive phenotypes of colon adenocarcinoma.
Collapse
Affiliation(s)
- Minhan Chen
- Department of Nuclear Medicine, The 903rd Hospital of PLA, Hangzhou, 310013, China
- Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Ying Liu
- Department of Oncology, The 903rd Hospital of PLA, Hangzhou, 310013, China
| | - Weihua Xing
- Department of Gastroenterology, Wuhu Conch Hospital, Wuhu, 241001, China
| |
Collapse
|
6
|
Di Mauro A, Rega RA, Leongito M, Albino V, Palaia R, Gualandi A, Belli A, D’Arbitrio I, Moccia P, Tafuto S, De Chiara A, Ottaiano A, Ferrara G. Plexiform Fibromyxoma in the Stomach: Immunohistochemical Profile and Comprehensive Genetic Characterization. Int J Mol Sci 2024; 25:4847. [PMID: 38732067 PMCID: PMC11084853 DOI: 10.3390/ijms25094847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Plexiform fibromyxoma (PF), also referred to as plexiform angiomyxoid myofibroblast tumor, is an exceedingly rare mesenchymal neoplasm primarily affecting the stomach. Herein, we present a case of PF diagnosed in a 71-year-old male with a history of lung cancer, initially suspected to have a gastrointestinal stromal tumor (GIST) of the stomach, who subsequently underwent subtotal gastrectomy. The histopathological and molecular features of the tumor, including mutations in ABL1, CCND1, CSF1R, FGFR4, KDR, and MALAT1-GLI1 fusion, are elucidated and discussed in the context of diagnostic, prognostic, and therapeutic considerations.
Collapse
Affiliation(s)
- Annabella Di Mauro
- Pathology Unit, Istituto Nazionale Tumori, IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (R.A.R.); (A.G.); (I.D.); (P.M.); (G.F.)
| | - Rosalia Anna Rega
- Pathology Unit, Istituto Nazionale Tumori, IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (R.A.R.); (A.G.); (I.D.); (P.M.); (G.F.)
| | - Maddalena Leongito
- Department of Gastro-Hepato-Pancreato-Biliary Surgery, Istituto Nazionale Tumori, IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (M.L.); (V.A.); (R.P.); (A.B.)
| | - Vittorio Albino
- Department of Gastro-Hepato-Pancreato-Biliary Surgery, Istituto Nazionale Tumori, IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (M.L.); (V.A.); (R.P.); (A.B.)
| | - Raffaele Palaia
- Department of Gastro-Hepato-Pancreato-Biliary Surgery, Istituto Nazionale Tumori, IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (M.L.); (V.A.); (R.P.); (A.B.)
| | - Alberto Gualandi
- Pathology Unit, Istituto Nazionale Tumori, IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (R.A.R.); (A.G.); (I.D.); (P.M.); (G.F.)
| | - Andrea Belli
- Department of Gastro-Hepato-Pancreato-Biliary Surgery, Istituto Nazionale Tumori, IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (M.L.); (V.A.); (R.P.); (A.B.)
| | - Imma D’Arbitrio
- Pathology Unit, Istituto Nazionale Tumori, IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (R.A.R.); (A.G.); (I.D.); (P.M.); (G.F.)
| | - Pasquale Moccia
- Pathology Unit, Istituto Nazionale Tumori, IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (R.A.R.); (A.G.); (I.D.); (P.M.); (G.F.)
| | - Salvatore Tafuto
- Sarcomas and Rare Tumors Unit, Istituto Nazionale Tumori, IRCCS Fondazione “G. Pascale”, 80131 Naples, Italy;
| | - Annarosaria De Chiara
- Histopathology of Lymphomas and Sarcomas SSD, Istituto Nazionale Tumori, IRCCS Fondazione “G. Pascale”, 80131 Naples, Italy;
| | - Alessandro Ottaiano
- Division of Innovative Therapies for Abdominal Metastases, Istituto Nazionale Tumori, IRCCS Fondazione “G. Pascale”, 80131 Naples, Italy;
| | - Gerardo Ferrara
- Pathology Unit, Istituto Nazionale Tumori, IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (R.A.R.); (A.G.); (I.D.); (P.M.); (G.F.)
| |
Collapse
|
7
|
Singh R, Ray A. Therapeutic potential of hedgehog signaling in advanced cancer types. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 386:49-80. [PMID: 38782501 DOI: 10.1016/bs.ircmb.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
In this chapter, we have made an attempt to elucidate the relevance of hedgehog signaling pathway in tumorigenesis. Here, we have described different types of hedgehog signaling (canonical and non-canonical) with emphasis on the different mechanisms (mutation-driven, autocrine, paracrine and reverse paracrine) it adopts during tumorigenesis. We have discussed the role of hedgehog signaling in regulating cell proliferation, invasion and epithelial-to-mesenchymal transition in both local and advanced cancer types, as reported in different studies based on preclinical and clinical models. We have specifically addressed the role of hedgehog signaling in aggressive neuroendocrine tumors as well. We have also elaborated on the studies showing therapeutic relevance of the inhibitors of hedgehog signaling in cancer. Evidence of the crosstalk of hedgehog signaling components with other signaling pathways and treatment resistance due to tumor heterogeneity have also been briefly discussed. Together, we have tried to put forward a compilation of the studies on therapeutic potential of hedgehog signaling in various cancers, specifically aggressive tumor types with a perspective into what is lacking and demands further investigation.
Collapse
Affiliation(s)
- Richa Singh
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States.
| | - Anindita Ray
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| |
Collapse
|
8
|
Patel HV, Joshi JS, Shah FD. A clinicopathological exploration of Hedgehog signaling: implications in oral carcinogenesis. J Cancer Res Clin Oncol 2023; 149:16525-16535. [PMID: 37712962 DOI: 10.1007/s00432-023-05383-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023]
Abstract
INTRODUCTION Hedgehog Signaling, a basic cancer stem cell pathway, plays a major role during the embryonic development, is known to play a quiescent role in adults. However, aberrant activation of Hedgehog signaling in adults is known to play a role in cancer development. Hence, the aim of the study was to identify the role of Hedgehog signaling pathway in the Oral cancers. MATERIALS AND METHODS The expression of Hedgehog signaling pathway was evaluated in 124 patients through the quantitative real-time PCR. The association between the gene expression and clinico-pathological parameters were analyzed using the Pearson chi-square test and survival analysis was carried out using Kaplan-Meier analysis. RESULTS SHH and GLI1 was found to be significantly associated with the Lymph Node Status and SUFU was significantly associated with the Age. SMO and SUFU were found to have a worse prognosis in oral cancer patients. According to our findings, IHH plays a critical role in the activation of the HH signaling pathway in oral cancer. CONCLUSION These findings back up the use of the Hedgehog signaling pathway as a biomarker for early disease prediction in oral cancer, as well as its role in tumor aggressiveness and invasiveness.
Collapse
Affiliation(s)
- Hitarth V Patel
- Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, 380016, India
| | - Jigna S Joshi
- Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, 380016, India
| | - Franky D Shah
- Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, 380016, India.
| |
Collapse
|
9
|
Jing J, Wu Z, Wang J, Luo G, Lin H, Fan Y, Zhou C. Hedgehog signaling in tissue homeostasis, cancers, and targeted therapies. Signal Transduct Target Ther 2023; 8:315. [PMID: 37596267 PMCID: PMC10439210 DOI: 10.1038/s41392-023-01559-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/05/2023] [Indexed: 08/20/2023] Open
Abstract
The past decade has seen significant advances in our understanding of Hedgehog (HH) signaling pathway in various biological events. HH signaling pathway exerts its biological effects through a complex signaling cascade involved with primary cilium. HH signaling pathway has important functions in embryonic development and tissue homeostasis. It plays a central role in the regulation of the proliferation and differentiation of adult stem cells. Importantly, it has become increasingly clear that HH signaling pathway is associated with increased cancer prevalence, malignant progression, poor prognosis and even increased mortality. Understanding the integrative nature of HH signaling pathway has opened up the potential for new therapeutic targets for cancer. A variety of drugs have been developed, including small molecule inhibitors, natural compounds, and long non-coding RNA (LncRNA), some of which are approved for clinical use. This review outlines recent discoveries of HH signaling in tissue homeostasis and cancer and discusses how these advances are paving the way for the development of new biologically based therapies for cancer. Furthermore, we address status quo and limitations of targeted therapies of HH signaling pathway. Insights from this review will help readers understand the function of HH signaling in homeostasis and cancer, as well as opportunities and challenges of therapeutic targets for cancer.
Collapse
Affiliation(s)
- Junjun Jing
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhuoxuan Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiahe Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Guowen Luo
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hengyi Lin
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yi Fan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
10
|
Zhong J, Sun Y, Wu S, Zhang T, Yang J, He Y, Liu K. The impact of the Hedgehog signal pathway on the tumor immune microenvironment of gastric adenocarcinoma by integrated analysis of scRNA-seq and RNA-seq datasets. Funct Integr Genomics 2023; 23:258. [PMID: 37526746 DOI: 10.1007/s10142-023-01187-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023]
Abstract
The Hedgehog signaling is a highly conserved pathway to regulate cell growth and proliferation, and plays an essential role in stomach adenocarcinoma (STAD) and other cancer types. However, previous studies were primarily conducted in terms of mRNA or vitro cell culture. It would be more convincing to integrate single-cell RNA sequencing (scRNA-seq) data because it is a more precise approach for genomic research. The expression profile, genetic alteration, and activity of the Hedgehog signaling pathway were investigated in both scRNA-seq and RNA-seq datasets of STAD. Communications between cancer cells and fibroblasts were determined by the cell-chat algorithm, and the Hedgehog-related gene signature was constructed to predict the survival of STAD. Patients were categorized into high- and low-risk groups according to the median of the signature. Further analysis explored the difference in survival outcome, tumor immune microenvironment (TIME), and drug sensitivity between the two groups, aiming to guide the use of chemotherapy and immunotherapy in STAD patients. Hedgehog signal pathway was over-activated in STAD. GAS1, GLI1, and SCEBU2 were recognized as hub genes in the prognostic signature of STAD, and served as robust risk factors to induce a poor survival outcome. Patients in the high-risk group demonstrated an exhausted TIME pattern, with rather low sensitivity toward molecular-targeted drugs. This study depicted the influence of the Hedgehog pathway on the survival outcome, TIME, and drug sensitivity of STAD, and provides novel insights for the treatment of STAD.
