1
|
Zhang Y, Jiang X, Song X, Zhang J, Mao W, Chen W, Yuan S, Chen Y, Mu L, Zhao Y. Mendelian randomization and multi-omics approach analyses reveal impaired glucose metabolism and oxidative phosphorylation in visceral adipose tissue of women with polycystic ovary syndrome. Hum Reprod 2024:deae244. [PMID: 39448886 DOI: 10.1093/humrep/deae244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/11/2024] [Indexed: 10/26/2024] Open
Abstract
STUDY QUESTION What is the significance of visceral adipose tissue (VAT) in the pathogenesis of polycystic ovary syndrome (PCOS) and its impact on the regulation of metabolic disorders in women with PCOS? SUMMARY ANSWER We revealed a potentially causal relationship between increased genetically predicted VAT and PCOS-related traits, and found that VAT exhibited impaired glucose metabolism and mitochondrial oxidative phosphorylation (OXPHOS) in women with PCOS. WHAT IS KNOWN ALREADY PCOS is a common reproductive endocrine disorder accompanied by many metabolic abnormalities. Adipose tissue is a metabolically active endocrine organ that regulates multiple physiological processes, and VAT has a much stronger association with metabolism than subcutaneous adipose tissue does. STUDY DESIGN, SIZE, DURATION Mendelian randomization (MR) analysis was used to investigate the potential causal association between genetically predicted VAT and the risk of PCOS. Data for MR analysis were extracted from European population cohorts. VAT samples from sixteen PCOS patients and eight control women who underwent laparoscopic surgery were collected for proteomics and targeted metabolomics analyses. PARTICIPANTS/MATERIALS, SETTING, METHODS PCOS was diagnosed according to the 2003 Rotterdam Criteria. The control subjects were women who underwent laparoscopic investigation for infertility or benign indications. Proteomics was performed by TMT labeling and liquid chromatography-tandem mass spectrometry analysis, and targeted metabolomics was performed by ultra-performance liquid chromatography-tandem mass spectrometry analysis. The key differentially expressed proteins (DEPs) were validated by immunoblotting. MAIN RESULTS AND THE ROLE OF CHANCE MR analysis revealed a potentially causal relationship between increased genetically predicted VAT and PCOS, as well as related traits, such as polycystic ovaries, total testosterone, bioavailable testosterone, and anti-Müllerian hormone, while a negative relationship was found with sex hormone-binding globulin. Enrichment pathway analysis of DEPs indicated the inhibition of glycolysis and activation of mitochondrial OXPHOS in the VAT of PCOS patients. MR analysis revealed that key DEPs involved in glycolysis and OXPHOS were significantly linked to PCOS and its related traits. Dot blot assay confirmed a significant decrease in glycolysis enzymes PKM2 and HK1, and an increase in mitochondrial Complex I and III subunits, NDUFS3 and UQCR10. Moreover, metabolomics analysis confirmed down-regulated metabolites of energy metabolic pathways, in particular glycolysis. Further analysis of PCOS and control subjects of normal weight revealed that dysregulation of glucose metabolism and OXPHOS in VAT of women with PCOS was independent of obesity. LARGE SCALE DATA The mass spectrometry proteomics data have been deposited to the iProX database (http://www.iprox.org) with the iProX accession: IPX0005774001. LIMITATIONS, REASONS FOR CAUTION There may be an overlap in some exposure and outcome data, which might affect the results in the MR analysis. WIDER IMPLICATIONS OF THE FINDINGS The changes in protein expression of key enzymes affect their activities and disrupt the energy metabolic homeostasis in VAT, providing valuable insight for identifying potential intervention targets of PCOS. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the National Key Research and Development Project of China (2021YFC2700402), the National Natural Science Foundation of China (82071608, 82271665), the Key Clinical Projects of Peking University Third Hospital (BYSY2022043), and the CAMS Innovation Fund for Medical Sciences (2019-I2M-5-001). All authors report no conflict of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Yurong Zhang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), National Clinical Key Specialty Construction Program, Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Xintong Jiang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xueling Song
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), National Clinical Key Specialty Construction Program, Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Jiajia Zhang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), National Clinical Key Specialty Construction Program, Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Weian Mao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Chen
