1
|
Subbalakshmi AR, Ramisetty S, Mohanty A, Pareek S, Do D, Shrestha S, Khan A, Talwar N, Tan T, Vishnubhotla P, Singhal SS, Salgia R, Kulkarni P. Phenotypic Plasticity and Cancer: A System Biology Perspective. J Clin Med 2024; 13:4302. [PMID: 39124569 PMCID: PMC11313222 DOI: 10.3390/jcm13154302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/01/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a major axis of phenotypic plasticity not only in diseased conditions such as cancer metastasis and fibrosis but also during normal development and wound healing. Yet-another important axis of plasticity with metastatic implications includes the cancer stem cell (CSCs) and non-CSC transitions. However, in both processes, epithelial (E) and mesenchymal (M) phenotypes are not merely binary states. Cancer cells acquire a spectrum of phenotypes with traits, properties, and markers of both E and M phenotypes, giving rise to intermediary hybrid (E/M) phenotypes. E/M cells play an important role in tumor initiation, metastasis, and disease progression in multiple cancers. Furthermore, the hybrid phenotypes also play a major role in causing therapeutic resistance in cancer. Here, we discuss how a systems biology perspective on the problem, which is implicit in the 'Team Medicine' approach outlined in the theme of this Special Issue of The Journal of Clinical Medicine and includes an interdisciplinary team of experts, is more likely to shed new light on EMT in cancer and help us to identify novel therapeutics and strategies to target phenotypic plasticity in cancer.
Collapse
Affiliation(s)
- Ayalur Raghu Subbalakshmi
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (A.R.S.)
| | - Sravani Ramisetty
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (A.R.S.)
| | - Atish Mohanty
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (A.R.S.)
| | - Siddhika Pareek
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (A.R.S.)
| | - Dana Do
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (A.R.S.)
| | - Sagun Shrestha
- Department of Medical Oncology and Therapeutics Research, City of Hope Phoenix, Goodyear, AZ 85338, USA
| | - Ajaz Khan
- Department of Medical Oncology and Therapeutics Research, City of Hope Chicago, Zion, IL 60099, USA
| | - Neel Talwar
- Department of Medical Oncology and Therapeutics Research, City of Hope San Bernardino Road, Upland, CA 91786, USA
| | - Tingting Tan
- Department of Medical Oncology and Therapeutics Research, City of Hope Avocado Avenue, Newport Beach, CA 92660, USA
| | - Priya Vishnubhotla
- Department of Medical Oncology and Therapeutics Research, City of Hope Atlanta, Newnan, GA 30265, USA
| | - Sharad S. Singhal
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (A.R.S.)
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (A.R.S.)
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (A.R.S.)
- Department of Systems Biology, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
2
|
Pan Y, Cai M, Zhang F, Liu X, Li M, Xie B, Li J. Diagnostic Significance of Serum Long Noncoding HOX Antisense Intergenic Ribonucleic Acid in Patients with Hepatitis B Virus Related Hepatocellular Carcinoma. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2024; 35:391-397. [PMID: 39128100 PMCID: PMC11181209 DOI: 10.5152/tjg.2024.23314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/06/2023] [Indexed: 08/13/2024]
Abstract
BACKGROUND/AIMS Hepatocellular carcinoma (HCC) is one of the most common malignant tumors and the third leading cause of cancer-related mortality. Extensive literature suggests that long noncoding RNAs play a role in the progression of HCC and hold potential as diagnostic biomarkers for this disease. MATERIALS AND METHODS We examined the serum levels of HOX antisense intergenic RNA (HOTAIR) in 49 hepatitis patients, 31 liver cirrhosis (LC), and 37 HCC patients using quantitative real-time polymerase chain reaction. Correlations between serum HOTAIR levels and clinical data were evaluated in HCC patients. The receiver operating characteristic curve was utilized to analyze the diagnostic potency of HOTAIR. RESULTS The HOTAIR levels in serum were significantly higher in HCC patients compared to those with hepatitis (P = .003) and LC patients (P = .048). There was a significant association between the serum levels of HOTAIR and positivity of hepatitis B e antigen (HBeAg) (P = .039) as well as portal vein tumor thrombus (P = .040) in HCC patients. The area under the curve (AUC) for HOTAIR for distinguishing HCC from hepatitis and LC was 0.697. The combined AUC for HOTAIR, HBeAg, and alpha-fetoprotein (AFP) was 0.777. CONCLUSION Serum HOTAIR functions as a potential diagnostic marker for hepatitis B virus-related HCC. Combining HOTAIR with clinical data and AFP can reinforce the diagnostic precision on HCC.
Collapse
Affiliation(s)
- Yue Pan
- Department of Clinical Laboratory, The Public Health Clinical Center of Dalian, Dalian, Liaoning Province, China
| | - Meng Cai
- Department of Clinical Laboratory, The Public Health Clinical Center of Dalian, Dalian, Liaoning Province, China
| | - Fan Zhang
- Department of Clinical Laboratory, The Public Health Clinical Center of Dalian, Dalian, Liaoning Province, China
| | - Xiaoming Liu
- Department of Clinical Laboratory, The Public Health Clinical Center of Dalian, Dalian, Liaoning Province, China
| | - Menghua Li
- Department of Clinical Laboratory, The Public Health Clinical Center of Dalian, Dalian, Liaoning Province, China
| | - Bingxin Xie
- Department of Clinical Laboratory, The Public Health Clinical Center of Dalian, Dalian, Liaoning Province, China
| | - Ju Li
- Department of Clinical Laboratory, The Public Health Clinical Center of Dalian, Dalian, Liaoning Province, China
| |
Collapse
|
3
|
Wang R, Yan Z. Cancer spreading patterns based on epithelial-mesenchymal plasticity. Front Cell Dev Biol 2024; 12:1259953. [PMID: 38665432 PMCID: PMC11043583 DOI: 10.3389/fcell.2024.1259953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Introduction: Metastasis is a major cause of cancer-related deaths, underscoring the necessity to discern the rules and patterns of cancer cell spreading. Epithelial-mesenchymal plasticity contributes to cancer aggressiveness and metastasis. Despite establishing key determinants of cancer aggressiveness and metastatic ability, a comprehensive understanding of the underlying mechanism is unknown. We aimed to propose a classification system for cancer cells based on epithelial-mesenchymal plasticity, focusing on hysteresis of the epithelial-mesenchymal transition and the hybrid epithelial/mesenchymal phenotype. Methods: We extensively reviewed the concept of epithelial-mesenchymal plasticity, specifically considering the hysteresis of the epithelial-mesenchymal transition and the hybrid epithelial/mesenchymal phenotype. Results: In this review and hypothesis article, based on epithelial-mesenchymal plasticity, especially the hysteresis of epithelial-mesenchymal transition and the hybrid epithelial/mesenchymal phenotype, we proposed a classification of cancer cells, indicating that cancer cells with epithelial-mesenchymal plasticity potential could be classified into four types: irreversible hysteresis, weak hysteresis, strong hysteresis, and hybrid epithelial/mesenchymal phenotype. These four types of cancer cells had varied biology, spreading features, and prognoses. Discussion: Our results highlight that the proposed classification system offers insights into the diverse behaviors of cancer cells, providing implications for cancer aggressiveness and metastasis.
Collapse
Affiliation(s)
- Rui Wang
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhaopeng Yan
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Bagci G, Comez D, Topel H, Yilmaz Y, Bagirsakci E, Gunes A, Batı Ayaz G, Tahmaz I, Bilgen M, Solmaz G, Pesen Okvur D, Atabey N. c-Met activation promotes extravasation of hepatocellular carcinoma cells into 3D-cultured hepatocyte cells in lab-on-a-chip device. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119557. [PMID: 37549739 DOI: 10.1016/j.bbamcr.2023.119557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/14/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023]
Abstract
Activation of c-Met signaling is associated with an aggressive phenotype and poor prognosis in hepatocellular carcinoma (HCC); however, its contribution to organ preference in metastasis remains unclear. In this study, using a Lab on a Chip device, we defined the role of aberrant c-Met activation in regulating the extravasation and homing capacity of HCC cells. Our studies showed that (i) c-Met overexpression and activation direct HCC cells preferentially towards the hepatocytes-enriched microenvironment, and (ii) blockage of c-Met phosphorylation by a small molecule inhibitor attenuated extravasation and homing capacity of HCC cells. These results, thus, demonstrate the role of c-Met signaling in regulating the colonization of HCC cells preferentially in the liver.
Collapse
Affiliation(s)
- Gulsun Bagci
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340 Izmir, Turkey; Department of Molecular Biology and Genetics, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Balcova, 35340 Izmir, Turkey
| | - Dehan Comez
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340 Izmir, Turkey; Department of Molecular Biology and Genetics, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Balcova, 35340 Izmir, Turkey
| | - Hande Topel
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340 Izmir, Turkey; Department of Medical Biology and Genetics, Graduate School of Health Sciences, Dokuz Eylul University, Balcova, 35340 Izmir, Turkey
| | - Yeliz Yilmaz
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340 Izmir, Turkey; Department of Medical Biology and Genetics, Graduate School of Health Sciences, Dokuz Eylul University, Balcova, 35340 Izmir, Turkey
| | - Ezgi Bagirsakci
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340 Izmir, Turkey; Department of Molecular Biology and Genetics, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Balcova, 35340 Izmir, Turkey
| | - Aysim Gunes
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340 Izmir, Turkey
| | - Gizem Batı Ayaz
- Biotechnology and Bioengineering Graduate Program, Izmir Institute of Technology, Gulbahce, Urla, 35430 Izmir, Turkey
| | - Ismail Tahmaz
- Biotechnology and Bioengineering Graduate Program, Izmir Institute of Technology, Gulbahce, Urla, 35430 Izmir, Turkey
| | - Muge Bilgen
- Biotechnology and Bioengineering Graduate Program, Izmir Institute of Technology, Gulbahce, Urla, 35430 Izmir, Turkey
| | - Gulhas Solmaz
- Izmir Tinaztepe University, Galen Research Center, Buca, 35400, Izmir, Turkey
| | - Devrim Pesen Okvur
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Gulbahce, Urla, 35430 Izmir, Turkey
| | - Nese Atabey
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340 Izmir, Turkey; Izmir Tinaztepe University, Galen Research Center, Buca, 35400, Izmir, Turkey; Izmir Tinaztepe University, Faculty of Medicine, Department of Medical Biology and Genetics, Buca, 35400 Izmir, Turkey.