Collapse
Affiliation(s)
- Jie Zhong
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Sun
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Sijia Wu
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Tianying Zhang
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Jie Yang
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuhua He
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Liu
- Gastric Cancer Center and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Alley, Chengdu, 610041, China.
| |
Collapse
|
11
|
Hirata Y, Noorani A, Song S, Wang L, Ajani JA. Early stage gastric adenocarcinoma: clinical and molecular landscapes. Nat Rev Clin Oncol 2023; 20:453-469. [PMID: 37264184 DOI: 10.1038/s41571-023-00767-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2023] [Indexed: 06/03/2023]
Abstract
Gastric adenocarcinoma, even when diagnosed at an early (localized) disease stage, poses a major health-care burden with cure rates that remain unsatisfactorily low, particularly in Western countries. This lack of progress reflects, among other aspects, the impracticality of early diagnosis, considerable variations in therapeutic approaches that is partly based on regional preferences, and the ingrained heterogeneity of gastric adenocarcinoma cells and their associated tumour microenvironment (TME). Clinical trials have long applied empirical interventions with the assumption that all early stage gastric adenocarcinomas are alike. Despite certain successes, the shortcomings of these approaches can potentially be overcome by targeting the specific molecular subsets of gastric adenocarcinomas identified by genomic and/or multi-omics analyses, including microsatellite instability-high, Epstein-Barr virus-induced, DNA damage repair-deficient, HER2-positive and PD-L1-high subtypes. Future approaches, including the availability of sophisticated vaccines, novel antibody technologies, agents targeting TME components (including fibroblasts, macrophages, cytokines or chemokines, and T cells) and novel immune checkpoint inhibitors, supported by improved tissue-based and blood-based diagnostic assays, seem promising. In this Review, we highlight current knowledge of the molecular and cellular biology of gastric adenocarcinomas, summarize the current approaches to clinical management of the disease, and consider the role of novel management and/or treatment strategies.
Collapse
Affiliation(s)
- Yuki Hirata
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ayesha Noorani
- Cancer Ageing and Somatic Mutation Group, Wellcome Sanger Institute, Hinxton, UK
- Cambridge Oesophago-gastric Centre, Addenbrooke's Hospital, Cambridge, UK
| | - Shumei Song
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
12
|
Li H, Wu Z, Zhang Y, Lu X, Miao L. Glutamine metabolism genes prognostic signature for stomach adenocarcinoma and immune infiltration: potential biomarkers for predicting overall survival. Front Oncol 2023; 13:1201297. [PMID: 37377916 PMCID: PMC10292820 DOI: 10.3389/fonc.2023.1201297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023] Open
Abstract
Background Stomach adenocarcinoma (STAD), caused by mutations in stomach cells, is characterized by poor overall survival. Chemotherapy is commonly administered for stomach cancer patients following surgical resection. An imbalance in tumor metabolic pathways is connected to tumor genesis and growth. It has been discovered that glutamine (Gln) metabolism plays a crucial role in cancer. Metabolic reprogramming is associated with clinical prognosis in various cancers. However, the role of glutamine metabolism genes (GlnMgs) in the fight against STAD remains poorly understood. Methods GlnMgs were determined in STAD samples from the TCGA and GEO datasets. The TCGA and GEO databases provide information on stemness indices (mRNAsi), gene mutations, copy number variations (CNV), tumor mutation burden (TMB), and clinical characteristics. Lasso regression was performed to build the prediction model. The relationship between gene expression and Gln metabolism was investigated using co-expression analysis. Results GlnMgs, found to be overexpressed in the high-risk group even in the absence of any symptomatology, demonstrated strong predictive potential for STAD outcomes. GSEA highlighted immunological and tumor-related pathways in the high-risk group. Immune function and m6a gene expression differed significantly between the low- and high-risk groups. AFP, CST6, CGB5, and ELANE may be linked to the oncology process in STAD patients. The prognostic model, CNVs, single nucleotide polymorphism (SNP), and medication sensitivity all revealed a strong link to the gene. Conclusion GlnMgs are connected to the genesis and development of STAD. These corresponding prognostic models aid in predicting the prognosis of STAD GlnMgs and immune cell infiltration in the tumor microenvironment (TME) may be possible therapeutic targets in STAD. Furthermore, the glutamine metabolism gene signature presents a credible alternative for predicting STAD outcomes, suggesting that these GlnMgs could open a new field of study for STAD-focused therapy Additional trials are needed to validate the results of the current study.
Collapse
Affiliation(s)
- Hui Li
- Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, China
| | - Zixuan Wu
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yu Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaohui Lu
- Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, China
| | - Lili Miao
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
13
|
Dunatov Huljev A, Kelam N, Benzon B, Šoljić V, Filipović N, Pešutić Pisac V, Glavina Durdov M, Vukojević K. Expression Pattern of Sonic Hedgehog, Patched and Smoothened in Clear Cell Renal Carcinoma. Int J Mol Sci 2023; 24:ijms24108935. [PMID: 37240278 DOI: 10.3390/ijms24108935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the deadliest neoplasm of the urinary tract, and we are still far from completely understanding ccRCC development and treatment. The renal tissue paraffin blocks (20) of patients with ccRCC were collected at the University Hospital in Split from 2019 to 2020, and tissue sections were stained with patched (PTCH), anti-smoothened (SMO) and anti-Sonic Hedgehog (SHH) antibodies. SHH was highly expressed (31.9%) in grade 1 tumour, it being higher than all other grades and the control (p < 0.001-p < 0.0001). The trend of a linear decrease in the expression of SHH was observed with the progression of the tumour grade (p < 0.0001). PTCH expression was significantly lower in grades 1 and 2 in comparison to the control (p < 0.01) and grade 4 (p < 0.0001). A significant increase in the expression of SMO was found in grade 4 compared to all other grades (p < 0.0001) and the control (p < 0.001). The strong expression of SHH was observed in carcinoma cells of the G1 stage with a diffuse staining pattern (>50% of neoplastic cells). Stroma and/or inflammatory infiltrate display no staining and no expression of SHH in G1 and G2, while mild focal staining (10-50% of neoplastic cells) was observed in G3 and G4. Patients with high PTCH and low SMO expression had significant time survival differences (p = 0.0005 and p = 0.029, respectively). Therefore, high levels of PTCH and low levels of SMO expression are important markers of better survival rates in ccRCC patients.
Collapse
Affiliation(s)
- Ana Dunatov Huljev
- Department of Pathology, Forensic Medicine and Cytology, University Hospital of Split, 21000 Split, Croatia
| | - Nela Kelam
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia
| | - Benjamin Benzon
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia
| | - Violeta Šoljić
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
- Faculty of Health Studies, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Natalija Filipović
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Valdi Pešutić Pisac
- Department of Pathology, Forensic Medicine and Cytology, University Hospital of Split, 21000 Split, Croatia
| | - Merica Glavina Durdov
- Department of Pathology, Forensic Medicine and Cytology, University Hospital of Split, 21000 Split, Croatia
| | - Katarina Vukojević
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
- Faculty of Health Studies, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
- Center for Translational Research in Biomedicine, University of Split School of Medicine, 21000 Split, Croatia
| |
Collapse
|
14
|
Sadeghi M, Karimi MR, Karimi AH, Ghorbanpour Farshbaf N, Barzegar A, Schmitz U. Network-Based and Machine-Learning Approaches Identify Diagnostic and Prognostic Models for EMT-Type Gastric Tumors. Genes (Basel) 2023; 14:genes14030750. [PMID: 36981021 PMCID: PMC10048224 DOI: 10.3390/genes14030750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
The microsatellite stable/epithelial-mesenchymal transition (MSS/EMT) subtype of gastric cancer represents a highly aggressive class of tumors associated with low rates of survival and considerably high probabilities of recurrence. In the era of precision medicine, the accurate and prompt diagnosis of tumors of this subtype is of vital importance. In this study, we used Weighted Gene Co-expression Network Analysis (WGCNA) to identify a differentially expressed co-expression module of mRNAs in EMT-type gastric tumors. Using network analysis and linear discriminant analysis, we identified mRNA motifs and microRNA-based models with strong prognostic and diagnostic relevance: three models comprised of (i) the microRNAs miR-199a-5p and miR-141-3p, (ii) EVC/EVC2/GLI3, and (iii) PDE2A/GUCY1A1/GUCY1B1 gene expression profiles distinguish EMT-type tumors from other gastric tumors with high accuracy (Area Under the Receiver Operating Characteristic Curve (AUC) = 0.995, AUC = 0.9742, and AUC = 0.9717; respectively). Additionally, the DMD/ITGA1/CAV1 motif was identified as the top motif with consistent relevance to prognosis (hazard ratio > 3). Molecular functions of the members of the identified models highlight the central roles of MAPK, Hh, and cGMP/cAMP signaling in the pathology of the EMT subtype of gastric cancer and underscore their potential utility in precision therapeutic approaches.