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Yijie Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liangshan Mu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yue Zhao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), National Clinical Key Specialty Construction Program, Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Hua X, Lu Q, Zeng L. SESN2 Ameliorates Dihydrotestosterone-induced Human Ovarian Granulosa Cell Damage by Activating AMPK/ULK1-mediated Mitophagy. Cell Biochem Biophys 2024:10.1007/s12013-024-01589-y. [PMID: 39417977 DOI: 10.1007/s12013-024-01589-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
Sestrin 2 (SESN2) has been reported to participate in the regulation of granulosa cell function in ovarian tissues. However, the role of SESN2 in polycystic ovarian syndrome (PCOS) is still incompletely understood. Here, we investigated the functional role and mechanism of SESN2 in dihydrotestosterone (DHT)-induced granulosa cells. In this study, DHT was utilized to induce PCOS cell model and the AMP-activated protein kinase (AMPK) inhibitor Compound C (CC) was utilized to inhibit the AMPK pathway. qRT-PCR was performed to detect the expression of SESN2 in HGLS cells. Cell apoptosis was evaluated by flow cytometry. Oxidative stress was detected by DCFH-DA staining, superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GSH-Px) kits. The expression of SESN2, cell apoptosis, oxidative stress, mitophagy and AMPK/ULK1 signaling-related proteins were measured by western blot. The results showed that SESN2 was downregulated in DHT-induced granulosa cells. Overexpression of SESN2 inhibited the DHT-induced apoptosis and oxidative stress of HGLS cells. DHT induction aggravated HGLS cell apoptosis and oxidative stress. SESN2 overexpression inhibited the DHT-induced apoptosis and oxidative stress of HGLS cells. In addition, overexpression of SESN2 activated the AMPK/ULK1 signaling pathway and promoted mitophagy. Treatment of CC reversed the regulatory effect of SESN2 on mitophagy. CC also reversed the influences of SESN2 overexpression on apoptosis and oxidative stress in DHT-induced HGLS cells. Overall, SESN2 suppressed DHT-induced apoptosis and oxidative stress in PCOS through AMPK/ULK1-mediated mitophagy.
Collapse
Affiliation(s)
- Xiaojing Hua
- Department of Gynecology, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong City, Jiangsu Province, 226018, China
| | - Qing Lu
- Department of Gynecology, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong City, Jiangsu Province, 226018, China
| | - Li Zeng
- Department of Gynecology, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong City, Jiangsu Province, 226018, China.
| |
Collapse
|
3
|
Zhao J, Xia Y. Low shear stress protects chondrocytes from IL-1β-induced apoptosis by activating ERK5/KLF4 signaling and negatively regulating miR-143-3p. J Orthop Surg Res 2024; 19:656. [PMID: 39402582 PMCID: PMC11476932 DOI: 10.1186/s13018-024-05140-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
OBJECTIVE This study investigated the protective effects of low fluid shear stress (FSS ≤ 2 dyn/cm²) against interleukin-1β (IL-1β)-induced chondrocyte apoptosis and explored the underlying molecular mechanisms. METHODS Chondrocytes were cultured under four conditions: control, IL-1β stimulation, low FSS, and combined low FSS + IL-1β stimulation. Apoptosis was assessed using Hoechst staining and flow cytometry. Western blotting determined the expression of caspase-3 (CASP3), caspase-8 (CASP8), and NF-κB p65. Quantitative real-time PCR measured miR-143-3p expression. The roles of miR-143-3p and the extracellular signal-regulated kinase 5 (ERK5)/Krüppel-like factor 4 (KLF4) signaling pathway were further investigated using miR-143-3p mimics and inhibitors, an ERK5 inhibitor, and a KLF4 overexpression vector. RESULTS IL-1β induced significant chondrocyte apoptosis, which was markedly inhibited by low FSS. Mechanistically, low FSS suppressed miR-143-3p expression, thereby enhancing ERK5 signaling. This activated ERK5 subsequently upregulated KLF4 expression, further mitigating IL-1β-induced damage. Importantly, miR-143-3p overexpression under low FSS conditions exacerbated IL-1β-induced apoptosis, while miR-143-3p inhibition attenuated it. Consistent with this, ERK5 inhibition augmented IL-1β-induced apoptosis, whereas KLF4 overexpression suppressed it. CONCLUSION Low FSS protects chondrocytes from IL-1β-induced apoptosis by suppressing miR-143-3p and activating the ERK5/KLF4 signaling pathway. This study reveals a novel mechanism by which mechanical stimulation protects cartilage.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Orthopaedics, Lanzhou University Second Hospital, #82 Cuiyingmen, Lanzhou, Gansu, 730000, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, China
| | - Yayi Xia
- Department of Orthopaedics, Lanzhou University Second Hospital, #82 Cuiyingmen, Lanzhou, Gansu, 730000, China.