| |
Collapse
|
5
|
Tang C, Qin L, Li J. A novel anoikis-related gene signature predicts prognosis in patients with breast cancer and reveals immune infiltration. Medicine (Baltimore) 2023; 102:e35732. [PMID: 37904416 PMCID: PMC10615559 DOI: 10.1097/md.0000000000035732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/29/2023] [Indexed: 11/01/2023] Open
Abstract
Breast cancer (BRCA) is a common malignancy worldwide that is associated with a high mortality rate. Despite recent improvements in diagnosis and treatment, there is an urgent need to investigate the processes underlying cancer progression and identify novel prognostic indicators. Anoikis, which plays a role in the development of human malignant tumors, has been gaining increasing interest from researchers. However, the potential role of anoikis-related genes (ANRGs) in the advancement of BRCA remains unknown. In this study, we aimed to assess the predictive value of ANRGs in BRCA, construct a prognostic model based on ANRGs, and explore the tumor microenvironment in different prognostic score groups. This study utilized data from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases to collect clinical information and RNA sequencing data from patients with BRCA. Information on ANRGs was gathered from GeneCards and Harmonizome portals. A risk score model based on ANRGs was created using least absolute shrinkage and selection operator Cox (LASSO) regression analysis. Additionally, the study explored the tumor microenvironment and enriched pathways in different risk groups. Finally, a novel ANRG-based nomogram is developed. A total of 142 differentially expressed genes associated with survival were identified, of which 5 genes were selected to create the ANRG signature. The risk score based on this signature proved to be an independent prognostic factor. Further analysis revealed that different risk subgroups exhibited variations in the tumor microenvironment and drug sensitivities. Subsequently, a nomogram was developed using risk scores and clinicopathological factors. The decision curve analysis results suggest that patients with BRCA might derive clinical treatment benefits from utilizing this prognostic model. Based on the results of this study, the ANRG signature and nomograph established can be used for clinical decision-making in patients with BRCA.
Collapse
Affiliation(s)
- Chaoyi Tang
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liuqing Qin
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiehua Li
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
6
|
Pei R, Zhao L, Ding Y, Su Z, Li D, Zhu S, Xu L, Zhao W, Zhou W. JMJD6-BRD4 complex stimulates lncRNA HOTAIR transcription by binding to the promoter region of HOTAIR and induces radioresistance in liver cancer stem cells. J Transl Med 2023; 21:752. [PMID: 37880710 PMCID: PMC10599021 DOI: 10.1186/s12967-023-04394-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/21/2022] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Long non-coding RNA (lncRNA) HOTAIR acts importantly in liver cancer development, but its effect on radioresistance remains poorly understood. Here, our study probed into the possible impact of HOTAIR in radioresistance in liver cancer stem cells (LCSCs) and to elucidate its molecular basis. METHODS Following sorting of stem and non-stem liver cancer cells, LCSCs were identified and subjected to RNA-seq analysis for selecting differentially expressed genes. Expression of HOTAIR was determined in liver cancer tissues and CSCs. The stemness, proliferation, apoptosis and radioresistance of LCSCs were then detected in response to altered expression of HOTAIR-LSD1-JMJD6-BRD4. RESULTS Ectopic HOTAIR expression was found to promote radioresistance of LCSCs by maintaining its stemness. Mechanistic investigations indicated that HOTAIR recruited LSD1 to the MAPK1 promoter region and reduced the level of H3K9me2 in the promoter region, thus elevating ERK2 (MAPK1) expression. JMJD6-BRD4 complex promoted HOTAIR transcription by forming a complex and positively regulated ERK2 (MAPK1) expression, maintaining the stemness of LCSCs, and ultimately promoting their radioresistance in vitro and in vivo. CONCLUSION Collectively, our work highlights the promoting effect of the JMJD6-BRD4 complex on the radioresistance of LCSCs through a HOTAIR-dependent mechanism.
Collapse
Affiliation(s)
- Ruifeng Pei
- Department of Hepatopancreatobiliary Surgery, Xuzhou Cancer Hospital, Gulou District, No. 131, Huancheng Road, Xuzhou, 221005, Jiangsu, People's Republic of China
| | - Le Zhao
- Department of Hepatopancreatobiliary Surgery, Xuzhou Cancer Hospital, Gulou District, No. 131, Huancheng Road, Xuzhou, 221005, Jiangsu, People's Republic of China
| | - Yiren Ding
- Department of Hepatopancreatobiliary Surgery, Xuzhou Cancer Hospital, Gulou District, No. 131, Huancheng Road, Xuzhou, 221005, Jiangsu, People's Republic of China
| | - Zhan Su
- Department of Hepatopancreatobiliary Surgery, Xuzhou Cancer Hospital, Gulou District, No. 131, Huancheng Road, Xuzhou, 221005, Jiangsu, People's Republic of China
| | - Deqiang Li
- Department of Hepatopancreatobiliary Surgery, Xuzhou Cancer Hospital, Gulou District, No. 131, Huancheng Road, Xuzhou, 221005, Jiangsu, People's Republic of China
| | - Shuo Zhu
- Department of Hepatopancreatobiliary Surgery, Xuzhou Cancer Hospital, Gulou District, No. 131, Huancheng Road, Xuzhou, 221005, Jiangsu, People's Republic of China
| | - Lu Xu
- Department of Hepatopancreatobiliary Surgery, Xuzhou Cancer Hospital, Gulou District, No. 131, Huancheng Road, Xuzhou, 221005, Jiangsu, People's Republic of China
| | - Wei Zhao
- Department of Hepatopancreatobiliary Surgery, Xuzhou Cancer Hospital, Gulou District, No. 131, Huancheng Road, Xuzhou, 221005, Jiangsu, People's Republic of China.
| | - Wuyuan Zhou
- Department of Hepatopancreatobiliary Surgery, Xuzhou Cancer Hospital, Gulou District, No. 131, Huancheng Road, Xuzhou, 221005, Jiangsu, People's Republic of China.
| |
Collapse
|
7
|
Eun JW, Cheong JY, Jeong JY, Kim HS. A New Understanding of Long Non-Coding RNA in Hepatocellular Carcinoma-From m 6A Modification to Blood Biomarkers. Cells 2023; 12:2272. [PMID: 37759495 PMCID: PMC10528438 DOI: 10.3390/cells12182272] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
With recent advancements in biological research, long non-coding RNAs (lncRNAs) with lengths exceeding 200 nucleotides have emerged as pivotal regulators of gene expression and cellular phenotypic modulation. Despite initial skepticism due to their low sequence conservation and expression levels, their significance in various biological processes has become increasingly apparent. We provided an overview of lncRNAs and discussed their defining features and modes of operation. We then explored their crucial function in the hepatocarcinogenesis process, elucidating their complex involvement in hepatocellular carcinoma (HCC). The influential role of lncRNAs within the HCC tumor microenvironment is emphasized, illustrating their potential as key modulators of disease dynamics. We also investigated the significant influence of N6-methyladenosine (m6A) modification on lncRNA function in HCC, enhancing our understanding of both their roles and their upstream regulators. Additionally, the potential of lncRNAs as promising biomarkers was discussed in liver cancer diagnosis, suggesting a novel avenue for future research and clinical application. Finally, our work underscored the dual potential of lncRNAs as both contributors to HCC pathogenesis and innovative tools for its diagnosis. Existing challenges and prospective trajectories in lncRNA research are also discussed, emphasizing their potential in advancing liver cancer research.
Collapse
Affiliation(s)
- Jung Woo Eun
- Department of Gastroenterology, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea; (J.W.E.); (J.Y.C.)
| | - Jae Youn Cheong
- Department of Gastroenterology, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea; (J.W.E.); (J.Y.C.)
| | - Jee-Yeong Jeong
- Department of Biochemistry, College of Medicine, Kosin University, Seo-gu, Busan 49267, Republic of Korea;
- Institute for Medical Science, College of Medicine, Kosin University, Seo-gu, Busan 49267, Republic of Korea
| | - Hyung Seok Kim
- Department of Biochemistry, College of Medicine, Kosin University, Seo-gu, Busan 49267, Republic of Korea;
| |
Collapse
|
8
|
Zhao B, Lv Y. A biomechanical view of epigenetic tumor regulation. J Biol Phys 2023; 49:283-307. [PMID: 37004697 PMCID: PMC10397176 DOI: 10.1007/s10867-023-09633-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/12/2023] [Indexed: 04/04/2023] Open
Abstract
The occurrence and development of tumors depend on a complex regulation by not only biochemical cues, but also biomechanical factors in tumor microenvironment. With the development of epigenetic theory, the regulation of biomechanical stimulation on tumor progress genetically is not enough to fully illustrate the mechanism of tumorigenesis. However, biomechanical regulation on tumor progress epigenetically is still in its infancy. Therefore, it is particularly important to integrate the existing relevant researches and develop the potential exploration. This work sorted out the existing researches on the regulation of tumor by biomechanical factors through epigenetic means, which contains summarizing the tumor epigenetic regulatory mode by biomechanical factors, exhibiting the influence of epigenetic regulation under mechanical stimulation, illustrating its existing applications, and prospecting the potential. This review aims to display the relevant knowledge through integrating the existing studies on epigenetic regulation in tumorigenesis under mechanical stimulation so as to provide theoretical basis and new ideas for potential follow-up research and clinical applications. Mechanical factors under physiological conditions stimulate the tumor progress through epigenetic ways, and new strategies are expected to be found with the development of epidrugs and related delivery systems.