Collapse
Affiliation(s)
- Mehdi Sadeghi
- Department of Cell & Molecular Biology, Semnan University, Semnan 3513119111, Iran
| | - Mohammad Reza Karimi
- Department of Cell & Molecular Biology, Semnan University, Semnan 3513119111, Iran
| | - Amir Hossein Karimi
- Department of Cell & Molecular Biology, Semnan University, Semnan 3513119111, Iran
| | | | - Abolfazl Barzegar
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz 5166616471, Iran
| | - Ulf Schmitz
- Department of Molecular & Cell Biology, James Cook University, Townsville, QLD 4811, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| |
Collapse
|
15
|
Zhang G, Xia G, Luo J, Ye P, Wang H, Li S, Zheng D. Hedgehog signaling-related genomics signature for the accurate progress and prognosis prediction in gastric cancer. Funct Integr Genomics 2023; 23:69. [PMID: 36853390 DOI: 10.1007/s10142-023-00996-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 03/01/2023]
Abstract
The Hedgehog pathway is thought to be closely associated with the progression of GC; however, a specific link between the Hedgehog pathway on the prognosis and immune infiltration of gastric cancer is still lacking. This study collected Hedgehog pathway-related genes. The Hedgehog pathway-related pattern were identified by consensus cluster analysis. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA) were used to identify the biological functions which were significantly altered between predefined Cluster1 and Cluster2 in consensus clustering. The risk model of gastric cancer based on Hedgehog signaling pathway was constructed by univariate and multivariate COX regression, and the nomogram was constructed. The results showed that there were significant differences in the expression of Hedgehog pathway-related genes between the two groups. In addition, the constructed risk model was significantly correlated with the clinical prognosis and immune cell infiltration level of patients with gastric cancer. The model effectively predicted the efficacy of chemotherapy in GC patients and the sensitivity of drug treatment between groups. We systematically revealed the mechanism of Hedgehog pathway in gastric cancer and selected biomarkers with biological significance from a new perspective, providing potential direction for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Guoliang Zhang
- Department of Gastrointestinal Surgery, Shaoxing Central Hospital, Shaoxing, China
| | - Guojun Xia
- Department of Gastrointestinal Surgery, Shaoxing Central Hospital, Shaoxing, China
| | - Jungang Luo
- Department of Gastrointestinal Surgery, Shaoxing Central Hospital, Shaoxing, China
| | - Ping Ye
- Department of Gastrointestinal Surgery, Shaoxing Central Hospital, Shaoxing, China
| | - Huangen Wang
- Department of Gastrointestinal Surgery, Shaoxing Central Hospital, Shaoxing, China
| | - Shaodong Li
- Department of Gastrointestinal Surgery, Shaoxing Central Hospital, Shaoxing, China
| | - Difeng Zheng
- Department of Gastrointestinal Surgery, Shaoxing Central Hospital, Shaoxing, China.
| |
Collapse
|
16
|
Bai J, Shi J, Zhang Y, Li C, Xiong Y, Koka H, Wang D, Zhang T, Song L, Luo W, Zhu B, Hicks B, Hutchinson A, Kirk E, Troester MA, Li M, Shen Y, Ma T, Wang J, Liu X, Wang S, Gui S, McMaster ML, Chanock SJ, Parry DM, Goldstein AM, Yang XR. Gene Expression Profiling Identifies Two Chordoma Subtypes Associated with Distinct Molecular Mechanisms and Clinical Outcomes. Clin Cancer Res 2023; 29:261-270. [PMID: 36260525 PMCID: PMC11293090 DOI: 10.1158/1078-0432.ccr-22-1865] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/30/2022] [Accepted: 10/17/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE Chordoma is a rare bone tumor with a high recurrence rate and limited treatment options. The aim of this study was to identify molecular subtypes of chordoma that may improve clinical management. EXPERIMENTAL DESIGN We conducted RNA sequencing in 48 tumors from patients with Chinese skull-base chordoma and identified two major molecular subtypes. We then replicated the classification using a NanoString panel in 48 patients with chordoma from North America. RESULTS Tumors in one subtype were more likely to have somatic mutations and reduced expression in chromatin remodeling genes, such as PBRM1 and SETD2, whereas the other subtype was characterized by the upregulation of genes in epithelial-mesenchymal transition and Sonic Hedgehog pathways. IHC staining of top differentially expressed genes between the two subtypes in 312 patients with Chinese chordoma with long-term follow-up data showed that the expression of some markers such as PTCH1 was significantly associated with survival outcomes. CONCLUSIONS Our findings may improve the understanding of subtype-specific tumorigenesis of chordoma and inform clinical prognostication and targeted options.
Collapse
Affiliation(s)
- Jiwei Bai
- Beijing Neurosurgery Institute, Capital Medical University, Beijing, 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Yazhuo Zhang
- Beijing Neurosurgery Institute, Capital Medical University, Beijing, 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Beijing Institute for Brain Disorders Brain Tumor Center, Beijing, China
| | - Chuzhong Li
- Beijing Neurosurgery Institute, Capital Medical University, Beijing, 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Beijing Institute for Brain Disorders Brain Tumor Center, Beijing, China
| | - Yujia Xiong
- Beijing Neurosurgery Institute, Capital Medical University, Beijing, 100070, China
| | - Hela Koka
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Difei Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Lei Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Wen Luo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Belynda Hicks
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Amy Hutchinson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Erin Kirk
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC 27599, USA
| | - Melissa A. Troester
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC 27599, USA
| | - Mingxuan Li
- Beijing Neurosurgery Institute, Capital Medical University, Beijing, 100070, China
| | - Yutao Shen
- Beijing Neurosurgery Institute, Capital Medical University, Beijing, 100070, China
| | - Tianshun Ma
- Beijing Neurosurgery Institute, Capital Medical University, Beijing, 100070, China
| | - Junmei Wang
- Beijing Neurosurgery Institute, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Beijing Institute for Brain Disorders Brain Tumor Center, Beijing, China
| | - Xing Liu
- Beijing Neurosurgery Institute, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Beijing Institute for Brain Disorders Brain Tumor Center, Beijing, China
| | - Shuai Wang
- Beijing Neurosurgery Institute, Capital Medical University, Beijing, 100070, China
| | - Songbai Gui
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Mary L. McMaster
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Dilys M. Parry
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Alisa M. Goldstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Xiaohong R. Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| |
Collapse
|
17
|
Inhibition of GPR39 restores defects in endothelial cell-mediated neovascularization under the duress of chronic hyperglycemia: Evidence for regulatory roles of the sonic hedgehog signaling axis. Proc Natl Acad Sci U S A 2023; 120:e2208541120. [PMID: 36574661 PMCID: PMC9910611 DOI: 10.1073/pnas.2208541120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Impaired endothelial cell (EC)-mediated angiogenesis contributes to critical limb ischemia in diabetic patients. The sonic hedgehog (SHH) pathway participates in angiogenesis but is repressed in hyperglycemia by obscure mechanisms. We investigated the orphan G protein-coupled receptor GPR39 on SHH pathway activation in ECs and ischemia-induced angiogenesis in animals with chronic hyperglycemia. Human aortic ECs from healthy and type 2 diabetic (T2D) donors were cultured in vitro. GPR39 mRNA expression was significantly elevated in T2D. The EC proliferation, migration, and tube formation were attenuated by adenovirus-mediated GPR39 overexpression (Ad-GPR39) or GPR39 agonist TC-G-1008 in vitro. The production of proangiogenic factors was reduced by Ad-GPR39. Conversely, human ECs transfected with GPR39 siRNA or the mouse aortic ECs isolated from GPR39 global knockout (GPR39KO) mice displayed enhanced migration and proliferation compared with their respective controls. GPR39 suppressed the basal and ligand-dependent activation of the SHH effector GLI1, leading to attenuated EC migration. Coimmunoprecipitation revealed that the GPR39 direct binding of the suppressor of fused (SUFU), the SHH pathway endogenous inhibitor, may achieve this. Furthermore, in ECs with GPR39 knockdown, the robust GLI1 activation and EC migration were abolished by SUFU overexpression. In a chronic diabetic model of diet-induced obesity (DIO) and low-dose streptozotocin (STZ)-induced hyperglycemia, the GPR39KO mice demonstrated a faster pace of revascularization from hind limb ischemia and lower incidence of tissue necrosis than GPR39 wild-type (GPR39WT) counterparts. These findings have provided a conceptual framework for developing therapeutic tools that ablate or inhibit GPR39 for ischemic tissue repair under metabolic stress.