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, China.
| |
Collapse
|
4
|
Hu R, Nong W, Huo P, Hu L, Jiang W, Yang Z, Liao A, Chen X, Huang Z, Lei X. Dendrobium nobile-derived polysaccharides stimulate the glycolytic pathway by activating SIRT2 to regulate insulin resistance in polycystic ovary syndrome granulosa cells. Int J Biol Macromol 2024; 278:134780. [PMID: 39153683 DOI: 10.1016/j.ijbiomac.2024.134780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Insulin resistance (IR) is one of the major complications of polycystic ovary syndrome (PCOS). This study aimed to investigate the effects and the molecular regulatory mechanism by which Dendrobium nobile-derived polysaccharides (DNP) improve IR in rats with letrozole and high-fat-diet induced PCOS. In vivo, DNP (200 mg/kg/d) administration not only reduced body weight, blood glucose, and insulin levels in PCOS rats, but also improve the disrupted estrous cycle. In addition, DNP treatment reduced atretic and cystic follicles and enhanced granulosa cell layer thickness, thereby restoring follicle development. In vitro, DNP treatment (100 μM) increased lactate levels and decreased pyruvate levels in insulin-treated (8 μg/mL) KGN cells. Additionally, DNP also decreased the expression of IGF1 and increased that of IGF1R, SIRT2, LDHA, PKM2 and HK2 both in vivo and in vitro. Also, SIRT2 expression was specifically inhibited by AGK2, while DNP significantly improved IR and glycolysis by reversing the effect of AGK2 treatment on lactate and pyruvate production, upregulating the expression levels of IGF1R, LDHA, HK2, and PKM2 and downregulating the expression level of IGF1. The results indicate that DNP can effectively improve IR and restore glycolytic pathway by activating SIRT2, which may provide a potential therapeutic approach for PCOS patients.
Collapse
Affiliation(s)
- Rao Hu
- Hunan Province Joint Training Base for Top-notch Innovative Talents of Graduate Students, School of Basic Medical Sciences, Hengyang Medical School, University of South China and Hengyang Women & Children's Medical Center, Hengyang 421001, China
| | - Weihua Nong
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Department of Obstetrics and Gynecology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China.
| | - Peng Huo
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, 541004, China.
| | - Linlin Hu
- Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Wenjian Jiang
- Hunan Province Joint Training Base for Top-notch Innovative Talents of Graduate Students, School of Basic Medical Sciences, Hengyang Medical School, University of South China and Hengyang Women & Children's Medical Center, Hengyang 421001, China
| | - Zhijian Yang
- Hunan Province Joint Training Base for Top-notch Innovative Talents of Graduate Students, School of Basic Medical Sciences, Hengyang Medical School, University of South China and Hengyang Women & Children's Medical Center, Hengyang 421001, China
| | - Anqi Liao
- Hunan Province Joint Training Base for Top-notch Innovative Talents of Graduate Students, School of Basic Medical Sciences, Hengyang Medical School, University of South China and Hengyang Women & Children's Medical Center, Hengyang 421001, China
| | - Xi Chen
- Hunan Province Joint Training Base for Top-notch Innovative Talents of Graduate Students, School of Basic Medical Sciences, Hengyang Medical School, University of South China and Hengyang Women & Children's Medical Center, Hengyang 421001, China.
| | - Zhijian Huang
- Hunan Province Joint Training Base for Top-notch Innovative Talents of Graduate Students, School of Basic Medical Sciences, Hengyang Medical School, University of South China and Hengyang Women & Children's Medical Center, Hengyang 421001, China.
| | - Xiaocan Lei
- Hunan Province Joint Training Base for Top-notch Innovative Talents of Graduate Students, School of Basic Medical Sciences, Hengyang Medical School, University of South China and Hengyang Women & Children's Medical Center, Hengyang 421001, China.
| |
Collapse
|
5
|
Ying W, Yunqi Z, Deji L, Jian K, Fusheng Q. Follicular fluid HD-sevs-mir-128-3p is a key molecule in regulating bovine granulosa cells autophagy. Theriogenology 2024; 226:263-276. [PMID: 38954995 DOI: 10.1016/j.theriogenology.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
Follicular fluid (FF) is rich in extracellular vesicles (EVs). EVs carries a variety of miRNA involved in regulating follicular development, the function of cells in follicles, primordial follicular formation, follicular recruitment and selection, follicular atresia, oocyte communication, granulosa cells (GCs) function and luteinization and other biological processes of follicular development. Previous studies in our laboratory have shown that bovine follicular fluid (bFF) high density-small extracellular vesicles (HD-sEVs)-miRNA was enriched in autophagy-related pathways. However, the mechanism of bFF EVs carrying miRNA regulating GCs autophagy is not clear. Thus, this study carried out a series of studies on the previous HD-sEVs sequencing data and miR-128-3p contained in bFF HD-sEVs. A total of 38 differentially expressed genes were detected by RNA-Seq after overexpression of miR-128-3p in bovine GCs (bGCs). Through cell transfection, Western blot (WB) and Immunofluorescence (IF), it was proved that overexpression of miR-128-3p could promote the expression of LC3 (microtubule-associated protein I light chain 3), inhibit p62, promote the number of autophagosome, promote the formation of autophagy lysosome and autophagy flow, and activate bGCs autophagy. MiR-128-3p inhibitor significantly inhibited the expression of LC3 and monodansylcadaverine (MDC) in bGCs, and promoted the expression of autophagy substrate p62, indicating that HD-sEVs-miR-128-3p could activate bGCs autophagy. In addition, through double luciferase assay, bioinformatics analysis, WB and RT-qPCR, it was concluded that bFF HD-sEVs-miR-128-3p could target TFEB (transcription factor EB) and FoxO4 (Forkhead box O4) and activate GCs autophagy.