Collapse
Affiliation(s)
- Boyuan Zhao
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Yonggang Lv
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, No. 1 Sunshine Avenue, Jiangxia District, Wuhan, Hubei Province, 430200, People's Republic of China.
| |
Collapse
|
9
|
Chu DX, Jin Y, Wang BR, Jiao Y, Zhang CK, Guo ZH, Hu SZ, Li N. LncRNA HOTAIR Enhances Epithelial-to-mesenchymal Transition to Promote the Migration and Invasion of Liver Cancer by Regulating NUAK1 via Epigenetic Inhibition miR-145-5p Expression. J Cancer 2023; 14:2329-2343. [PMID: 37576402 PMCID: PMC10414040 DOI: 10.7150/jca.85335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/19/2023] [Indexed: 08/15/2023] Open
Abstract
LncRNA HOTAIR play important roles in the epigenetic regulation of carcinogenesis and progression in liver cancer. Previous studies suggest that the overexpression of HOTAIR predicts poor prognosis. In this study, through transcriptome sequencing data and in vitro experiments, we found that HOTAIR were more highly expressed and there is significantly positive relationship between HOTAIR and NUAK1 in liver cancer tissues and cell lines. miR-145-5p was downregulated and showed negative correlation with HOTAIR and NUAK1. Transfect Sh-HOTAIR, LZRS-HOTAIR, miR-145 mimic, miR-145 inhibitor to change the expression of HOTAIR and miR-145-5p. The addition of HTH-01-015 inhibits the expression of NUAK1. HOTAIR knockdown, miR-145-5p upregulation and NUAK1 inhibition all repressed migration, invasion and metastasis and reversed the epithelial-to-mesenchymal transition in SNU-387 and HepG2 cells. We also showed that HOTAIR recruiting and binding PRC2 (EZH2) epigenetically represses miR-145-5p, which controls the target NUAK1, thus contributing to liver cancer cell-EMT process and accelerating tumor metastasis. Moreover, it is demonstrated that HOTAIR crosstalk with miR-145-5p/NUAK1 during epigenetic regulation. Our findings indicate that HOTAIR/miR-145-5p/NUAK1 axis acts as an EMT regulator and may be candidate prognostic biomarker and targets for new therapies in liver cancer.
Collapse
Affiliation(s)
- Dong-Xia Chu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, P.R. China
| | - Yu Jin
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, P.R. China
| | - Bing-Rong Wang
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, P.R. China
| | - Yan Jiao
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, P.R. China
| | - Chao-Ke Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, P.R. China
| | - Zi-Han Guo
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, P.R. China
| | - Shao-Zhuo Hu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, P.R. China
| | - Na Li
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, P.R. China
| |
Collapse
|
10
|
Baba SK, Baba SK, Mir R, Elfaki I, Algehainy N, Ullah MF, Barnawi J, Altemani FH, Alanazi M, Mustafa SK, Masoodi T, Akil ASA, Bhat AA, Macha MA. Long non-coding RNAs modulate tumor microenvironment to promote metastasis: novel avenue for therapeutic intervention. Front Cell Dev Biol 2023; 11:1164301. [PMID: 37384249 PMCID: PMC10299194 DOI: 10.3389/fcell.2023.1164301] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/22/2023] [Indexed: 06/30/2023] Open
Abstract
Cancer is a devastating disease and the primary cause of morbidity and mortality worldwide, with cancer metastasis responsible for 90% of cancer-related deaths. Cancer metastasis is a multistep process characterized by spreading of cancer cells from the primary tumor and acquiring molecular and phenotypic changes that enable them to expand and colonize in distant organs. Despite recent advancements, the underlying molecular mechanism(s) of cancer metastasis is limited and requires further exploration. In addition to genetic alterations, epigenetic changes have been demonstrated to play an important role in the development of cancer metastasis. Long non-coding RNAs (lncRNAs) are considered one of the most critical epigenetic regulators. By regulating signaling pathways and acting as decoys, guides, and scaffolds, they modulate key molecules in every step of cancer metastasis such as dissemination of carcinoma cells, intravascular transit, and metastatic colonization. Gaining a good knowledge of the detailed molecular basis underlying lncRNAs regulating cancer metastasis may provide previously unknown therapeutic and diagnostic lncRNAs for patients with metastatic disease. In this review, we concentrate on the molecular mechanisms underlying lncRNAs in the regulation of cancer metastasis, the cross-talk with metabolic reprogramming, modulating cancer cell anoikis resistance, influencing metastatic microenvironment, and the interaction with pre-metastatic niche formation. In addition, we also discuss the clinical utility and therapeutic potential of lncRNAs for cancer treatment. Finally, we also represent areas for future research in this rapidly developing field.
Collapse
Affiliation(s)
- Sana Khurshid Baba
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, India
| | - Sadaf Khursheed Baba
- Department of Microbiology, Sher-I-Kashmir Institute of Medical Science (SKIMS), Soura, Kashmir, India
| | - Rashid Mir
- Department of Medical Lab Technology, Prince Fahd Bin Sultan Research Chair Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Naseh Algehainy
- Department of Medical Lab Technology, Prince Fahd Bin Sultan Research Chair Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammad Fahad Ullah
- Department of Medical Lab Technology, Prince Fahd Bin Sultan Research Chair Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Jameel Barnawi
- Department of Medical Lab Technology, Prince Fahd Bin Sultan Research Chair Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Faisal H. Altemani
- Department of Medical Lab Technology, Prince Fahd Bin Sultan Research Chair Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammad Alanazi
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Syed Khalid Mustafa
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Tariq Masoodi
- Human Immunology Department, Research Branch, Sidra Medicine, Doha, Qatar
| | - Ammira S. Alshabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity, and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Ajaz A. Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity, and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Muzafar A. Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, India
| |
Collapse
|
11
|
Shenoy US, Adiga D, Gadicherla S, Kabekkodu SP, Hunter KD, Radhakrishnan R. HOX cluster-embedded lncRNAs and epithelial-mesenchymal transition in cancer: Molecular mechanisms and therapeutic opportunities. Biochim Biophys Acta Rev Cancer 2023; 1878:188840. [PMID: 36403923 DOI: 10.1016/j.bbcan.2022.188840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/05/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Although there has been substantial improvement in the treatment modalities, cancer remains the major cause of fatality worldwide. Metastasis, recurrence, and resistance to oncological therapies are the leading causes of cancer mortality. Epithelial-mesenchymal transition (EMT) is a complex biological process that allows cancer cells to undergo morphological transformation into a mesenchymal phenotype to acquire invasive potential. It encompasses reversible and dynamic ontogenesis by neoplastic cells during metastatic dissemination. Hence, understanding the molecular landscape of EMT is imperative to identify a reliable clinical biomarker to combat metastatic spread. Accumulating evidence reveals the role of HOX (homeobox) cluster-embedded long non-coding RNAs (lncRNAs) in EMT and cancer metastasis. They play a crucial role in the induction of EMT, modulating diverse biological targets. The present review emphasizes the involvement of HOX cluster-embedded lncRNAs in EMT as a molecular sponge, chromatin remodeler, signaling regulator, and immune system modulator. Furthermore, the molecular mechanisms behind therapy resistance and the potential use of novel drugs targeting HOX cluster-embedded lncRNAs in the clinical management of distant metastasis will be discussed.
Collapse
Affiliation(s)
- U Sangeetha Shenoy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal- 576104, Karnataka, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal- 576104, Karnataka, India
| | - Srikanth Gadicherla
- Deparment of Oral and Maxillofacial Surgery, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal- 576104, Karnataka, India
| | - Keith D Hunter
- Liverpool Head and Neck Centre, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India; Oral and Maxillofacial Pathology, School of Clinical Dentistry, The University of Sheffield, Sheffield, UK.
| |
Collapse
|
12
|
Li J, Li Z, Wang Y, Lin H, Wu B. TLSEA: a tool for lncRNA set enrichment analysis based on multi-source heterogeneous information fusion. Front Genet 2023; 14:1181391. [PMID: 37205123 PMCID: PMC10185877 DOI: 10.3389/fgene.2023.1181391] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play an important regulatory role in gene transcription and post-transcriptional modification, and lncRNA regulatory dysfunction leads to a variety of complex human diseases. Hence, it might be beneficial to detect the underlying biological pathways and functional categories of genes that encode lncRNA. This can be carried out by using gene set enrichment analysis, which is a pervasive bioinformatic technique that has been widely used. However, accurately performing gene set enrichment analysis of lncRNAs remains a challenge. Most conventional enrichment analysis methods have not exhaustively included the rich association information among genes, which usually affects the regulatory functions of genes. Here, we developed a novel tool for lncRNA set enrichment analysis (TLSEA) to improve the accuracy of the gene functional enrichment analysis, which extracted the low-dimensional vectors of lncRNAs in two functional annotation networks with the graph representation learning method. A novel lncRNA-lncRNA association network was constructed by merging lncRNA-related heterogeneous information obtained from multiple sources with the different lncRNA-related similarity networks. In addition, the random walk with restart method was adopted to effectively expand the lncRNAs submitted by users according to the lncRNA-lncRNA association network of TLSEA. In addition, a case study of breast cancer was performed, which demonstrated that TLSEA could detect breast cancer more accurately than conventional tools. The TLSEA can be accessed freely at http://www.lirmed.com:5003/tlsea.