Collapse
|
18
|
Yang J, Wu Z, Wu X, Chen S, Xia X, Zeng J. Constructing and validating of m6a-related genes prognostic signature for stomach adenocarcinoma and immune infiltration: Potential biomarkers for predicting the overall survival. Front Oncol 2022; 12:1050288. [PMID: 36620557 PMCID: PMC9814967 DOI: 10.3389/fonc.2022.1050288] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/26/2022] [Indexed: 12/24/2022] Open
Abstract
Background Stomach adenocarcinoma (STAD) arises from the mutations of stomach cells and has poor overall survival. Chemotherapy is commonly indicated for patients with stomach cancer following surgical resection. The most prevalent alteration that affects cancer growth is N6-methyladenosine methylation (m6A), although the possible function of m6A in STAD prognosis is not recognized. Method The research measured predictive FRGs in BLCA samples from the TCGA and GEO datasets. Data on the stemness indices (mRNAsi), gene mutations, copy number variations (CNV), tumor mutation burden (TMB), and corresponding clinical characteristics were obtained from TCGA and GEO. STAD from TCGA and GEO at 24 m6A was investigated. Lasso regression was used to construct the prediction model to assess the m6A prognostic signals in STAD. In addition, the correlation between m6a and immune infiltration in STAD patients was discussed using GSVA and ssGSEA analysis. Based on these genes, GO and KEGG analyses were performed to identify key biological functions and key pathways. Result A significant relationship was discovered between numerous m6A clusters and the tumor immune microenvironment, as well as three m6A alteration patterns with different clinical outcomes. Furthermore, GSVA and ssGSEA showed that m6A clusters were significantly associated with immune infiltration in the STAD. The low-m6Ascore group had a lower immunotherapeutic response than the high-m6Ascore group. ICIs therapy was more effective in the group with a higher m6Ascore. Three writers (VIRMA, ZC3H13, and METTL3) showed significantly lower expression, whereas five authors (METTL14, METTL16, WTAP, RBM15, and RBM15B) showed considerably higher expression. Three readers (YTHDC2, YTHDF2, and LRPPRC) had higher levels of expression, whereas eleven readers (YTHDC1, YTHDF1, YTHDF3, HNRNPC, FMR1, HNRNPA2B1, IGFBP1, IGFBP2, IGFBP3, and RBMX) had lower levels. As can be observed, the various types of m6 encoders have varied ramifications for STAD control. Conclusion STAD occurrence and progression are linked to m6A-genes. Corresponding prognostic models help forecast the prognosis of STAD patients. m6A-genes and associated immune cell infiltration in the tumor microenvironment (TME) may serve as potential therapeutic targets in STAD, which requires further trials. In addition, the m6a-related gene signature offers a viable alternative to predict bladder cancer, and these m6A-genes show a prospective research area for STAD targeted treatment in the future.
Collapse
Affiliation(s)
- Jing Yang
- Hunan Agricultural University, Changsha, China,School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Zixuan Wu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaoxi Wu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Siya Chen
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Xinhua Xia
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China,*Correspondence: Jianguo Zeng, ; Xinhua Xia,
| | - Jianguo Zeng
- Hunan Agricultural University, Changsha, China,*Correspondence: Jianguo Zeng, ; Xinhua Xia,
| |
Collapse
|
19
|
Lei ZN, Teng QX, Tian Q, Chen W, Xie Y, Wu K, Zeng Q, Zeng L, Pan Y, Chen ZS, He Y. Signaling pathways and therapeutic interventions in gastric cancer. Signal Transduct Target Ther 2022; 7:358. [PMID: 36209270 PMCID: PMC9547882 DOI: 10.1038/s41392-022-01190-w] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/14/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
Gastric cancer (GC) ranks fifth in global cancer diagnosis and fourth in cancer-related death. Despite tremendous progress in diagnosis and therapeutic strategies and significant improvements in patient survival, the low malignancy stage is relatively asymptomatic and many GC cases are diagnosed at advanced stages, which leads to unsatisfactory prognosis and high recurrence rates. With the recent advances in genome analysis, biomarkers have been identified that have clinical importance for GC diagnosis, treatment, and prognosis. Modern molecular classifications have uncovered the vital roles that signaling pathways, including EGFR/HER2, p53, PI3K, immune checkpoint pathways, and cell adhesion signaling molecules, play in GC tumorigenesis, progression, metastasis, and therapeutic responsiveness. These biomarkers and molecular classifications open the way for more precise diagnoses and treatments for GC patients. Nevertheless, the relative significance, temporal activation, interaction with GC risk factors, and crosstalk between these signaling pathways in GC are not well understood. Here, we review the regulatory roles of signaling pathways in GC potential biomarkers, and therapeutic targets with an emphasis on recent discoveries. Current therapies, including signaling-based and immunotherapies exploited in the past decade, and the development of treatment for GC, particularly the challenges in developing precision medications, are discussed. These advances provide a direction for the integration of clinical, molecular, and genomic profiles to improve GC diagnosis and treatments.
Collapse
Affiliation(s)
- Zi-Ning Lei
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Qin Tian
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Wei Chen
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Yuhao Xie
- Institute for Biotechnology, St. John's University, Queens, NY, 11439, USA
| | - Kaiming Wu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Qianlin Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Leli Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| | - Yihang Pan
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
- Institute for Biotechnology, St. John's University, Queens, NY, 11439, USA.
| | - Yulong He
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| |
Collapse
|
20
|
Constructing and Validating a Pyroptosis-Related Genes Prognostic Signature for Stomach Adenocarcinoma and Immune Infiltration: Potential Biomarkers for Predicting the Overall Survival. JOURNAL OF ONCOLOGY 2022; 2022:3102743. [PMID: 36199800 PMCID: PMC9529402 DOI: 10.1155/2022/3102743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/10/2022] [Indexed: 11/18/2022]
Abstract
Background Stomach adenocarcinoma (STAD) is a kind of cancer that begins in the stomach cells and has a poor overall survival rate. Following resection surgery, chemotherapy has been suggested as a curative method for stomach cancer. However, it is ineffective. Pyroptosis, a kind of inflammatory programmed cell death, has been shown to play a significant role in the development and progression of STAD. However, whether pyroptosis-related genes (PRGs) can be utilized to predict the diagnosis and prognosis of gastric cancer remains unknown. Method The research measured at predictive PRGs in STAD samples from TCGA and GEO. Lasso regression was used to build the prediction model. Coexpression analysis revealed that gene expression was linked to pyroptosis. PRGs were found to be overexpressed in high-risk individuals, implying that they could be used in a model to predict STAD prognosis. Result Immunological and tumor-related pathways were discovered using GSEA. In STAD patients, the genes GPX3, PDGFRL, RGS2, and SERPINE1 may be connected to the cancer process. The levels of expression also differed between the two risk groups. Conclusion The purpose of this study is to identify and verify STAD-associated PRGs that can effectively guide prognosis and the immunological milieu in STAD patients as well as offer evidence for the development of pyroptosis-related molecularly targeted therapeutics. Therefore, PRGs and the link between immunological and PRGs in STAD may be therapeutic targets.
Collapse
|
21
|
HajiEsmailPoor Z, Tabnak P, Ahmadzadeh B, Ebrahimi SS, Faal B, Mashatan N. Role of hedgehog signaling related non-coding RNAs in developmental and pathological conditions. Biomed Pharmacother 2022; 153:113507. [DOI: 10.1016/j.biopha.2022.113507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/23/2022] [Accepted: 07/30/2022] [Indexed: 11/02/2022] Open
|
22
|
Abstract
Like most solid tumours, the microenvironment of epithelial-derived gastric adenocarcinoma (GAC) consists of a variety of stromal cell types, including fibroblasts, and neuronal, endothelial and immune cells. In this article, we review the role of the immune microenvironment in the progression of chronic inflammation to GAC, primarily the immune microenvironment driven by the gram-negative bacterial species Helicobacter pylori. The infection-driven nature of most GACs has renewed awareness of the immune microenvironment and its effect on tumour development and progression. About 75-90% of GACs are associated with prior H. pylori infection and 5-10% with Epstein-Barr virus infection. Although 50% of the world's population is infected with H. pylori, only 1-3% will progress to GAC, with progression the result of a combination of the H. pylori strain, host susceptibility and composition of the chronic inflammatory response. Other environmental risk factors include exposure to a high-salt diet and nitrates. Genetically, chromosome instability occurs in ~50% of GACs and 21% of GACs are microsatellite instability-high tumours. Here, we review the timeline and pathogenesis of the events triggered by H. pylori that can create an immunosuppressive microenvironment by modulating the host's innate and adaptive immune responses, and subsequently favour GAC development.
Collapse
|
23
|
Wu H, He P, Xie D, Wang J, Wan C. Long-Noncoding RNA ANCR Activates the Hedgehog Signaling Pathway to Promote Basal Cell Carcinoma Progression by Binding to PTCH. CLINICAL, COSMETIC AND INVESTIGATIONAL DERMATOLOGY 2022; 15:955-965. [PMID: 35642174 PMCID: PMC9148612 DOI: 10.2147/ccid.s345371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/07/2022] [Indexed: 11/23/2022]
Abstract
Purpose The long non-coding RNA (lncRNA) anti-differentiation noncoding RNA (ANCR) is closely related to the occurrence and development of various malignancies. However, its expression and potential role in basal cell carcinoma (BCC) have not been established. In this study, we characterized the effects of ANCR in BCC and its underlying mechanism. Methods The expression of ANCR in BCC tissues and cells was detected by qRT-PCR. Proliferation, invasion, migration and apoptosis of ANCR overexpressed or knock down TE354.T and A431 cells were examined by CCK8, transwell assay, wound healing assay and flow cytometry analysis, respectively. Western blot was performed to measure the expression of apoptosis-related proteins (BAX, BCL2 and Cleaved-caspase3), epithelial-mesenchymal transformation-related proteins (E-cadherin, N-cadherin, vimentin and β-catenin), and Hedgehog-pathway-related proteins (PTCH, GLI1 and SMO). RNA pull-down assay was used to analyze the relationship between ANCR and PTCH. The effect of ANCR on BCC growth in vivo was analyzed using xenograft model. TUNEL assay was used to determine the cell apoptosis. Results ANCR and Hedgehog pathway were more highly expressed in BCC tissues than in adjacent normal tissues. ANCR overexpression substantially promoted BCC cell proliferation, invasion, and migration, inhibited apoptosis, and up-regulated BCL2 and decreased the expression of BAX and Cleaved-caspase3 proteins. Additionally, the upregulation of N-cadherin, vimentin, β-catenin, PTCH, GLI1, and SMO expression, and downregulation of E-cadherin expression were observed after ANCR overexpression. Moreover, ANCR knockdown had the opposite effects. An RNA pull-down assay further revealed that ANCR is specifically bound to PTCH. In vivo experiments also showed that ANCR overexpression significantly increased tumor growth and decreased apoptosis, which was reversed by cyclopamine, a specific inhibitor of the Hedgehog signaling pathway. Conclusion ANCR activates the Hedgehog signaling pathway by binding to PTCH, thereby promoting BCC progression; accordingly, ANCR could be a candidate therapeutic target in BCC.