Collapse
Affiliation(s)
- Wang Ying
- Chongqing Key Laboratory of Forage &Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhao Yunqi
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Luan Deji
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Kang Jian
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Quan Fusheng
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
6
|
Duval C, Wyse BA, Tsang BK, Librach CL. Extracellular vesicles and their content in the context of polycystic ovarian syndrome and endometriosis: a review. J Ovarian Res 2024; 17:160. [PMID: 39103867 DOI: 10.1186/s13048-024-01480-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/18/2024] [Indexed: 08/07/2024] Open
Abstract
Extracellular vesicles (EVs), particles enriched in bioactive molecules like proteins, nucleic acids, and lipids, are crucial mediators of intercellular communication and play key roles in various physiological and pathological processes. EVs have been shown to be involved in ovarian follicular function and to be altered in two prevalent gynecological disorders; polycystic ovarian syndrome (PCOS) and endometriosis.Ovarian follicles are complex microenvironments where folliculogenesis takes place with well-orchestrated interactions between granulosa cells, oocytes, and their surrounding stromal cells. Recent research unveiled the presence of EVs, including exosomes and microvesicles, in the follicular fluid (FFEVs), which constitutes part of the developing oocyte's microenvironment. In the context of PCOS, a multifaceted endocrine, reproductive, and metabolic disorder, studies have explored the dysregulation of these FFEVs and their cargo. Nine PCOS studies were included in this review and two miRNAs were commonly reported in two different studies, miR-379 and miR-200, both known to play a role in female reproduction. Studies have also demonstrated the potential use of EVs as diagnostic tools and treatment options.Endometriosis, another prevalent gynecological disorder characterized by ectopic growth of endometrial-like tissue, has also been linked to aberrant EV signaling. EVs in the peritoneal fluid of women with endometriosis carry molecules that modulate the immune response and promote the establishment and maintenance of endometriosis lesions. EVs derived from endometriosis lesions, serum and peritoneal fluid obtained from patients with endometriosis showed no commonly reported biomolecules between the eleven reviewed studies. Importantly, circulating EVs have been shown to be potential biomarkers, also reflecting the severity of the pathology.Understanding the interplay of EVs within human ovarian follicles may provide valuable insights into the pathophysiology of both PCOS and endometriosis. Targeting EV-mediated communication may open avenues for novel diagnostic and therapeutic approaches for these common gynecological disorders. More research is essential to unravel the mechanisms underlying EV involvement in folliculogenesis and its dysregulation in PCOS and endometriosis, ultimately leading to more effective and personalized interventions.