Collapse
Affiliation(s)
- Jianwei Li
- Institute of Computational Medicine, School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
- School of Electronic and Information Engineering, Hebei University of Technology, Tianjin, China
- *Correspondence: Jianwei Li,
| | - Zhiguang Li
- Institute of Computational Medicine, School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| | - Yinfei Wang
- Institute of Computational Medicine, School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| | - Hongxin Lin
- Institute of Computational Medicine, School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| | - Baoqin Wu
- Institute of Computational Medicine, School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| |
Collapse
|
13
|
Feng L, Liu W, Lv Y, Qiao B. Prognostic significance of long noncoding RNA HOTAIR in hepatocellular carcinoma: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2022; 101:e29406. [PMID: 35905232 PMCID: PMC9333487 DOI: 10.1097/md.0000000000029406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Homeobox transcript antisense intergenic RNA (HOTAIR), a long noncoding RNA, has been reported to associate with the prognosis of patients with hepatocellular carcinoma (HCC) in several studies, however, the definite conclusion has not been obtained for conflicting results across different studies. The aim of this study is to determine the association of HOTAIR expression with overall survival, progression-free survival, and clinical features in HCC. METHODS PubMed, Cochrane Library, and Embase will be comprehensively searched to seek the relevant studies. The studies meeting the inclusion criteria will be included into this systematic review and meta-analysis. A combination of hazard ratio and 95% confidence interval is used to estimate the impact of HOTAIR expression on the overall survival and progression-free survival in HCC. The relationship between HOTAIR expression and clinical features of HCC is evaluated using the odds ratio and 95% confidence interval. The study quality is evaluated with the "risk of bias assessment" tool in Cochrane System Assessment Manual or Newcastle-Ottawa Scale. The subgroup analysis, publication bias, and sensitivity analysis are performed. RESULTS This study provides a strict and classic protocol for systematic review and meta-analysis to determine the prognostic significance of HOTAIR expression in HCC. The findings of this systematic review and meta-analysis may provide a novel diagnostic indicator and potential therapeutic target of HCC. ETHICS AND DISSEMINATION This study is only a protocol for systematic review and meta-analysis, and all data used in this study is acquired through published studies. Therefore, the ethical review is not needed for this study. REGISTRATION NUMBER INPLASY202230050.
Collapse
Affiliation(s)
- Lei Feng
- Peking University International Hospital, International Department, Beijing 102206, China
| | - Wenqing Liu
- China Rehabilitation Research Center, Pulmonary and Critical Care Medicine, Beijing 100068, China
| | - Yunhuo Lv
- Department of Oncology, Shangrao Municipal Hospital, Shangrao, China
| | - Baojun Qiao
- Department of Gastroenterology, Baima Outpatient Department, Jingdong Medical District, PLA General Hospital, Beijing, China
- *Correspondence: Baojun Qiao, Department of Gastroenterology, Baima Outpatient Department, Jingdong Medical District, PLA General Hospital, Beijing 101100, China (e-mail: , )
| |
Collapse
|
14
|
Weng X, Liu H, Ruan J, Du M, Wang L, Mao J, Cai Y, Lu X, Chen W, Huang Y, Zhi X, Shan J. HOTAIR/miR-1277-5p/ZEB1 axis mediates hypoxia-induced oxaliplatin resistance via regulating epithelial-mesenchymal transition in colorectal cancer. Cell Death Dis 2022; 8:310. [PMID: 35798695 PMCID: PMC9263107 DOI: 10.1038/s41420-022-01096-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/03/2022] [Accepted: 06/20/2022] [Indexed: 01/19/2023]
Abstract
The hypoxic microenvironment contributes to the chemoresistance of many malignant tumors including colorectal cancer (CRC). Accumulating studies have indicated that long non-coding RNAs (lncRNAs) play important roles in chemotherapy resistance. In this study, we aimed to determine the effect of lncRNAs in hypoxia-mediated resistance in CRC and its potential mechanism. Here, we discovered that hypoxia-induced oxaliplatin resistance and HOX transcript antisense RNA (HOTAIR) expression was increased in hypoxia-treated CRC cell lines and CRC tumors. Knockdown of HOTAIR by siRNA reduced the viability and proliferation of CRC cells treated with oxaliplatin and reversed hypoxia-induced resistance. Mechanically, we found that HOTAIR modulates zinc finger E-box binding homeobox 1 (ZEB1) expression by negative regulations of miR-1277-5p. When miR-1277-5p was silenced, knockdown of HOTAIR was unable to reduce the oxaliplatin resistance in CRC cells. In mouse models of CRC, HOTAIR knockdown markedly inhibited the tumor growth when treated with oxaliplatin. Thus, HOTAIR/miR-1277-5p/ZEB1 axis appears a promising therapeutic target for improving the oxaliplatin efficacy in CRC.
Collapse
Affiliation(s)
- Xingyue Weng
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Hao Liu
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Jian Ruan
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Miaoyan Du
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Lingjie Wang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jiayan Mao
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Ying Cai
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Xuemei Lu
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Wei Chen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Yaqing Huang
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Zhejiang Provincial Peoples Hospital, Affiliated Peoples Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Xiao Zhi
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
| | - Jianzhen Shan
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
| |
Collapse
|
15
|
Abstract
The tumor microenvironment (TME) is a well-recognized system that plays an essential role in tumor initiation, development, and progression. Intense intercellular communication between tumor cells and other cells (especially macrophages) occurs in the TME and is mediated by cell-to-cell contact and/or soluble messengers. Emerging evidence indicates that noncoding RNAs (ncRNAs) are critical regulators of the relationship between cells within the TME. In this review, we provide an update on the regulation of ncRNAs (primarily micro RNAs [miRNAs], long ncRNAs [lncRNAs], and circular RNAs [circRNAs]) in the crosstalk between macrophages and tumor cells in hepatocellular carcinoma (HCC). These ncRNAs are derived from macrophages or tumor cells and act as oncogenes or tumor suppressors, contributing to tumor progression not only by regulating the physiological and pathological processes of tumor cells but also by controlling macrophage infiltration, activation, polarization, and function. Herein, we also explore the options available for clinical therapeutic strategies targeting crosstalk-related ncRNAs to treat HCC. A better understanding of the relationship between macrophages and tumor cells mediated by ncRNAs will uncover new diagnostic biomarkers and pharmacological targets in cancer.
Collapse
|
16
|
Erdos E, Divoux A, Sandor K, Halasz L, Smith SR, Osborne TF. Unique role for lncRNA HOTAIR in defining depot-specific gene expression patterns in human adipose-derived stem cells. Genes Dev 2022; 36:566-581. [PMID: 35618313 PMCID: PMC9186385 DOI: 10.1101/gad.349393.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/12/2022] [Indexed: 01/12/2023]
Abstract
In this study, Erdos et al. investigated the role of HOX transcript antisense intergenic RNA (HOTAIR) in adipose tissue biology. Using three different approaches (silencing of HOTAIR in GF human adipose-derived stem cells [GF hASCs], overexpression of HOTAIR in ABD hASCs, and ChIRP-seq) to localize HOTAIR binding in GF hASC chromatin, they found that HOTAIR binds and modulates expression, both positively and negatively, of genes involved in adipose tissue-specific pathways, including adipogenesis, and demonstrate a unique function for HOTAIR in hASC depot-specific regulation of gene expression. Accumulation of fat above the waist is an important risk factor in developing obesity-related comorbidities independently of BMI or total fat mass. Deciphering the gene regulatory programs of the adipose tissue precursor cells within upper body or abdominal (ABD) and lower body or gluteofemoral (GF) depots is important to understand their differential capacity for lipid accumulation, maturation, and disease risk. Previous studies identified the HOX transcript antisense intergenic RNA (HOTAIR) as a GF-specific lncRNA; however, its role in adipose tissue biology is still unclear. Using three different approaches (silencing of HOTAIR in GF human adipose-derived stem cells [GF hASCs], overexpression of HOTAIR in ABD hASCs, and ChIRP-seq) to localize HOTAIR binding in GF hASC chromatin, we found that HOTAIR binds and modulates expression, both positively and negatively, of genes involved in adipose tissue-specific pathways, including adipogenesis. We further demonstrate a direct interaction between HOTAIR and genes with high RNAPII binding in their gene bodies, especially at their 3′ ends or transcription end sites. Computational analysis suggests HOTAIR binds preferentially to the 3′ ends of genes containing predicted strong RNA–RNA interactions with HOTAIR. Together, these results reveal a unique function for HOTAIR in hASC depot-specific regulation of gene expression.
Collapse
Affiliation(s)
- Edina Erdos
- Division of Diabetes Endocrinology and Metabolism, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Medicine, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Biological Chemistry, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Pediatrics, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA
| | - Adeline Divoux
- Translational Research Institute, AdventHealth, Orlando, Florida 32804, USA
| | - Katalin Sandor
- Division of Diabetes Endocrinology and Metabolism, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Medicine, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Biological Chemistry, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Pediatrics, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA
| | - Laszlo Halasz
- Division of Diabetes Endocrinology and Metabolism, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Medicine, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Biological Chemistry, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Pediatrics, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA
| | - Steven R Smith
- Translational Research Institute, AdventHealth, Orlando, Florida 32804, USA
| | - Timothy F Osborne
- Division of Diabetes Endocrinology and Metabolism, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Medicine, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Biological Chemistry, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Pediatrics, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA
| |
Collapse
|
17
|
Hassan S, Blick T, Wood J, Thompson EW, Williams ED. Circulating Tumour Cells Indicate the Presence of Residual Disease Post-Castration in Prostate Cancer Patient-Derived Xenograft Models. Front Cell Dev Biol 2022; 10:858013. [PMID: 35493092 PMCID: PMC9043137 DOI: 10.3389/fcell.2022.858013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/09/2022] [Indexed: 11/17/2022] Open
Abstract
Castrate-resistant prostate cancer (CRPC) is the lethal form of prostate cancer. Epithelial mesenchymal plasticity (EMP) has been associated with disease progression to CRPC, and prostate cancer therapies targeting the androgen signalling axis, including androgen deprivation therapy (ADT), promote EMP. We explored effects of castration on EMP in the tumours and circulating tumour cells (CTCs) of patient-derived xenograft (PDX)-bearing castrated mice using human-specific RT-qPCR assays and immunocytochemistry. Expression of prostate epithelial cell marker KLK3 was below detection in most tumours from castrated mice (62%, 23/37 mice), consistent with its known up-regulation by androgens. Endpoint tumour size after castration varied significantly in a PDX model-specific pattern; while most tumours were castration-sensitive (BM18, LuCaP70), the majority of LuCaP105 tumours continued to grow following castration. By contrast, LuCaP96 PDX showed a mixed response to castration. CTCs were detected in 33% of LuCaP105, 43% of BM18, 47% of LuCaP70, and 54% of LuCaP96 castrated mice using RPL32 mRNA measurement in plasma. When present, CTC numbers estimated using human RPL32 expression ranged from 1 to 458 CTCs per ml blood, similar to our previous observations in non-castrated mice. In contrast to their non-castrated counterparts, there was no relationship between tumour size and CTC burden in castrated mice. Unsupervised hierarchical clustering of the gene expression profiles of CTCs collected from castrated and non-castrated mice revealed distinct CTC sub-groups within the pooled population that were classified as having mesenchymal, epithelial, or EMP hybrid gene expression profiles. The epithelial signature was only found in CTCs from non-castrated mice. Hybrid and mesenchymal signatures were detected in CTCs from both castrated and non-castrated mice, with an emphasis towards mesenchymal phenotypes in castrated mice. Post-castration serum PSA levels were either below detection or very low for all the CTC positive samples highlighting the potential usefulness of CTCs for disease monitoring after androgen ablation therapy. In summary, our study of castration effects on prostate cancer PDX CTCs showed that CTCs were often detected in the castrate setting, even in mice with no palpable tumours, and demonstrated the superior ability of CTCs to reveal residual disease over the conventional clinical biomarker serum PSA.