Collapse
Affiliation(s)
- Hongxuan Wu
- Department of Dermatology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Pingxiu He
- Department of Dermatology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Dong Xie
- Department of Dermatology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Jianqiao Wang
- Department of Dermatology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Chuan Wan
- Department of Dermatology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| |
Collapse
|
24
|
He J, Hu W, Ouyang Q, Zhang S, He L, Chen W, Li X, Hu C. Helicobacter pylori infection induces stem cell-like properties in Correa cascade of gastric cancer. Cancer Lett 2022; 542:215764. [PMID: 35654291 DOI: 10.1016/j.canlet.2022.215764] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/16/2022] [Accepted: 05/26/2022] [Indexed: 02/09/2023]
Abstract
Gastric cancer (GC) is the fourth leading cause of cancer-related death. Its poor prognosis is attributed to unclear pathogenesis. Currently, the most widely accepted model for elucidating the mechanism of GC is the Correa cascade, which covers several histological lesions of the gastric mucosa. GC stem cells (CSCs) are crucial for oncogenesis in the Correa cascade and GC progression. As Helicobacter pylori (H. pylori) is the etiological factor in the Correa cascade, growing evidence suggests that enhancement of gastric stem cell-like properties and increase in CSCs correlate with H. pylori infection. In this paper, we review recent studies that present pathogenic mechanisms by which H. pylori induces gastric stem cell-like properties and CSCs, which may supplement the existing Correa model of GC. First, the dysfunction of developmental signaling pathways associated with H. pylori infection leads to the enhancement of gastric stemness. Second, H. pylori infection promotes alteration of the gastric mucosal microenvironment. In addition, epithelial-mesenchymal transition (EMT) may contribute to H. pylori-induced gastric stemness. Taken together, understanding these pathogeneses will provide potential therapeutic targets for the treatment of CSCs and malignant GC in H. pylori induced-Correa cascade of GC.
Collapse
Affiliation(s)
- JunJian He
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - WeiChao Hu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Qin Ouyang
- Department of Medicinal Chemistry, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - ShengWei Zhang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - LiJiao He
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - WeiYan Chen
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - XinZhe Li
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| | - ChangJiang Hu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
25
|
Chen Q, Liu Z, Tan Y, Pan S, An W, Xu H. Characterization of RNA modifications in gastric cancer to identify prognosis-relevant gene signatures. Cancer Med 2022; 12:879-897. [PMID: 35635121 PMCID: PMC9844604 DOI: 10.1002/cam4.4861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 05/03/2022] [Accepted: 05/15/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Most human genes have diverse transcript isoforms, which mainly arise from alternative cleavage and polyadenylation (APA) at 3' ends. N7-methylguanosine (m7 G) is also an essential epigenetic modification at the 5' end. However, the contribution of these two RNA modifications to the development, prognosis, regulation mechanisms, and drug sensitivity of gastric cancer (GC) is unclear. METHODS The expression data of 2412 patients were extracted from 12 cohorts and the RNA modification patterns of 20 marker genes were systematically identified into phenotypic clusters using the unsupervised clustering approach. Following that, we developed an RNA modification model (RMscore) to quantify each GC patient's RNA modification index. Finally, we examined the correlation between RMscore and clinical features such as survival outcomes, molecular subtypes identified by the Asian Cancer Research Group (ACRG), posttranscriptional regulation, and chemotherapeutic sensitivity in GC. RESULTS The samples were categorized into two groups on the basis of their RMscore: high and low. The group with a low RMscore had a bad prognosis. Moreover, the low RMscore was associated with KRAS, Hedgehog, EMT, and TGF-β signaling, whereas a high RMscore was related to abnormal cell cycle signaling pathway activation. The findings also revealed that the RMscore contributes to the regulation of the miRNA-mRNA network. Drug sensitivity analysis revealed that RMscore is associated with the response to some anticancer drugs. CONCLUSIONS The RMscore model has the potential to be a useful tool for prognosis prediction in patients with GC. A comprehensive investigation of APA-RNA and m7 G-RNA modifications may reveal novel insights into the epigenetics of GC and aid in the development of more effective treatment strategies.
Collapse
Affiliation(s)
- Qingchuan Chen
- Department of Surgical OncologyThe First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Zhouyang Liu
- Department of NeurologyThe First Hospital of China Medical UniversityShenyangChina
| | - Yuen Tan
- Department of Surgical OncologyThe First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Siwei Pan
- Department of Surgical OncologyThe First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Wen An
- Department of Surgical OncologyThe First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Huimian Xu
- Department of Surgical OncologyThe First Affiliated Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
26
|
Chen S, Jundi D, Wang W, Ren C. LINC01857 promotes the proliferation, migration, and invasion of gastric cancer cells via regulating miR-4731-5p/HOXC6. Can J Physiol Pharmacol 2022; 100:689-701. [PMID: 35468304 DOI: 10.1139/cjpp-2021-0411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The great importance of long non-coding RNAs (lncRNAs) in tumorigenesis has been acknowledged gradually. LINC01857 is previously reported to be highly expressed in gastric cancer (GC), while the regulatory mechanism of LINC01857 in gastric cancer is largely unknown. In this study, we detected high expression of LINC01857 from the gastric cancer microarray GSE109476. Additionally, LINC01857 expression is remarkably up-regulated in gastric cancer cell lines (AGS, MKN-45, HGC-27 and SGC-7901) compared to the normal gastric mucosal cell line GES-1. Functionally, LINC01857 knockdown suppressed the proliferation, migration, invasion, and epithelial-mesenchymal transformation (EMT) of GC cells, while LINC01857 overexpression promoted the proliferation, migration, invasion and EMT of GC cells. Furthermore, our data demonstrate that LINC01857 targeted miR-4731-5p and subsequently increased the expression of HOXC6 in GC. Rescue experiments showed that miR-4731-5p inhibition and HOXC6 overexpression could reverse the biological behavior of GC cells induced by LINC01857 knockdown. In conclusion, we demonstrated that LINC01857 sponged miR-4731-5p to promote the expression of HOXC6 and eventually acts as an oncogene in GC.
Collapse
Affiliation(s)
| | - Dai Jundi
- Shandong Province, Department of Gastrointestinal Surgery, Yantai, China;
| | - Wei Wang
- Shandong Province, Department of Gastrointestinal Surgery, Yantai, China;
| | - Chenglei Ren
- Shandong Province, Department of Gastrointestinal Surgery, Yantai, China, 264000;
| |
Collapse
|
27
|
Zhao B, Zhu W. Exosomal miRNA-455 from Bone Marrow Stromal Cells (BMSCs) Promotes Macrophage Phagocytosis and Restrains Progression of Gastric Cancer (GC). J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Multiple miRNAs are differentially expressed in gastric cancer (GC). Herein, this study aims to investigate miR-455’s role in GC and its mechanism. Exosomes (exo) separated from BMSCs after transfection were co-cultured with either phagocytes, GC cells (NCI-N87 cell), or macrophages
combined with NCI-N87cells (mixed group) followed by analysis of the expression of PTEN, N-cadherin, E-cadherin, and PI3K, and AKT by RT-qPCR and Western blot. Increased miR-455 expression was observed in GC cells upon transfection. GC cells in the mixed group relative to NCI-N87 group exhibited
a lower cell migration and invasion and impaired proliferative capacity (p < 0.05), accompanied with higher expressions of N-cadherin, E-cadherin, PI3K, and AKT, and decreased level of PTEN (p < 0.05). The combined treatment resulted in a higher phagocytic rate (12.38±0.21%)
and phagocytic index (14.29±2.11%) compared to treatment with only phagocytes (p < 0.05). In conclusion, BMSC-derived exosomal miR-455 inhibits the growth of GC cells and promotes the phagocytosis through inactivating PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Boxian Zhao
- Department of General Surgery, Huzhou Cent Hospital, Affiliated Cent Hospital Huzhou University, Huzhou, Zhejiang, 313003, China
| | - Weiguo Zhu
- Department of Anesthesia and Surgery, Huzhou Cent Hospital, Affiliated Cent Hospital Huzhou University, Huzhou, Zhejiang, 313003, China
| |
Collapse
|
28
|
Fang SQ, Liu YH, Zhao KP, Zhang HX, Wang HW, Deng YH, Zhou YX, Ge GB, Ni HM, Chen QL. Transcriptional profiling and network pharmacology analysis identify the potential biomarkers from Chinese herbal formula Huosu Yangwei Formula treated gastric cancer in vivo. Chin J Nat Med 2021; 19:944-953. [PMID: 34961592 DOI: 10.1016/s1875-5364(22)60154-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Indexed: 02/07/2023]
Abstract
Huosu Yangwei (HSYW) Formula is a traditioanl Chinese herbal medicine that has been extensively used to treat chronic atrophic gastritis, precancerous lesions of gastric cancer and advanced gastric cancer. However, the effective compounds of HSYW and its related anti-tumor mechanisms are not completely understood. In the current study, 160 ingredients of HSYW were identified and 64 effective compounds were screened by the ADMET evaluation. Furthermore, 64 effective compounds and 2579 potential targets were mapped based on public databases. Animal experiments demonstrated that HSYW significantly inhibited tumor growth in vivo. Transcriptional profiles revealed that 81 mRNAs were differentially expressed in HSYW-treated N87-bearing Balb/c mice. Network pharmacology and PPI network showed that 12 core genes acted as potential markers to evaluate the curative effects of HSYW. Bioinformatics and qRT-PCR results suggested that HSYW might regulate the mRNA expression of DNAJB4, CALD, AKR1C1, CST1, CASP1, PREX1, SOCS3 and PRDM1 against tumor growth in N87-bearing Balb/c mice.