Collapse
Affiliation(s)
- Cyntia Duval
- CReATe Fertility Center, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | | | - Benjamin K Tsang
- Inflammation and Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Departments of Obstetrics and Gynecology & Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Clifford L Librach
- CReATe Fertility Center, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
7
|
Zhang X, Lei Y, Zhou H, Liu H, Xu P. The Role of PKM2 in Multiple Signaling Pathways Related to Neurological Diseases. Mol Neurobiol 2024; 61:5002-5026. [PMID: 38157121 DOI: 10.1007/s12035-023-03901-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Pyruvate kinase M2 (PKM2) is a key rate-limiting enzyme in glycolysis. It is well known that PKM2 plays a vital role in the proliferation of tumor cells. However, PKM2 can also exert its biological functions by mediating multiple signaling pathways in neurological diseases, such as Alzheimer's disease (AD), cognitive dysfunction, ischemic stroke, post-stroke depression, cerebral small-vessel disease, hypoxic-ischemic encephalopathy, traumatic brain injury, spinal cord injury, Parkinson's disease (PD), epilepsy, neuropathic pain, and autoimmune diseases. In these diseases, PKM2 can exert various biological functions, including regulation of glycolysis, inflammatory responses, apoptosis, proliferation of cells, oxidative stress, mitochondrial dysfunction, or pathological autoimmune responses. Moreover, the complexity of PKM2's biological characteristics determines the diversity of its biological functions. However, the role of PKM2 is not entirely the same in different diseases or cells, which is related to its oligomerization, subcellular localization, and post-translational modifications. This article will focus on the biological characteristics of PKM2, the regulation of PKM2 expression, and the biological role of PKM2 in neurological diseases. With this review, we hope to have a better understanding of the molecular mechanisms of PKM2, which may help researchers develop therapeutic strategies in clinic.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yihui Lei
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hongyan Zhou
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Haijun Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ping Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
8
|
Ji S, Yang H, Ji Y, Wu W, Dong Y, Fu H, Tang N, Hou Z, Wang F. Liraglutide Improves PCOS Symptoms in Rats by Targeting FDX1. Reprod Sci 2024; 31:2049-2058. [PMID: 38441776 DOI: 10.1007/s43032-024-01503-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/22/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a gynecological endocrine disorder characterized by ovulatory disorders, hyperandrogenemia, and polycystic changes in the ovaries. FDX1 is a ferredoxin-reducing protein on human mitochondria that plays an important role in steroid anabolism. Liraglutide, a glucagon-like peptide-1 receptor agonist (GLP-1RA), has recently emerged as a potential therapeutic agent for PCOS. Recent studies have suggested that FDX1 may be associated with the development of PCOS. This study aims to explore the pivotal role of FDX1 in the amelioration of PCOS through liraglutide intervention. MATERIALS AND METHODS A PCOS rat model was induced via subcutaneous DHEA injections. Following successful model establishment, the rats were treated with liraglutide combined with metformin, or with each drug individually, over a six-week period. After 6 weeks of treatment, we assessed changes in body weight, fasting blood glucose, sex hormone levels, estrous cycle regularity, ovarian morphology, FDX1 expression in ovarian tissue, and ovarian ROS levels. RESULTS PCOS rats exhibited significant increases in body weight and fasting blood glucose levels, disrupted estrous cycles, and polycystic ovarian morphology. FDX1 expression was notably reduced in the ovarian tissues of PCOS rats. Treatment with liraglutide, both alone and in combination with metformin, led to improvements in body weight, fasting blood glucose, sex hormone balance, estrous cycle regularity, ovarian morphology, and ovarian ROS levels. Notably, FDX1 expression was significantly restored in all treatment groups, with the most substantial increase observed in the liraglutide-treated group. CONCLUSION This study suggests that FDX1 could serve as a potential biomarker for elucidating the underlying mechanisms of liraglutide's therapeutic effects in PCOS management.
Collapse
Affiliation(s)
- Shuqing Ji
- Department of Gynaecology, the Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Hua Yang
- Department of Gynaecology, the Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Yuqing Ji
- Department of Gynaecology, the Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Weifan Wu
- Department of Gynaecology, the Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Yaping Dong
- Department of Gynaecology, the Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Hongxia Fu
- Department of Gynaecology, the Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Na Tang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Institute of Endocrinology, Chu Hsien-I Memorial Hospital, Tianjin Medical University, 300134, Tianjin, China
| | - Zhimin Hou
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Institute of Endocrinology, Chu Hsien-I Memorial Hospital, Tianjin Medical University, 300134, Tianjin, China.
| | - Fang Wang
- Department of Gynaecology, the Second Hospital of Tianjin Medical University, 300211, Tianjin, China.
| |
Collapse
|
9
|
Chu Y, Li Q, He Y, Li H, Wang Q, Li S, Wang J, Wang W, Ju S. Exposure to chlorpyrifos interferes with intercellular communication in cumulus-oocyte complexes during porcine oocyte maturation. Food Chem Toxicol 2024; 187:114629. [PMID: 38565334 DOI: 10.1016/j.fct.2024.114629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/27/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
Chlorpyrifos (CPF), a widely used organophosphorus pesticide (OP) to control pests has been verified reproductive toxicity on mammalian oocytes. However, limited information exists on its correlation with the dysfunction of the intercellular communication in cumulus-oocyte complexes (COCs). Herein, our study utilized porcine COCs as models to directly address the latent impact of CPF on the communication between cumulus cells (CCs) and oocytes during in vitro maturation. The results demonstrated that CPF exposure decreased the rate of the first polar body (PB1) extrusion and blocked meiosis progression. Notably, the cumulus expansion of CPF-exposed COCs was suppressed significantly, accompanied by the down-regulated mRNA levels of cumulus expansion-related genes. Furthermore, the early apoptotic level was raised and the expression of BAX/BCL2 and cleaved caspase 3 was up-regulated in the CCs of CPF-exposed COCs (p < 0.05). Moreover, CPF exposure impaired mRNA levels of antioxidant enzyme-related genes, induced higher levels of reactive oxygen species (ROS) and reduced the levels of mitochondrial membrane potential (MMP) in CCs (p < 0.05). Additionally, the integrated optical density (IOD) rate (cumulus/oocyte) of calcein and the expression of connexin 43 (CX43) was increased in CPF treatment groups (p < 0.05). As well, CPF exposure reduced the expression levels of FSCN1, DAAM1 and MYO10, which resulted in a significant decrease in the number and fluorescence intensity of transzonal projections (TZPs). In conclusion, CPF inhibited the expansion of cumulus and caused oxidative stress and apoptosis as well as disturbed the function of gap junctions (GJs) and TZPs, which eventually resulted in the failure of oocyte maturation.