Collapse
Affiliation(s)
- Sara Hassan
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences at Translational Research Institute (TRI), Brisbane, QLD, Australia
| | - Tony Blick
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences at Translational Research Institute (TRI), Brisbane, QLD, Australia
| | - Jack Wood
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences at Translational Research Institute (TRI), Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre, Queensland (APCRC-Q) and Queensland Bladder Cancer Initiative (QBCI), Brisbane, QLD, Australia
| | - Erik W. Thompson
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences at Translational Research Institute (TRI), Brisbane, QLD, Australia
| | - Elizabeth D. Williams
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences at Translational Research Institute (TRI), Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre, Queensland (APCRC-Q) and Queensland Bladder Cancer Initiative (QBCI), Brisbane, QLD, Australia
- *Correspondence: Elizabeth D. Williams,
| |
Collapse
|
18
|
Li YR, Fu M, Song YQ, Li SL, Ge XY. Long noncoding RNA MRPL23-AS1 suppresses anoikis in salivary adenoid cystic carcinoma in vitro. Oral Dis 2022; 29:1588-1601. [PMID: 35175670 DOI: 10.1111/odi.14156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/18/2021] [Accepted: 10/19/2021] [Indexed: 11/27/2022]
Abstract
Distant lung metastasis is the main factor that affects the survival rate of patients with salivary adenoid cystic carcinoma (SACC). Anoikis resistance is a feature of tumor cells that easily metastasize. The long non-coding RNA (lncRNA) MRPL23 antisense RNA 1 (MPRL23-AS1) is related to lung metastasis in SACC, but its role in anoikis resistance is unknown.After altering MPRL23-AS1 expression in SACC cells, anoikis resistance was detected by calcein AM/PI staining and annexin V/PI flow cytometry. The apoptosis marker activated caspase-3 and the bcl-2/bax ratio were detected by Western blotting. The relationship between MPRL23-AS1 and the promoter of the potential downstream target gene p19INK4D was identified by chromatin immunoprecipitation (ChIP)-PCR assay. p19INK4D expression in patient tissues was determined using qRT-PCR and immunohistochemistry.The functional experiments showed that MPRL23-AS1 could promote anoikis resistance in vitro. MRPL23-AS1 recruited the EZH2 to the promoter region of p19INK4D, inhibited p19INK4D expression, and promoted tumor cell anoikis resistance. p19INK4D overexpression did not affect anoikis in attached cells; however, it attenuated the anoikis resistance effect of MPRL23-AS1 in suspension cells. p19INK4D expression was significantly lower in SACC tissues than in normal tissues.The novel MRPL23-AS1/p19INK4D axis may be a potential SACC biomarker or therapeutic target.
Collapse
Affiliation(s)
- Yin-Ran Li
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry of Health & NMPA Key Laboratory for Dental Material.,Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, 100081, P.R. China
| | - Min Fu
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry of Health & NMPA Key Laboratory for Dental Material.,Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, 100081, P.R. China
| | - Ye-Qing Song
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry of Health & NMPA Key Laboratory for Dental Material
| | - Sheng-Lin Li
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry of Health & NMPA Key Laboratory for Dental Material.,Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, 100081, P.R. China
| | - Xi-Yuan Ge
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry of Health & NMPA Key Laboratory for Dental Material.,Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, 100081, P.R. China
| |
Collapse
|
19
|
Hsu CH, Huang YH, Lin SM, Hsu C. AXL and MET in Hepatocellular Carcinoma: A Systematic Literature Review. Liver Cancer 2022; 11:94-112. [PMID: 35634427 PMCID: PMC9109073 DOI: 10.1159/000520501] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/26/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Multikinase inhibitors (MKIs) have been shown to improve survival in patients with hepatocellular carcinoma (HCC) compared with placebo. Distinct from other MKIs, cabozantinib has inhibitory activity for both AXL and MET. This review considers the literature elucidating the role of AXL and MET in HCC progression, treatment resistance, and immunomodulation. A systematic search of the PubMed database was conducted on November 16, 2020, and identified a total of 174 search results. A further 36 potentially relevant articles were identified based on the authors' knowledge. After initial screening by title/abstract, 159 underwent full-text screening and we identified 69 original research articles reporting empirical data from in vitro or in vivo models of HCC evaluating the effects of manipulating AXL or MET signaling on tumorigenic behavior. SUMMARY AXL expression is highly correlated with HCC progression and outcomes and has been reported to be involved in transforming growth factor-β and the regulation of PI3K/AKT, ERK/MAPK, and CCN proteins. MET protein expression is increased in HCC with the highest histological grade and has been reported to be involved in the regulation of PI3K/AKT, PLCγ/DAG/PKC, and MAPK/ERK signaling. Both AXL and MET are key regulators of sorafenib resistance in HCC. In terms of immunomodulation, there are data to indicate that AXL and MET interact with the immune components of the tumor microenvironment and promote tumorigenesis and treatment resistance. In addition, AXL was found to play a potential role in the development of a protumorigenic neutrophil phenotype in HCC. Combined inhibition of MET and programmed cell death protein resulted in additive reduction of HCC cell growth. KEY MESSAGES AXL and MET play key roles in HCC progression, treatment resistance, and immunomodulation. Continued development of drugs that target these receptor tyrosine kinases appears likely to represent a useful strategy to improve outcomes for patients with HCC.
Collapse
Affiliation(s)
- Chih-Hung Hsu
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan,Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan,**Chiun Hsu,
| | - Yi-Hsiang Huang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan,Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shi-Ming Lin
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan,*Shi-Ming Lin, lsmpaicyto @ gmail.com
| | - Chiun Hsu
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan,National Taiwan University Cancer Center, Taipei, Taiwan
| |
Collapse
|
20
|
Shi T, Zhang C, Xia S. The potential roles and mechanisms of non-coding RNAs in cancer anoikis resistance. Mol Cell Biochem 2022; 477:1371-1380. [PMID: 35142950 DOI: 10.1007/s11010-022-04384-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/01/2022] [Indexed: 11/29/2022]
Abstract
Increasing evidence indicates that anoikis resistance is a critical process for metastasis of cancer cells, making it the attractive therapeutic target for cancer benefit. Anoikis resistance is widely regulated by various factors, such as signaling pathways, integrins switch, and non-coding RNAs (ncRNAs). ncRNAs composed of microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are frequently dysregulated in a variety of human malignancies and are closely related to anoikis resistance of cancer cells. Based on the available literature, we reviewed the molecular basis underlying ncRNAs modulating cancer cells anoikis resistance, which may contribute to a better understanding of cancer metastasis and provide new beneficial therapeutic strategies against cancer.
Collapse
Affiliation(s)
- Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, China.
| | - Chuanqiang Zhang
- Department of General Surgery, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, 1399 West Shichang Road, Suzhou, China
| | - Suhua Xia
- Department of Oncology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China.
| |
Collapse
|
21
|
Wang BR, Chu DX, Cheng MY, Jin Y, Luo HG, Li N. Progress of HOTAIR-microRNA in hepatocellular carcinoma. Hered Cancer Clin Pract 2022; 20:4. [PMID: 35093153 PMCID: PMC8800341 DOI: 10.1186/s13053-022-00210-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/13/2022] [Indexed: 01/02/2023] Open
Abstract
The Hox transcript antisense intergenic RNA (HOTAIR) has been identified as a tumor gene, and its expression in HCC is significantly increased. HOTAIR is associated with the proliferation, invasion, metastasis and poor prognosis of HCC. In addition, HOTAIR can also regulate the expression and function of microRNA by recruiting the polycomb repressive complex 2 (PRC2) and competitive adsorption, thus promoting the occurrence and development of HCC. In this review, we discussed the two mechanisms of HOTAIR regulating miRNA through direct binding miRNA and indirect regulation, and emphasized the role of HOTAIR in HCC through miRNA, explained the regulatory pathway of HOTAIR-miRNA-mRNA and introduced the role of this pathway in HCC proliferation, drug resistance, invasion and metastasis.