Collapse
Affiliation(s)
- Sheng-Quan Fang
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yue-Han Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Kun-Peng Zhao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hui-Xing Zhang
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hong-Wei Wang
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yu-Hai Deng
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yu-Xuan Zhou
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Guang-Bo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hong-Mei Ni
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Qi-Long Chen
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
29
|
Ke C, Zhou H, Jiang B, Xie X. Zinc finger protein 852 is essential for the proliferation, drug sensitivity, and self-renewal of gastric cancer cells. Cell Biol Int 2021; 46:579-587. [PMID: 34957631 DOI: 10.1002/cbin.11754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/10/2021] [Accepted: 12/22/2021] [Indexed: 11/06/2022]
Abstract
Exploring cellular and molecular mechanisms responsible for gastric cancer growth, survival, self-renewal, and metastasis helps develop efficacious therapeutic strategies. In this study, the expression and function of Zinc finger protein 852 (ZNF852) in human gastric cancer cell lines were characterized. ZNF852 was up-regulated in gastric cancer cell lines relative to normal gastric epithelial cell line GES-1. When the ZNF852 gene was ablated in gastric cancer cell line MGC-803 using the CRISPR/Cas9-encoding lentivirus, the proliferation of MGC-803 was suppressed. ZNF852 deficiency also resulted in the inhibition of MGC-803 sphere formation, along with decreases in SRY-box 2 (SOX2), Octamer-binding transcription factor 4 (OCT4), and Nanog homeobox (NANOG), suggesting that ZNF852 sustains self-renewal of MGC-803 cells. Furthermore, ZNF852 deficiency increased oxaliplatin-induced MGC-803 cell death, implying the role of ZNF852 in drug sensitivity. Subcutaneous infusion of MGC-803 cells into nude mice illustrated the same effects of ZNF852 on the proliferation and self-renewal of gastric cancer cells. Similar effects of ANF852 were also seen in gastric cancer cell line SNU-1. Interestingly, ZNF852 deficiency caused down-regulation of epidermal growth factor receptor (EGFR) on gastric cancer cells. In summary, this study uncovers the positive regulatory role of ZNF852 in gastric cancer growth and maintenance. ZNF852 could be a potential therapeutic target for inhibiting gastric cancer initiation or progression. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chao Ke
- The Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei Province, China, 430060
| | - Hongjian Zhou
- The Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei Province, China, 430060
| | - Bin Jiang
- The Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei Province, China, 430060
| | - Xingwang Xie
- The Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei Province, China, 430060
| |
Collapse
|
30
|
Liu X, Wang S, Li J, Zhang J, Liu D. Regulatory effect of traditional Chinese medicines on signaling pathways of process from chronic atrophic gastritis to gastric cancer. CHINESE HERBAL MEDICINES 2021; 14:5-19. [PMID: 36120132 PMCID: PMC9476726 DOI: 10.1016/j.chmed.2021.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/23/2021] [Accepted: 10/12/2021] [Indexed: 01/30/2023] Open
Affiliation(s)
- Xinnan Liu
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin 300380, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuping Wang
- Department of Pharmacy, Tianjin Provincial Corps Hospital, Chinese People’s Armed Police Forces, Tianjin 300162, China
| | - Jingyang Li
- Logistics College of Chinese People’s Armed Police Forces, Tianjin 300309, China
| | - Jingze Zhang
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin 300380, China
- Corresponding authors.
| | - Dailin Liu
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin 300380, China
- Corresponding authors.
| |
Collapse
|
31
|
Advances in glioma-associated oncogene (GLI) inhibitors for cancer therapy. Invest New Drugs 2021; 40:370-388. [PMID: 34837604 DOI: 10.1007/s10637-021-01187-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/22/2021] [Indexed: 10/19/2022]
Abstract
The Hedgehog/Glioma-associated oncogene homolog (HH/GLI) signaling pathway regulates self-renewal of rare and highly malignant cancer stem cells, which have been shown to account for the initiation and maintenance of tumor growth as well as for drug resistance, metastatic spread and relapse. As an important component of the Hh signaling pathway, glioma-associated oncogene (GLI) acts as a key signal transmission hub for various signaling pathways in many tumors. Here, we review direct and indirect inhibitors of GLI; summarize the abundant active structurally diverse natural GLI inhibitors; and discuss how to better develop and utilize GLI inhibitors to solve the problem of drug resistance in tumors of interest. In summary, GLI inhibitors will be promising candidates for various cancer treatments.
Collapse
|
32
|
Zhao S, Zhang X, Chen S, Zhang S. Long noncoding RNAs: fine-tuners hidden in the cancer signaling network. Cell Death Dis 2021; 7:283. [PMID: 34635646 PMCID: PMC8505617 DOI: 10.1038/s41420-021-00678-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/04/2021] [Accepted: 09/27/2021] [Indexed: 02/08/2023]
Abstract
With the development of sequencing technology, a large number of long non-coding RNAs (lncRNAs) have been identified in addition to coding genes. LncRNAs, originally considered as junk RNA, are dysregulated in various types of cancer. Although protein-coding signaling pathways underlie various biological activities, and abnormal signal transduction is a key trigger and indicator for tumorigenesis and cancer progression, lncRNAs are sparking keen interest due to their versatile roles in fine-tuning signaling pathways. We are just beginning to scratch the surface of lncRNAs. Therefore, despite the fact that lncRNAs drive malignant phenotypes from multiple perspectives, in this review, we focus on important signaling pathways modulated by lncRNAs in cancer to demonstrate an up-to-date understanding of this emerging field.
Collapse
Affiliation(s)
- Shanshan Zhao
- grid.412467.20000 0004 1806 3501Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Reproductive Medicine Center, Obstetrics and Gynecology Department, Shengjing Hospital Affiliated to China Medical University, 110022 Shenyang, Liaoning China
| | - Xue Zhang
- grid.412449.e0000 0000 9678 1884Department of Epigenetics, China Medical University, 110122 Shenyang, Liaoning China
| | - Shuo Chen
- grid.417009.b0000 0004 1758 4591Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, 510150 Guangzhou, Guangdong China
| | - Song Zhang
- grid.412636.4Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, 110001 Shenyang, Liaoning China ,grid.412449.e0000 0000 9678 1884Department of Environmental and Occupational Health, School of Public Health, China Medical University, 110122 Shenyang, Liaoning China
| |
Collapse
|
33
|
Dong S, Li GX, Fang JH, Chen X, Sun YT. Advances in understanding of relationship between Hhip and Lpar2 gene expression and gastric cancer. Shijie Huaren Xiaohua Zazhi 2021; 29:1049-1054. [DOI: 10.11569/wcjd.v29.i18.1049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is a malignant tumor derived from gastric mucosal epithelial cells. In recent years, it has been found that the Hhip and Lpar2 genes play an important role in the development of GC. The Hhip gene can inhibit the proliferation and invasion of GC cells by participating in the Hedgehog signaling pathway, while the Lpar2 gene promotes the development of GC by activating the ATX-LPA signaling pathway. In this paper, we will review the changes of expression levels, molecular mechanism, and clinical application of Hhip and Lpar2 genes in GC patients.
Collapse
Affiliation(s)
- Sai Dong
- Department of Gastroenterology, Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, Zhejiang Province, China
| | - Guo-Xiong Li
- Department of Gastroenterology, Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, Zhejiang Province, China
| | - Jia-Heng Fang
- Department of Gastroenterology, Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, Zhejiang Province, China
| | - Xin Chen
- Department of Gastroenterology, Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, Zhejiang Province, China
| | - Yi-Tian Sun
- Department of Gastroenterology, Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, Zhejiang Province, China
| |
Collapse
|
34
|
Peng Y, Meng G, Sheng X, Gao H. Transcriptome and DNA methylation analysis reveals molecular mechanisms underlying intrahepatic cholangiocarcinoma progression. J Cell Mol Med 2021; 25:6373-6387. [PMID: 34013637 PMCID: PMC8256365 DOI: 10.1111/jcmm.16615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 12/26/2022] Open
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is an aggressive malignancy with increasing incidence. It has been suggested that DNA methylation drives cancer development. However, the molecular mechanisms underlying iCCA progression and the roles of DNA methylation still remain elusive. In this study, weighted correlation networks were constructed to identify gene modules and hub genes associated with the tumour stage. We identified 12 gene modules, two of which were significantly positively or negatively related to the tumour stage, respectively. Key hub genes SLC2A1, CDH3 and EFHD2 showed increased expression across the tumour stage and were correlated with poor survival, whereas decrease of FAM171A1, ONECUT1 and PHYHIPL was correlated with better survival. Pathway analysis revealed hedgehog pathway was activated in CDH3 up-regulated tumours, and chromosome separation was elevated in tumours expressing high EFHD2. JAK-STAT pathway was overrepresented in ONECUT1 down-regulated tumours, whereas Rho GTPases-formins signalling was activated in PHYHIPL down-regulated tumours. Finally, significant negative associations between expression of EFHD2, PHYHIPL and promoter DNA methylation were detected, and alterations of DNA methylation were correlated with tumour survival. In summary, we identified key genes and pathways that may participate in progression of iCCA and proposed putative roles of DNA methylation in iCCA.