Collapse
Affiliation(s)
- Yajie Chu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Qiao Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Yijing He
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Heran Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Qijia Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Shurui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Jianuo Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Weihan Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Shiqiang Ju
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China.
| |
Collapse
|
10
|
Kobayashi H, Shigetomi H, Matsubara S, Yoshimoto C, Imanaka S. Role of the mitophagy-apoptosis axis in the pathogenesis of polycystic ovarian syndrome. J Obstet Gynaecol Res 2024; 50:775-792. [PMID: 38417972 DOI: 10.1111/jog.15916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/15/2024] [Indexed: 03/01/2024]
Abstract
AIM Polycystic ovary syndrome (PCOS) is a common endocrine disorder characterized by menstrual irregularities, androgen excess, and polycystic ovarian morphology, but its pathogenesis remains largely unknown. This review focuses on how androgen excess influences the molecular basis of energy metabolism, mitochondrial function, and mitophagy in granulosa cells and oocytes, summarizes our current understanding of the pathogenesis of PCOS, and discuss perspectives on future research directions. METHODS A search of PubMed and Google Scholar databases were used to identify relevant studies for this narrative literature review. RESULTS Female offspring born of pregnant animals exposed to androgens recapitulates the PCOS phenotype. Abnormal mitochondrial morphology, altered expression of genes related to glycolysis, mitochondrial biogenesis, fission/fusion dynamics, and mitophagy have been identified in PCOS patients and androgenic animal models. Androgen excess causes uncoupling of the electron transport chain and depletion of the cellular adenosine 5'-triphosphate pool, indicating further impairment of mitochondrial function. A shift toward mitochondrial fission restores mitochondrial quality control mechanisms. However, prolonged mitochondrial fission disrupts autophagy/mitophagy induction due to loss of compensatory reserve for mitochondrial biogenesis. Disruption of compensatory mechanisms that mediate the quality control switch from mitophagy to apoptosis may cause a disease phenotype. Furthermore, genetic predisposition, altered expression of genes related to glycolysis and oxidative phosphorylation, or a combination of these factors may also contribute to the development of PCOS. CONCLUSION In conclusion, fetuses exposed to a hyperandrogenemic intrauterine environment may cause the PCOS phenotype possibly through disruption of the compensatory regulation of the mitophagy-apoptosis axis.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, Kashihara, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
| | - Hiroshi Shigetomi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
- Department of Gynecology and Reproductive Medicine, Aska Ladies Clinic, Nara, Japan
| | - Sho Matsubara
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
- Department of Medicine, Kei Oushin Clinic, Nishinomiya, Japan
| | - Chiharu Yoshimoto
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
- Department of Obstetrics and Gynecology, Nara Prefecture General Medical Center, Nara, Japan
| | - Shogo Imanaka
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, Kashihara, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
| |
Collapse
|
11
|
Ruan X, Wang P, Wei M, Yang Q, Dong X. Yu Linzhu alleviates primary ovarian insufficiency in a rat model by improving proliferation and energy metabolism of granulosa cells through hif1α/cx43 pathway. J Ovarian Res 2024; 17:89. [PMID: 38671471 PMCID: PMC11046760 DOI: 10.1186/s13048-024-01408-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Yu Linzhu (YLZ) is a classical Chinese traditional formula, which has been used for more than 600 years to regulate menstruation to help pregnancy. However, the mechanism of modern scientific action of YLZ needs to be further studied. METHODS Thirty SD female rats were divided into three groups to prepare the blank serum and drug-containing serum, and then using UHPLC-QE-MS to identify the ingredients of YLZ and its drug-containing serum. Twenty-four SD female rats were divided into four groups, except the control group, 4-vinylcyclohexene dicycloxide (VCD) was intraperitoneally injected to establish a primary ovarian insufficiency (POI) model of