Collapse
|
22
|
Lin Z, Ji X, Tian N, Gan Y, Ke L. Mapping Intellectual Structure for the Long Non-Coding RNA in Hepatocellular Carcinoma Development Research. Front Genet 2022; 12:771810. [PMID: 35047004 PMCID: PMC8762053 DOI: 10.3389/fgene.2021.771810] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/22/2021] [Indexed: 01/09/2023] Open
Abstract
Background: Emerging research suggests that long non-coding RNAs (lncRNAs) play an important role in a variety of developmental or physiological processes of hepatocellular carcinoma (HCC). Various differentially expressed lncRNAs have been identified in HCC. Thus, a deeper analysis of recent research concerning lncRNA and HCC development could provide scientists with a valuable reference for future studies. Methods: Related publications were retrieved from the Web of Science Core Collection database. CiteSpace version 5.6.R4 was employed to conduct bibliometric analysis. Several network maps were constructed to evaluate the collaborations between different countries, institutions, authors, journals, and keywords. Results: A total of 2,667 records were initially found from the year of 2010–2020. The annual related publications output had increased dramatically during these years. Although China was the most prolific country in terms of research publication, the United States played a leading role in collaborative network. The Nanjing Medical University was the most productive institute in the field of lncRNAs in HCC development. Gang Chen was the most prolific researcher, while Yang F was the most frequently co-cited author. Oncotarget, Cell, and Oncogene were the most highly co-cited journals. The most recent burst keywords were interaction, database, and pathway. Conclusion: This study provides a comprehensive overview for the field of lncRNAs in HCC development based on bibliometric and visualized methods. The results would provide a reference for scholars focusing on this field.
Collapse
Affiliation(s)
- Zhifeng Lin
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Department of Medical Record, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaohui Ji
- Department of Obstetrics and Gynaecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Nana Tian
- Department of Medical Record, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yu Gan
- Department of Medical Record, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li Ke
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Department of Medical Record, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
23
|
Garg M. Emerging roles of epithelial-mesenchymal plasticity in invasion-metastasis cascade and therapy resistance. Cancer Metastasis Rev 2022; 41:131-145. [PMID: 34978017 DOI: 10.1007/s10555-021-10003-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022]
Abstract
Strong association of cancer incidence and its progression with mortality highlights the need to decipher the cellular and molecular mechanisms that drive tumor cells to rapidly progress to metastatic disease and therapy resistance. Epithelial-mesenchymal plasticity (EMP) emerged as a key regulator of metastatic outgrowth. It allows neoplastic epithelial cells to delaminate from their neighbors either individually or collectively, traverse the extracellular matrix (ECM) barrier, enter into the circulation, and establish distal metastases. Plasticity between epithelial and mesenchymal states and the existence of hybrid epithelial/mesenchymal (E/M) phenotypes are increasingly being reported in different tumor contexts. Small subset of cancer cells with stemness called cancer stem cells (CSCs) exhibit plasticity, possess high tumorigenic potential, and contribute to high degree of tumoral heterogeneity. EMP characterized by the presence of dynamic intermediate states is reported to be influenced by (epi)genomic reprograming, growth factor signaling, inflammation, and low oxygen generated by tumor stromal microenvironment. EMP alters the genotypic and phenotypic characteristics of tumor cells/CSCs, disrupts tissue homeostasis, induces the reprogramming of angiogenic and immune recognition functions, and renders tumor cells to survive hostile microenvironments and resist therapy. The present review summarizes the roles of EMP in tumor invasion and metastasis and provides an update on therapeutic strategies to target the metastatic and refractory cancers.
Collapse
Affiliation(s)
- Minal Garg
- Department of Biochemistry, University of Lucknow, Lucknow, 226007, Uttar Pradesh, India.
| |
Collapse
|
24
|
Liu Y, Chen L, Liu T, Su X, Peng L, Chen J, Tan F, Xing P, Wang Z, Di J, Jiang B, Qu H. Genome-wide circular RNA (circRNA) and mRNA profiling identify a circMET-miR-410-3p regulatory motif for cell growth in colorectal cancer. Genomics 2021; 114:351-360. [PMID: 34929287 DOI: 10.1016/j.ygeno.2021.11.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 11/04/2022]
Abstract
Circular RNA (circRNA) is a non-coding RNA molecule that lacks polyadenylated tails and is highly stable, abundant, and conserved in human cells. CircRNAs can serve as a competing endogenous RNA (ceRNA) to sponge microRNAs (miRNA) and block their effects on target mRNA expression. CircRNAs also have possible relevance to cancer and therefore may be considered as ideal biomarkers for monitoring cancer progression. Of the about 300,000 predicted human circRNAs, only a few have validated biological functions related to cancer. To better understand the ceRNA role of circRNAs in colorectal cancer (CRC), we performed genome-wide circRNA-based RNA-sequencing (RNA-Seq) on nine CRC tumor samples and their paired histologically normal adjacent tissue samples. By profiling the mRNA expression in the same patients, we further explored the expression correlation between circRNAs and mRNAs generated from the same parental gene. Focusing on the concordant differential expression between circRNAs and mRNAs, we substantially reduced the regulatory noise. In total, we identified 694 circRNA-mRNA pairs that were consistently up or downregulated between tumor and normal tissues. These 694 circRNA-mRNA pairs are from 182 protein-coding genes associated with hormone responses and chemotaxis. Of these 182 genes, 43 are downstream targets of three highly conserved miRNAs (miR-410-3p, miR-135a, and miR-30a). Interestingly, these 43 genes are highly mutated in another cohort from eight independent CRC studies, which have significant effects on patient survival time. Focusing on miR-410-3p and its target oncogene MET, we experimentally validated the ceRNA regulatory motif of circMET. Notably, circMET is substantially upregulated in CRC cell lines and could promote cell proliferation and growth. By confirming the regulatory relationship between miR-410-3p and circMET, we propose a new mechanism for the observed sustained activation of MET in CRC. In conclusion, our work identifies a novel regulatory role of circMET and provides a potential diagnostic biomarker for CRC.
Collapse
Affiliation(s)
- Yining Liu
- The School of Public Health, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, PR China
| | - Lei Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing 100142, PR China
| | - Tianqi Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing 100142, PR China
| | - Xiangqian Su
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing 100142, PR China
| | - Lin Peng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing 100142, PR China
| | - Jiangbo Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing 100142, PR China
| | - Fei Tan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing 100142, PR China
| | - Pu Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing 100142, PR China
| | - Zaozao Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing 100142, PR China
| | - Jiabo Di
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing 100142, PR China
| | - Beihai Jiang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing 100142, PR China.
| | - Hong Qu
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, PR China.
| |
Collapse
|
25
|
Chen F, Li M, Wang L. LncRNA CASC11 Promotes Hepatocellular Carcinoma Progression via Upregulation of UBE2T in a m 6A-Dependent Manner. Front Oncol 2021; 11:772671. [PMID: 34900723 PMCID: PMC8652064 DOI: 10.3389/fonc.2021.772671] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent malignancies and the third leading cause of cancer-related deaths worldwide. Besides, it has been revealed that long non-coding RNA (LncRNA) cancer susceptibility candidate 11 (CASC11) is involved in cancer progression. However, the functional role and underlying mechanism of CASC11 in HCC remains largely unknown. In this context, here, it was found that CASC11 was upregulated in HCC tissues and associated with tumor grades, metastasis, and prognosis of HCC patients. Functionally, CASC11 facilitated HCC cell proliferation, migration, and invasion in vitro, and enhanced tumor growth and metastasis in vivo. Mechanistically, CASC11 associated with and stabilized Ubiquitin-conjugating enzyme E2T (UBE2T) mRNA. To be specific, it decreased UBE2T N6-methyladenosine (m6A) level via recruiting ALKBH5. Moreover, CASC11 inhibited the association between UBE2T mRNA and m6A reader protein YTHDF2. Taken together, our findings demonstrate the epigenetic mechanism of CASC11 in the regulation of UBE2T expression and possibly provide a novel therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Fei Chen
- Department of Ultrasound, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Meijun Li
- Department of Hematology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Liang Wang
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
26
|
Targen S, Konu O. Zebrafish Xenotransplantation Models for Studying Gene Function and Drug Treatment in Hepatocellular Carcinoma. J Gastrointest Cancer 2021; 52:1248-1265. [PMID: 35031971 DOI: 10.1007/s12029-021-00782-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2021] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Zebrafish is a promising model organism for human disease including hepatocellular cancer (HCC). Recently, zebrafish has emerged also as a host for xenograft studies of liver cancer cell lines and patient derived tumors of HCC. Zebrafish embryos enable drug screening and gene function studies of xenografted cells via ease of microinjection and visualization of tumor growth and metastasis. OBJECTIVES In this review, we aimed to overview zebrafish HCC and liver cancer xenotransplantation studies focusing on 'gene functional analysis' and 'drug/chemical screening'. METHODS Herein, a comprehensive literature search was performed for liver and HCC xenografts in zebrafish on PubMed using different key words and filters for molecular modifications or drug exposure. RESULTS Our literature search revealed around 250 studies which were filtered and summarized in a table (Table 1) revealing comprehensive collection of experimental and technical details on microinjection, injected cell lines, molecular modifications of injected cells, types and doses of drug treatments as well as biological assessments. CONCLUSION This review provides a platform for HCC and liver xenografts and highlights studies performed to understand gene functionality and drug efficacy in vivo in zebrafish.
Collapse
Affiliation(s)
- Seniye Targen
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Ozlen Konu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.
| |
Collapse
|
27
|
Modi U, Makwana P, Vasita R. Molecular insights of metastasis and cancer progression derived using 3D cancer spheroid co-culture in vitro platform. Crit Rev Oncol Hematol 2021; 168:103511. [PMID: 34740822 DOI: 10.1016/j.critrevonc.2021.103511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 02/06/2023] Open
Abstract
The multistep metastasis process is carried out by the combinatorial effect of the stromal cells and the cancerous cells and plays vital role in the cancer progression. The scaffold/physical cues aided 3D cancer spheroid imitates the spatiotemporal organization and physiological properties of the tumor. Understanding the role of the key players in different stages of metastasis, the molecular cross-talk between the stromal cells and the cancer cells contributing in the advancement of the metastasis through 3D cancer spheroid co-culture in vitro platform is the center of discussion in the present review. This state-of-art in vitro platform utilized to study the cancer cell host defence and the role of exosomes in the cross talk leading to cancer progression has been critically examined here. 3D cancer spheroid co-culture technique is the promising next-generation in vitro approach for exploring potent treatments and personalized medicines to combat cancer metastasis leading to cancer progression.