Collapse
Affiliation(s)
- Yuming Peng
- First Department of General SurgeryHunan Children’s HospitalChangshaChina
| | - Guohao Meng
- Department of PathophysiologyKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiaotong University School of MedicineShanghaiChina
| | - Xinyi Sheng
- First Department of General SurgeryHunan Children’s HospitalChangshaChina
| | - Hongqiang Gao
- First Department of General SurgeryHunan Children’s HospitalChangshaChina
| |
Collapse
|
35
|
Angrisani A, Di Fiore A, Di Trani CA, Fonte S, Petroni M, Lospinoso Severini L, Bordin F, Belloni L, Ferretti E, Canettieri G, Moretti M, De Smaele E. Specific Protein 1 and p53 Interplay Modulates the Expression of the KCTD-Containing Cullin3 Adaptor Suppressor of Hedgehog 2. Front Cell Dev Biol 2021; 9:638508. [PMID: 33898425 PMCID: PMC8060498 DOI: 10.3389/fcell.2021.638508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/10/2021] [Indexed: 12/30/2022] Open
Abstract
The Hedgehog (Hh) signaling pathway plays a crucial role in normal embryonic development and adult tissue homeostasis. On the other end, dysregulated Hh signaling triggers a prolonged mitogenic response that may prompt abnormal cell proliferation, favoring tumorigenesis. Indeed, about 30% of medulloblastomas (MBs), the most common malignant childhood cerebellar tumors, exhibit improper activation of the Hh signaling. The oncosuppressor KCASH2 has been described as a suppressor of the Hh signaling pathway, and low KCASH2 expression was observed in Hh-dependent MB tumor. Therefore, the study of the modulation of KCASH2 expression may provide fundamental information for the development of new therapeutic approaches, aimed to restore physiological KCASH2 levels and Hh inhibition. To this end, we have analyzed the TATA-less KCASH2 proximal promoter and identified key transcriptional regulators of this gene: Sp1, a TF frequently overexpressed in tumors, and the tumor suppressor p53. Here, we show that in WT cells, Sp1 binds KCASH2 promoter on several putative binding sites, leading to increase in KCASH2 expression. On the other hand, p53 is involved in negative regulation of KCASH2. In this context, the balance between p53 and Sp1 expression, and the interplay between these two proteins determine whether Sp1 acts as an activator or a repressor of KCASH2 transcription. Indeed, in p53–/– MEF and p53 mutated tumor cells, we hypothesize that Sp1 drives promoter methylation through increased expression of the DNA methyltransferase 1 (DNMT1) and reduces KCASH2 transcription, which can be reversed by Sp1 inhibition or use of demethylating agents. We suggest therefore that downregulation of KCASH2 expression in tumors could be mediated by gain of Sp1 activity and epigenetic silencing events in cells where p53 functionality is lost. This work may open new venues for novel therapeutic multidrug approaches in the treatment of Hh-dependent tumors carrying p53 deficiency.
Collapse
Affiliation(s)
| | | | | | - Simone Fonte
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | | | | | - Fabio Bordin
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Laura Belloni
- Department of Internal, Anesthesiological and Cardiovascular Clinical Sciences, Sapienza University of Rome, Rome, Italy
| | - Elisabetta Ferretti
- Department of Experimental Medicine, Sapienza University, Rome, Italy.,Istituto Pasteur, Fondazione Cenci-Bolognetti, Sapienza University, Rome, Italy
| | - Gianluca Canettieri
- Department of Molecular Medicine, Sapienza University, Rome, Italy.,Istituto Pasteur, Fondazione Cenci-Bolognetti, Sapienza University, Rome, Italy
| | - Marta Moretti
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Enrico De Smaele
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
36
|
Zhang J, Fan J, Zeng X, Nie M, Luan J, Wang Y, Ju D, Yin K. Hedgehog signaling in gastrointestinal carcinogenesis and the gastrointestinal tumor microenvironment. Acta Pharm Sin B 2021; 11:609-620. [PMID: 33777671 PMCID: PMC7982428 DOI: 10.1016/j.apsb.2020.10.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/29/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022] Open
Abstract
The Hedgehog (HH) signaling pathway plays important roles in gastrointestinal carcinogenesis and the gastrointestinal tumor microenvironment (TME). Aberrant HH signaling activation may accelerate the growth of gastrointestinal tumors and lead to tumor immune tolerance and drug resistance. The interaction between HH signaling and the TME is intimately involved in these processes, for example, tumor growth, tumor immune tolerance, inflammation, and drug resistance. Evidence indicates that inflammatory factors in the TME, such as interleukin 6 (IL-6) and interferon-γ (IFN-γ), macrophages, and T cell-dependent immune responses, play a vital role in tumor growth by affecting the HH signaling pathway. Moreover, inhibition of proliferating cancer-associated fibroblasts (CAFs) and inflammatory factors can normalize the TME by suppressing HH signaling. Furthermore, aberrant HH signaling activation is favorable to both the proliferation of cancer stem cells (CSCs) and the drug resistance of gastrointestinal tumors. This review discusses the current understanding of the role and mechanism of aberrant HH signaling activation in gastrointestinal carcinogenesis, the gastrointestinal TME, tumor immune tolerance and drug resistance and highlights the underlying therapeutic opportunities.
Collapse
Key Words
- 5-Fu, 5-fluorouracil
- ALK5, TGF-β receptor I kinase
- ATO, arsenic trioxide
- BCC, basal cell carcinoma
- BCL-2, B cell lymphoma 2
- BMI-1, B cell-specific moloney murine leukemia virus insertion region-1
- CAFs, cancer-associated fibroblasts
- CSCs, cancer stem cells
- Cancer stem cells
- Carcinogenesis
- DHH, Desert Hedgehog
- Drug resistance
- EGF, epidermal growth factor
- FOLFOX, oxaliplatin
- G protein coupled receptor kinase 2, HH
- Gastrointestinal cancer
- Hedgehog
- Hedgehog, HIF-1α
- IHH, Indian Hedgehog
- IL-10/6, interleukin 10/6
- ITCH, itchy E3 ubiquitin ligase
- MDSCs, myeloid-derived suppressor cells
- NK, natural killer
- NOX4, NADPH Oxidase 4
- PD-1, programmed cell death-1
- PD-L1, programmed cell death ligand-1
- PKA, protein kinase A
- PTCH, Patched
- ROS, reactive oxygen species
- SHH, Sonic Hedgehog
- SMAD3, mothers against decapentaplegic homolog 3
- SMO, Smoothened
- SNF5, sucrose non-fermenting 5
- STAT3, signal transducer and activator of transcription 3
- SUFU, Suppressor of Fused
- TAMs, tumor-related macrophages
- TGF-β, transforming growth factor β
- TME, tumor microenvironment
- Tumor microenvironment
- VEGF, vascular endothelial growth factor
- WNT, Wingless/Integrated
- and leucovorin, GLI
- ch5E1, chimeric monoclonal antibody 5E1
- glioma-associated oncogene homologue, GRK2
- hypoxia-inducible factor 1α, IFN-γ: interferon-γ
- βArr2, β-arrestin2
Collapse
Affiliation(s)
- Jinghui Zhang
- Department of Gastrointestinal Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Jiajun Fan
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai 201203, China
- Shanghai Engineering Research Center of Immunotherapeutics, Shanghai 201203, China
| | - Xian Zeng
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai 201203, China
- Shanghai Engineering Research Center of Immunotherapeutics, Shanghai 201203, China
| | - Mingming Nie
- Department of Gastrointestinal Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Jingyun Luan
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai 201203, China
- Shanghai Engineering Research Center of Immunotherapeutics, Shanghai 201203, China
| | - Yichen Wang
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai 201203, China
- Shanghai Engineering Research Center of Immunotherapeutics, Shanghai 201203, China
| | - Dianwen Ju
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai 201203, China
- Shanghai Engineering Research Center of Immunotherapeutics, Shanghai 201203, China
- Corresponding authors. Tel./fax: +86 21 65349106 (Kai Yin); Tel.: +86 21 5198 0037; Fax +86 21 5198 0036 (Dianwen Ju).
| | - Kai Yin
- Department of Gastrointestinal Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
- Corresponding authors. Tel./fax: +86 21 65349106 (Kai Yin); Tel.: +86 21 5198 0037; Fax +86 21 5198 0036 (Dianwen Ju).
| |
Collapse
|
37
|
Zhao H, Li N, Pang Y, Zhao J, Wu X. Gli affects the stemness and prognosis of epithelial ovarian cancer via homeobox protein NANOG. Mol Med Rep 2020; 23:128. [PMID: 33313950 PMCID: PMC7751457 DOI: 10.3892/mmr.2020.11767] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/10/2020] [Indexed: 12/29/2022] Open
Abstract
Gli proteins are key transcription factors of the Hedgehog (HH) signaling pathway, which is associated with tumorigenesis and drug resistance. However, the role of the HH signaling pathway in epithelial ovarian cancer (EOC) remains unclear. Studies have demonstrated that in some tumors, homeobox protein NANOG (NANOG), a known stem cell marker, is a downstream effector of Gli. However, limited research has been conducted on the association between Gli and NANOG in EOC, particularly regarding their roles in the tumor stemness, such as tumor development, drug resistance and patient prognosis. Thus, the aim of the present study was to explore the aforementioned issues. In this study, Gli1, Gli2 and NANOG expression in EOC tissues was assessed using immunohistochemistry. Gene expression was also assessed using western blotting and reverse transcription-quantitative PCR in SKOV3 cells treated with a Gli inhibitor and an HH agonist. Furthermore, cell proliferation, colony-forming ability and cisplatin sensitivity were assessed using Cell Counting Kit-8 and colony formation assays. The results showed that both Gli1 and NANOG were associated with cisplatin resistance and EOC disease stage, while the nuclear expression of Gli2 was significantly associated with cisplatin resistance. Together, the expression of Gli and NANOG predicted poor patient prognosis. Targeting Gli with GANT61 impeded tumor proliferation, reversed cisplatin resistance and colony formation, and reduced NANOG expression. To conclude, Gli and NANOG may be effective indicators of platinum resistance and prognosis in EOC. Targeting Gli may reduce the stemness of ovarian cancer cell, which may be achieved via indirect targeting of NANOG.