all groups. Using vaginal smear to show that the estrous cycle of rats was disturbed after modeling, indicates that the POI model was successfully established. The ELISA test was used to measure the follicle-stimulating hormone (FSH), estradiol (E2), and anti-Mullerian hormone (AMH) levels in the serum of rats. HE stain was used to assess the morphology of ovarian tissue. The localization and relative expression levels of CX43 protein were detected by tissue immunofluorescence. Primary ovarian granulosa cells (GCs) were identified by cellular immunofluorescence. CCK8 was used to screen time and concentration of drug-containing serum and evaluate the proliferation effect of YLZ on VCD-induced GCs. ATP kit and Seahorse XFe24 were used to detect energy production and real-time glycolytic metabolism rate of GCs. mRNA and protein expression levels of HIF1α, CX43, PEK, LDH, HK1 were detected by RT-PCR and WB. RESULTS UHPLC-QE-MS found 1702 ingredients of YLZ and 80 constituents migrating to blood. YLZ reduced the FSH while increasing the AMH and E2 levels. In ovarian tissues, YLZ improved ovarian morphology, follicle development, and the relative expression of CX43. In vitro studies, we found that YLZ increased the proliferative activity of GCs, ATP levels, glycolytic metabolic rate, HIF1α, CX43, PEK, HK1, LDH mRNA, and protein levels. CONCLUSIONS The study indicated that YLZ increased the proliferation and glycolytic energy metabolism of GCs to improve follicular development further alleviating ovarian function.
Collapse
Affiliation(s)
- Xin Ruan
- Department of Traditional Chinese Medicine, Institute of Traditional Chinese Medicine, Capital Medicine University, Beijing, 100069, China
| | - Pengxu Wang
- Department of Traditional Chinese Medicine, Institute of Traditional Chinese Medicine, Capital Medicine University, Beijing, 100069, China
| | - Maolin Wei
- Department of Traditional Chinese Medicine, Institute of Traditional Chinese Medicine, Capital Medicine University, Beijing, 100069, China
| | - Qingqing Yang
- Department of Traditional Chinese Medicine, Institute of Traditional Chinese Medicine, Capital Medicine University, Beijing, 100069, China
| | - Xiaoying Dong
- Department of Traditional Chinese Medicine, Institute of Traditional Chinese Medicine, Capital Medicine University, Beijing, 100069, China.
| |
Collapse
|
12
|
Cong P, Shang B, Zhang L, Wu Z, Wang Y, Li J, Zhang L. New insights into the treatment of polycystic ovary syndrome: HKDC1 promotes the growth of ovarian granulocyte cells by regulating mitochondrial function and glycolysis. J Mol Histol 2024; 55:187-199. [PMID: 38478190 DOI: 10.1007/s10735-024-10183-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/06/2024] [Indexed: 04/05/2024]
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine disease, and its pathogenesis and treatment are still unclear. Hexokinase domain component 1 (HKDC1) participates in regulating mitochondrial function and glycolysis. However, its role in PCOS development remains unrevealed. Here, female C57BL/6 mice were intraperitoneally injected with dehydroepiandrosterone (DHEA; 60 mg/kg body weight) to establish an in vivo model of PCOS. In vitro, KGN cells, a human ovarian granular cell line, were used to explore the potential mechanisms. DHEA-treated mice exhibited a disrupted estrus cycle, abnormal hormone levels, and insulin resistance. Dysfunction in mitochondria and glycolysis is the main reason for PCOS-related growth inhibition of ovarian granular cells. Here, we found that the structure of mitochondria was impaired, less ATP was generated and more mitochondrial Reactive Oxygen Species were produced in HKDC1-silenced KGN cells. Moreover, HKDC1 knockdown inhibited glucose consumption and decreased the production of glucose-6-phosphate and lactic acid. Conclusively, HKDC1 protects ovarian granulocyte cells from DHEA-related damage at least partly by preserving mitochondrial function and maintaining glycolysis.
Collapse
Affiliation(s)
- Peiwei Cong
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Bing Shang
- Chinese Medicine Literature Research Institute, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Lina Zhang
- Teaching and Experiment Center, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Zhaoli Wu
- College of Acupuncture and Massage, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Yanan Wang
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Jia Li
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Lin Zhang
- College of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China.