Collapse
Affiliation(s)
- Unnati Modi
- Biomaterials & Biomimetics Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Pooja Makwana
- Biomaterials & Biomimetics Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Rajesh Vasita
- Biomaterials & Biomimetics Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, India.
| |
Collapse
|
28
|
SVDNVLDA: predicting lncRNA-disease associations by Singular Value Decomposition and node2vec. BMC Bioinformatics 2021; 22:538. [PMID: 34727886 PMCID: PMC8561941 DOI: 10.1186/s12859-021-04457-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/18/2021] [Indexed: 11/10/2022] Open
Abstract
Background Numerous studies on discovering the roles of long non-coding RNAs (lncRNAs) in the occurrence, development and prognosis progresses of various human diseases have drawn substantial attentions. Since only a tiny portion of lncRNA-disease associations have been properly annotated, an increasing number of computational methods have been proposed for predicting potential lncRNA-disease associations. However, traditional predicting models lack the ability to precisely extract features of biomolecules, it is urgent to find a model which can identify potential lncRNA-disease associations with both efficiency and accuracy. Results In this study, we proposed a novel model, SVDNVLDA, which gained the linear and non-linear features of lncRNAs and diseases with Singular Value Decomposition (SVD) and node2vec methods respectively. The integrated features were constructed from connecting the linear and non-linear features of each entity, which could effectively enhance the semantics contained in ultimate representations. And an XGBoost classifier was employed for identifying potential lncRNA-disease associations eventually. Conclusions We propose a novel model to predict lncRNA-disease associations. This model is expected to identify potential relationships between lncRNAs and diseases and further explore the disease mechanisms at the lncRNA molecular level. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04457-1.
Collapse
|
29
|
Tonon F, Farra R, Zennaro C, Pozzato G, Truong N, Parisi S, Rizzolio F, Grassi M, Scaggiante B, Zanconati F, Bonazza D, Grassi G, Dapas B. Xenograft Zebrafish Models for the Development of Novel Anti-Hepatocellular Carcinoma Molecules. Pharmaceuticals (Basel) 2021; 14:ph14080803. [PMID: 34451900 PMCID: PMC8400454 DOI: 10.3390/ph14080803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common type of tumor and the second leading cause of tumor-related death worldwide. Liver cirrhosis is the most important predisposing factor for HCC. Available therapeutic approaches are not very effective, especially for advanced HCC, which is the most common form of the disease at diagnosis. New therapeutic strategies are therefore urgently needed. The use of animal models represents a relevant tool for preclinical screening of new molecules/strategies against HCC. However, several issues, including animal husbandry, limit the use of current models (rodent/pig). One animal model that has attracted the attention of the scientific community in the last 15 years is the zebrafish. This freshwater fish has several attractive features, such as short reproductive time, limited space and cost requirements for husbandry, body transparency and the fact that embryos do not show immune response to transplanted cells. To date, two different types of zebrafish models for HCC have been developed: the transgenic zebrafish and the zebrafish xenograft models. Since transgenic zebrafish models for HCC have been described elsewhere, in this review, we focus on the description of zebrafish xenograft models that have been used in the last five years to test new molecules/strategies against HCC.
Collapse
Affiliation(s)
- Federica Tonon
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy; (F.T.); (R.F.); (C.Z.); (G.P.); (F.Z.); (D.B.)
| | - Rossella Farra
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy; (F.T.); (R.F.); (C.Z.); (G.P.); (F.Z.); (D.B.)
| | - Cristina Zennaro
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy; (F.T.); (R.F.); (C.Z.); (G.P.); (F.Z.); (D.B.)
| | - Gabriele Pozzato
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy; (F.T.); (R.F.); (C.Z.); (G.P.); (F.Z.); (D.B.)
| | - Nhung Truong
- Stem Cell Research and Application Laboratory, VNUHCM, University of Science, Ho Chi Minh City 72711, Vietnam;
| | - Salvatore Parisi
- Pathology Unit, CRO Aviano, National Cancer Institute, IRCCS, I 33081 Aviano, Italy; (S.P.); (F.R.)
- Doctoral School in Molecular Biomedicine, University of Trieste, I 34127 Trieste, Italy
| | - Flavio Rizzolio
- Pathology Unit, CRO Aviano, National Cancer Institute, IRCCS, I 33081 Aviano, Italy; (S.P.); (F.R.)
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, I 30170 Mestre, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I 34127 Trieste, Italy;
| | - Bruna Scaggiante
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I 34149 Trieste, Italy; (B.S.); (B.D.)
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy; (F.T.); (R.F.); (C.Z.); (G.P.); (F.Z.); (D.B.)
| | - Deborah Bonazza
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy; (F.T.); (R.F.); (C.Z.); (G.P.); (F.Z.); (D.B.)
| | - Gabriele Grassi
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy; (F.T.); (R.F.); (C.Z.); (G.P.); (F.Z.); (D.B.)
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I 34149 Trieste, Italy; (B.S.); (B.D.)
- Correspondence:
| | - Barbara Dapas
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I 34149 Trieste, Italy; (B.S.); (B.D.)
| |
Collapse
|
30
|
Topel H, Bağırsakçı E, Yılmaz Y, Güneş A, Bağcı G, Çömez D, Kahraman E, Korhan P, Atabey N. High glucose induced c-Met activation promotes aggressive phenotype and regulates expression of glucose metabolism genes in HCC cells. Sci Rep 2021; 11:11376. [PMID: 34059694 PMCID: PMC8166976 DOI: 10.1038/s41598-021-89765-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/26/2021] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is strongly associated with metabolic dysregulations/deregulations and hyperglycemia is a common metabolic disturbance in metabolic diseases. Hyperglycemia is defined to promote epithelial to mesenchymal transition (EMT) of cancer cells in various cancers but its molecular contribution to HCC progression and aggressiveness is relatively unclear. In this study, we analyzed the molecular mechanisms behind the hyperglycemia-induced EMT in HCC cell lines. Here, we report that high glucose promotes EMT through activating c-Met receptor tyrosine kinase via promoting its ligand-independent homodimerization. c-Met activation is critical for high glucose induced acquisition of mesenchymal phenotype, survival under high glucose stress and reprogramming of cellular metabolism by modulating glucose metabolism gene expression to promote aggressiveness in HCC cells. The crucial role of c-Met in high glucose induced EMT and aggressiveness may be the potential link between metabolic syndrome-related hepatocarcinogenesis and/or HCC progression. Considering c-Met inhibition in hyperglycemic patients would be an important complementary strategy for therapy that favors sensitization of HCC cells to therapeutics.
Collapse
Affiliation(s)
- Hande Topel
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340, Izmir, Turkey.,Department of Medical Biology and Genetics, Graduate School of Health Sciences, Dokuz Eylul University, Balcova, 35340, Izmir, Turkey
| | - Ezgi Bağırsakçı
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340, Izmir, Turkey.,Department of Molecular Biology and Genetics, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Balcova, 35340, Izmir, Turkey
| | - Yeliz Yılmaz
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340, Izmir, Turkey.,Department of Medical Biology and Genetics, Graduate School of Health Sciences, Dokuz Eylul University, Balcova, 35340, Izmir, Turkey
| | - Ayşim Güneş
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340, Izmir, Turkey
| | - Gülsün Bağcı
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340, Izmir, Turkey.,Department of Molecular Biology and Genetics, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Balcova, 35340, Izmir, Turkey
| | - Dehan Çömez
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340, Izmir, Turkey.,Department of Molecular Biology and Genetics, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Balcova, 35340, Izmir, Turkey
| | - Erkan Kahraman
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340, Izmir, Turkey.,Department of Medical Biology and Genetics, Graduate School of Health Sciences, Dokuz Eylul University, Balcova, 35340, Izmir, Turkey
| | - Peyda Korhan
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340, Izmir, Turkey
| | - Neşe Atabey
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340, Izmir, Turkey.
| |
Collapse
|
31
|
Ji WC, Bao GJ, Yang FW, Sun L, Han R. Role of lncRNA NR2F1-AS1 and lncRNA H19 Genes in Hepatocellular Carcinoma and Their Effects on Biological Function of Huh-7. Cancer Manag Res 2021; 13:941-951. [PMID: 33568940 PMCID: PMC7868256 DOI: 10.2147/cmar.s284650] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/26/2020] [Indexed: 12/28/2022] Open
Abstract
Objective This research was designed to probe into the expression and related mechanism of lncRNA NR2F1-AS1 and H19 in hepatocellular carcinoma (HCC). Methods Forty-two HCC patients who came to our hospital from February 2018 to August 2019 were included into a research group (RG). Meanwhile, 46 healthy controls were regarded as a control group (CG). BEL-7402, Huh-7 human hepatoma cells and HL-7702 human normal liver cells were purchased, and the NR2F1-AS1 and H19 levels in serum and tissues of HCC patients were detected. PcDNA3.1-NR2F1-AS1, si-NR2F1-AS1, NC, pcDNA3.1-H19 and si-H19 were transfected into BEL-7402 and Huh-7 cells. The NR2F1-AS1 and H19 levels in samples were detected via qRT-PCR, and the expression of apoptosis-related proteins in cells was tested through WB. Cell proliferation, invasion, or apoptosis was detected by CCK8, Transwell or flow cytometry, respectively. Results The NR2F1-AS1 and H19 levels were high in human hepatoma cells, and AUCs of lncRNA NR2F1-AS1 and lncRNA H19 were both >0.8. The lncRNA NR2F1-AS1 and lncRNA H19 were associated with HCC staging. After transfection of pcDNA3.1-NR2F1-AS1, si-NR2F1-AS1, NC, pcDNA3.1-H19, si-H19 BEL-7402 and Huh-7 cells, silencing NR2F1-AS1 and H19 expression can promote apoptosis and inhibit cell growth, while silencing their over-expression can inhibit the EMT process of Huh-7 cells. Conclusion lncRNA NR2F1-AS1 and lncRNA H19 genes are abnormally expressed in HCC. Furthermore, the two can suppress the EMT process of Huh-7 cells and promote apoptosis effectively.