Collapse
Affiliation(s)
- Huan Zhao
- Department of Obstetrics and Gynecology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Na Li
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei 050000, P.R. China
| | - Yicun Pang
- Department of Obstetrics and Gynecology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Jun Zhao
- Department of Obstetrics and Gynecology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Xiaohua Wu
- Teaching and Research Section of Obstetrics and Gynecology, Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
38
|
Yao H, Sun L, Li J, Zhou X, Li R, Shao R, Zhang Y, Li L. A Novel Therapeutic siRNA Nanoparticle Designed for Dual-Targeting CD44 and Gli1 of Gastric Cancer Stem Cells. Int J Nanomedicine 2020; 15:7013-7034. [PMID: 33061365 PMCID: PMC7522319 DOI: 10.2147/ijn.s260163] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/07/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose Gastric cancer stem cells (CSCs) are important for the initiation, growth, recurrence, and metastasis of gastric cancer, due to their chemo-resistance and indefinite proliferation. Herein, to eliminate gastric CSCs, we developed novel CSC-targeting glioma-associated oncogene homolog 1 (Gli1) small interfering RNA (siRNA) nanoparticles that are specifically guided by a di-stearoyl-phosphatidyl-ethanolamine- hyaluronic-acid (DSPE-HA) single-point conjugate, as an intrinsic ligand of the CD44 receptor. We refer to these as targeting Gli1 siRNA nanoparticles. Methods We used the reductive amination reaction method for attaching amine groups of DSPE to aldehydic group of hyaluronic acid (HA) at the reducing end, to synthesize the DSPE-HA single-point conjugate. Next, targeting Gli1 siRNA nanoparticles were prepared using the layer-by-layer assembly method. We characterized the stem cellular features of targeting Gli1 siRNA nanoparticles, including their targeting efficiency, self-renewal capacity, the migration and invasion capacity of gastric CSCs, and the penetration ability of 3D tumor spheroids. Next, we evaluated the therapeutic efficacy of the targeting Gli1 siRNA nanoparticles by using in vivo relapsed tumor models of gastric CSCs. Results Compared with the multipoint conjugates, DSPE-HA single-point conjugates on the surface of nanoparticles showed significantly higher binding affinities with CD44. The targeting Gli1 siRNA nanoparticles significantly decreased Gli1 protein expression, inhibited CSC tumor spheroid and colony formation, and suppressed cell migration and invasion. Furthermore, in vivo imaging demonstrated that targeting Gli1 siRNA nanoparticles accumulated in tumor tissues, showing significant antitumor recurrence efficacy in vivo. Conclusion In summary, our targeting Gli1 siRNA nanoparticles significantly inhibited CSC malignancy features by specifically blocking Hedgehog (Hh) signaling both in vitro and in vivo, suggesting that this novel siRNA delivery system that specifically eliminates gastric CSCs provides a promising targeted therapeutic strategy for gastric cancer treatment.
Collapse
Affiliation(s)
- Hongjuan Yao
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100050, People's Republic of China
| | - Lan Sun
- Key Laboratory of Nanopharmacology and Nanotoxicology, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China
| | - Jingcao Li
- Key Laboratory of Nanopharmacology and Nanotoxicology, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China
| | - Xiaofei Zhou
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100050, People's Republic of China
| | - Rui Li
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100050, People's Republic of China
| | - Rongguang Shao
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100050, People's Republic of China
| | - Yingge Zhang
- Key Laboratory of Nanopharmacology and Nanotoxicology, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China
| | - Liang Li
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100050, People's Republic of China
| |
Collapse
|
39
|
The Role of Smoothened in Cancer. Int J Mol Sci 2020; 21:ijms21186863. [PMID: 32962123 PMCID: PMC7555769 DOI: 10.3390/ijms21186863] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Smoothened (SMO) belongs to the Hedgehog (HH) signaling pathway, which regulates cell growth, migration, invasion and stem cells in cancer. The HH signaling pathway includes both canonical and noncanonical pathways. The canonical HH pathway functions through major HH molecules such as HH ligands, PTCH, SMO and GLI, whereas the noncanonical HH pathway involves the activation of SMO or GLI through other pathways. The role of SMO has been discussed in different types of cancer, including breast, liver, pancreatic and colon cancers. SMO expression correlates with tumor size, invasiveness, metastasis and recurrence. In addition, SMO inhibitors can suppress cancer formation, reduce the proliferation of cancer cells, trigger apoptosis and suppress cancer stem cell activity. A better understanding of the role of SMO in cancer could contribute to the development of novel therapeutic approaches.
Collapse
|
40
|
Age, sex, and specific gene mutations affect the effects of immune checkpoint inhibitors in colorectal cancer. Pharmacol Res 2020; 159:105028. [PMID: 32569820 DOI: 10.1016/j.phrs.2020.105028] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/06/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023]
Abstract
The effect of age and sex on the predictive value of colorectal cancer (CRC) patients treated with immune checkpoint inhibitors (ICIs) has been controversial, and the effect of specific gene mutations on the predictive value of CRC patients treated with ICIs remains to be explored. Our study analyzed the influence of the above factors on the overall survival (OS) of CRC patients receiving ICIs and explored the influencing mechanism of various predictive biomakers. We performed survival prognostic correlation analysis and bioinformatics analysis on the clinical CRC cohort receiving ICIs in from the Memorial Sloan Kettering Cancer Center (MSKCC) and the clinical and genetic data from The Cancer Genome Atlas (TCGA)-CRC dataset, including immunogenicity analysis, tumor immune microenvironment analysis, and gene set enrichment analysis and so on. We found that mutation count >11 mutation/Mb (tumor mutation burden, TMB-high) (HR = 0.22, 95 %CI: 0.09-0.53; P < 0.001), male (HR = 0.51, 95 %CI: 0.28-0.93; P = 0.029), RNF43-mutant (MT) (HR = 0.12, 95 %CI: 0.03-0.49; P = 0.003), CREBBP-MT (HR = 0.23, 95 %CI: 0.07-0.76; P = 0.016), NOTCH3-MT (HR = 0.17, 95 %CI: 0.04-0.74; P = 0018), PTCH1-MT (HR = 0.27, 95 %CI: 0.08-0.9; P = 0.033), CIC-MT (HR = 0.23, 95 %CI: 0.05-0.93; P = 0.040), DNMT1-MT (HR = 0.12, 95 %CI: 0.02-0.93; P = 0.043) and SPEN-MT (HR = 0.31, 95 %CI: 0.09-0.99; P < 0.049) are all related to longer OS, but age≤65 years (HR = 3.01, 95 %CI: 1.18-7.65; P = 0.021), APC-MT (HR = 2.51, 95 %CI: 1.12-5.63; P = 0.026) and TP53-MT (HR = 1.94, 95 %CI: 1.03-3.65; P = 0.041) are associated with shorter OS. The reason why positive predictive markers provide survival benefits to CRC may be related to higher immunogenicity such as TMB, highly expression of mRNA related to immune response, highly infiltrating immune-active cells such as CD8 + T cells, active immune-active pathways, and DNA damage repair pathways with an increased number of mutations.
Collapse
|
41
|
Wuputra K, Ku CC, Wu DC, Lin YC, Saito S, Yokoyama KK. Prevention of tumor risk associated with the reprogramming of human pluripotent stem cells. J Exp Clin Cancer Res 2020; 39:100. [PMID: 32493501 PMCID: PMC7268627 DOI: 10.1186/s13046-020-01584-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023] Open
Abstract
Human pluripotent embryonic stem cells have two special features: self-renewal and pluripotency. It is important to understand the properties of pluripotent stem cells and reprogrammed stem cells. One of the major problems is the risk of reprogrammed stem cells developing into tumors. To understand the process of differentiation through which stem cells develop into cancer cells, investigators have attempted to identify the key factors that generate tumors in humans. The most effective method for the prevention of tumorigenesis is the exclusion of cancer cells during cell reprogramming. The risk of cancer formation is dependent on mutations of oncogenes and tumor suppressor genes during the conversion of stem cells to cancer cells and on the environmental effects of pluripotent stem cells. Dissecting the processes of epigenetic regulation and chromatin regulation may be helpful for achieving correct cell reprogramming without inducing tumor formation and for developing new drugs for cancer treatment. This review focuses on the risk of tumor formation by human pluripotent stem cells, and on the possible treatment options if it occurs. Potential new techniques that target epigenetic processes and chromatin regulation provide opportunities for human cancer modeling and clinical applications of regenerative medicine.
Collapse
Affiliation(s)
- Kenly Wuputra
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 807, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Chia-Chen Ku
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 807, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Deng-Chyang Wu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Ying-Chu Lin
- School of Dentistry, School of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Shigeo Saito
- Waseda University Research Institute for Science and Engineering, Shinjuku, Tokyo, 162-8480, Japan.
- Saito Laboratory of Cell Technology Institute, Yaita, Tochigi, 329-1571, Japan.
| | - Kazunari K Yokoyama
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 807, Taiwan.
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
- Waseda University Research Institute for Science and Engineering, Shinjuku, Tokyo, 162-8480, Japan.
| |
Collapse
|