Collapse
Affiliation(s)
- Wen-Chao Ji
- Department of Hepatobiliary Surgery, Zaozhuang Municipal Hospital, Zaozhuang, 277100 Shandong Province, People's Republic of China
| | - Guang-Jian Bao
- Department of Hepatobiliary Surgery, Zaozhuang Municipal Hospital, Zaozhuang, 277100 Shandong Province, People's Republic of China
| | - Fang-Wu Yang
- General Surgery Department, Zaozhuang Mining Group Central Hospital, Zaozhuang, 277100 Shandong Province, People's Republic of China
| | - Lei Sun
- Department of Hepatobiliary Surgery, Zaozhuang Municipal Hospital, Zaozhuang, 277100 Shandong Province, People's Republic of China
| | - Rui Han
- Department of Hepatobiliary Surgery, Zaozhuang Municipal Hospital, Zaozhuang, 277100 Shandong Province, People's Republic of China
| |
Collapse
|
32
|
Lv E, Sheng J, Yu C, Rao D, Huang W. LncRNA influence sequential steps of hepatocellular carcinoma metastasis. Biomed Pharmacother 2021; 136:111224. [PMID: 33450489 DOI: 10.1016/j.biopha.2021.111224] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/20/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023] Open
Abstract
As a class of new and crucial molecules involved in the regulation of biological function, long noncoding RNA (lncRNA) have obtained widespread attention in recent days. While it was thought that lncRNA would be redundant in the past, it is proved that lncRNA identify a class of molecular that regulate the homeostasis including hepatocellular carcinoma in the present. All kinds of lncRNA have been implicated in a various of diseases, particularly in tumorigenesis and metastasis. But the mechanisms how they act is still not entirely clear. Metastasis is a major factor affecting long-term survival in hepatocellular carcinoma (HCC) patients. Recently, growing numbers of experiments demonstrate that there is close connection between lncRNA and HCC metastasis. Here, we will briefly introduce a series of steps (primary tumor growth, angiogenesis, epithelial-to-mesenchymal transition, invasion, intravasation, survival in circulatory system, extravasation, dormancy and subsequent secondary tumor growth) of tumor metastasis, its classical but promising theories, the role of lncRNA in metastasis and the possible mechanisms involved. LncRNA, as potentially new and important tumor diagnostic and therapeutic molecules, has attracted much attention in recent years.
Collapse
Affiliation(s)
- Enjun Lv
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, PR China
| | - Jiaqi Sheng
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, PR China
| | - Chengpeng Yu
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, PR China
| | - Dean Rao
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, PR China
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, PR China.
| |
Collapse
|
33
|
Hepigenetics: A Review of Epigenetic Modulators and Potential Therapies in Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9593254. [PMID: 33299889 PMCID: PMC7707949 DOI: 10.1155/2020/9593254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/13/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma is the fifth most common cancer worldwide and the second most lethal, following lung cancer. Currently applied therapeutic practices rely on surgical resection, chemotherapy and radiotherapy, or a combination thereof. These treatment options are associated with extreme adversities, and risk/benefit ratios do not always work in patients' favor. Anomalies of the epigenome lie at the epicenter of aberrant molecular mechanisms by which the disease develops and progresses. Modulation of these anomalous events poses a promising prospect for alternative treatment options, with an abundance of felicitous results reported in recent years. Herein, the most recent epigenetic modulators in hepatocellular carcinoma are recapitulated on.
Collapse
|
34
|
The Intimate Relationship Among EMT, MET and TME: A T(ransdifferentiation) E(nhancing) M(ix) to Be Exploited for Therapeutic Purposes. Cancers (Basel) 2020; 12:cancers12123674. [PMID: 33297508 PMCID: PMC7762343 DOI: 10.3390/cancers12123674] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Intratumoral heterogeneity is considered the major cause of drug resistance and hence treatment failure in cancer patients. Tumor cells are known for their phenotypic plasticity that is the ability of a cell to reprogram and change its identity to eventually adopt multiple phenotypes. Tumor cell plasticity involves the reactivation of developmental programs, the acquisition of cancer stem cell properties and an enhanced potential for retro- or transdifferentiation. A well-known transdifferentiation mechanism is the process of epithelial-mesenchymal transition (EMT). Current evidence suggests a complex interplay between EMT, genetic and epigenetic alterations, and various signals from the tumor microenvironment (TME) in shaping a tumor cell’s plasticity. The vulnerabilities exposed by cancer cells when residing in a plastic or stem-like state have the potential to be exploited therapeutically, i.e., by converting highly metastatic cells into less aggressive or even harmless postmitotic ones. Abstract Intratumoral heterogeneity is considered the major cause of drug unresponsiveness in cancer and accumulating evidence implicates non-mutational resistance mechanisms rather than genetic mutations in its development. These non-mutational processes are largely driven by phenotypic plasticity, which is defined as the ability of a cell to reprogram and change its identity (phenotype switching). Tumor cell plasticity is characterized by the reactivation of developmental programs that are closely correlated with the acquisition of cancer stem cell properties and an enhanced potential for retrodifferentiation or transdifferentiation. A well-studied mechanism of phenotypic plasticity is the epithelial-mesenchymal transition (EMT). Current evidence suggests a complex interplay between EMT, genetic and epigenetic alterations, and clues from the tumor microenvironment in cell reprogramming. A deeper understanding of the connections between stem cell, epithelial–mesenchymal, and tumor-associated reprogramming events is crucial to develop novel therapies that mitigate cell plasticity and minimize the evolution of tumor heterogeneity, and hence drug resistance. Alternatively, vulnerabilities exposed by tumor cells when residing in a plastic or stem-like state may be exploited therapeutically, i.e., by converting them into less aggressive or even postmitotic cells. Tumor cell plasticity thus presents a new paradigm for understanding a cancer’s resistance to therapy and deciphering its underlying mechanisms.
Collapse
|
35
|
Sinha D, Saha P, Samanta A, Bishayee A. Emerging Concepts of Hybrid Epithelial-to-Mesenchymal Transition in Cancer Progression. Biomolecules 2020; 10:E1561. [PMID: 33207810 PMCID: PMC7697085 DOI: 10.3390/biom10111561] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Epithelial mesenchymal transition (EMT) is a complex process through which epithelial (E) cells lose their adherens junctions, transform into mesenchymal (M) cells and attain motility, leading to metastasis at distant organs. Nowadays, the concept of EMT has shifted from a binary phase of interconversion of pure E to M cells and vice versa to a spectrum of E/M transition states preferably coined as hybrid/partial/intermediate EMT. Hybrid EMT, being a plastic transient state, harbours cells which co-express both E and M markers and exhibit high tumourigenic properties, leading to stemness, metastasis, and therapy resistance. Several preclinical and clinical studies provided the evidence of co-existence of E/M phenotypes. Regulators including transcription factors, epigenetic regulators and phenotypic stability factors (PSFs) help in maintaining the hybrid state. Computational and bioinformatics approaches may be excellent for identifying new factors or combinations of regulatory elements that govern the different EMT transition states. Therapeutic intervention against hybrid E/M cells, though few, may evolve as a rational strategy against metastasis and drug resistance. This review has attempted to present the recent advancements on the concept and regulation of the process of hybrid EMT which generates hybrid E/M phenotypes, evidence of intermediate EMT in both preclinical and clinical setup, impact of partial EMT on promoting tumourigenesis, and future strategies which might be adapted to tackle this phenomenon.
Collapse
Affiliation(s)
- Dona Sinha
- Department of Receptor Biology and Tumour Metastasis, Chittaranjan National Cancer Institute, Kolkata 700 026, India; (P.S.); (A.S.)
| | - Priyanka Saha
- Department of Receptor Biology and Tumour Metastasis, Chittaranjan National Cancer Institute, Kolkata 700 026, India; (P.S.); (A.S.)
| | - Anurima Samanta
- Department of Receptor Biology and Tumour Metastasis, Chittaranjan National Cancer Institute, Kolkata 700 026, India; (P.S.); (A.S.)
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|
36
|
Saxena K, Jolly MK, Balamurugan K. Hypoxia, partial EMT and collective migration: Emerging culprits in metastasis. Transl Oncol 2020; 13:100845. [PMID: 32781367 PMCID: PMC7419667 DOI: 10.1016/j.tranon.2020.100845] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/12/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a cellular biological process involved in migration of primary cancer cells to secondary sites facilitating metastasis. Besides, EMT also confers properties such as stemness, drug resistance and immune evasion which can aid a successful colonization at the distant site. EMT is not a binary process; recent evidence suggests that cells in partial EMT or hybrid E/M phenotype(s) can have enhanced stemness and drug resistance as compared to those undergoing a complete EMT. Moreover, partial EMT enables collective migration of cells as clusters of circulating tumor cells or emboli, further endorsing that cells in hybrid E/M phenotypes may be the 'fittest' for metastasis. Here, we review mechanisms and implications of hybrid E/M phenotypes, including their reported association with hypoxia. Hypoxia-driven activation of HIF-1α can drive EMT. In addition, cyclic hypoxia, as compared to acute or chronic hypoxia, shows the highest levels of active HIF-1α and can augment cancer aggressiveness to a greater extent, including enriching for a partial EMT phenotype. We also discuss how metastasis is influenced by hypoxia, partial EMT and collective cell migration, and call for a better understanding of interconnections among these mechanisms. We discuss the known regulators of hypoxia, hybrid EMT and collective cell migration and highlight the gaps which needs to be filled for connecting these three axes which will increase our understanding of dynamics of metastasis and help control it more effectively.
Collapse
Affiliation(s)
- Kritika Saxena
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - Kuppusamy Balamurugan
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|