| |
Collapse
|
13
|
Xuan F, Ren Y, Lu J, Zhou W, Jin R, Chen A, Ye Y. CPEB1 induces autophagy and promotes apoptosis in ovarian granulosa cells of polycystic ovary syndrome. Mol Reprod Dev 2024; 91:e23741. [PMID: 38616716 DOI: 10.1002/mrd.23741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
Inflammatory damage in ovarian granulosa cells (GCs) is a key mechanism in polycystic ovary syndrome (PCOS), cytoplasmic polyadenylation element binding protein-1 (CPEB1) is important in inflammatory regulation, however, its role in PCOS is unclear. We aim to research the mechanism of CPEB1 in ovarian GCs in PCOS using dehydroepiandrosterone (DHEA)-induced PCOS rat models and testosterone-incubated GC models. The pathophysiology in PCOS rats was analyzed. Quantitative-realtime-PCR, TUNEL, immunohistochemistry, and Western blot were applied for quantification. Additionally, cell counting kit-8, flow cytometry, immunofluorescence, Western blot, and Monodansylcadaverine staining were performed. We found that PCOS rat models exhibited a disrupted estrus cycle, elevated serum levels of testosterone, luteinizing hormone (LH), and follicle-stimulating hormone (FSH), increased LH/FSH ratio, and heightened ovarian index. Furthermore, reduced corpus luteum and increased follicular cysts were observed in ovarian tissue. In ovarian tissue, autophagy and apoptosis were activated and CPEB1 was overexpressed. In vitro, CPEB1 overexpression inhibited cell viability and sirtuin-1 (SIRT1), activated tumor necrosis factor-α, and interleukin-6 levels, as well as apoptosis and autophagy; however, CPEB1 knockdown had the opposite effect. In conclusion, overexpression of CPEB1 activated autophagy and apoptosis of ovarian GCs in PCOS.
Collapse
Affiliation(s)
- Feilan Xuan
- Department of Obstetrics and Gynecology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yuefang Ren
- Department of Gynecology, Huzhou Maternity & Child Health Care Hospital, Huzhou, Zhejiang, China
| | - Jiali Lu
- Department of Gynecology, Huzhou Maternity & Child Health Care Hospital, Huzhou, Zhejiang, China
| | - Weimei Zhou
- Department of Ultrasound, Jiaojiang Maternal and Child Health Hospital, Taizhou, Zhejiang, China
| | - Ruiying Jin
- Department of Gynecology, Jiaojiang Maternal and Child Health Hospital, Taizhou, Zhejiang, China
| | - Aixue Chen
- Department of Gynecology, Changxing People's Hospital of Chongming District, Shanghai, China
| | - Yongju Ye
- Department of Gynecology, Lishui Hospital of Traditional Chinese Medicine, Lishui, Zhejiang, China
| |
Collapse
|
14
|
Dai M, Hong L, Yin T, Liu S. Disturbed Follicular Microenvironment in Polycystic Ovary Syndrome: Relationship to Oocyte Quality and Infertility. Endocrinology 2024; 165:bqae023. [PMID: 38375912 DOI: 10.1210/endocr/bqae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder associated with infertility and poor reproductive outcomes. The follicular fluid (FF) microenvironment plays a crucial role in oocyte development. This review summarizes evidence elucidating the alterations in FF composition in PCOS. Various studies demonstrated a pronounced proinflammatory milieu in PCOS FF, characterized by increased levels of cytokines, including but not limited to interleukin-6 (IL-6), tumor necrosis factor α, C-reactive protein, and IL-1β, concomitant with a reduction in anti-inflammatory IL-10. T lymphocytes and antigen-presenting cells are dysregulated in PCOS FF. PCOS FF exhibit heightened reactive oxygen species production and the accumulation of lipid peroxidation byproducts, and impaired antioxidant defenses. Multiple microRNAs are dysregulated in PCOS FF, disrupting signaling critical to granulosa cell function. Proteomic analysis reveals changes in pathways related to immune responses, metabolic perturbations, angiogenesis, and hormone regulation. Metabolomics identify disturbances in glucose metabolism, amino acids, lipid profiles, and steroid levels with PCOS FF. Collectively, these pathological alterations may adversely affect oocyte quality, embryo development, and fertility outcomes. Further research on larger cohorts is needed to validate these findings and to forge the development of prognostic biomarkers of oocyte developmental competence within FF. Characterizing the follicular environment in PCOS is key to elucidating the mechanisms underlying subfertility in this challenging disorder.
Collapse
Affiliation(s)
- Mengyang Dai
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430061, China
| | - Ling Hong
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen 518000, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen 518000, China
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430061, China
| | - Su Liu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen 518000, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen 518000, China
| |
Collapse
|
15
|
Nasser JS, Altahoo N, Almosawi S, Alhermi A, Butler AE. The Role of MicroRNA, Long Non-Coding RNA and Circular RNA in the Pathogenesis of Polycystic Ovary Syndrome: A Literature Review. Int J Mol Sci 2024; 25:903. [PMID: 38255975 PMCID: PMC10815174 DOI: 10.3390/ijms25020903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine-metabolic disease in females of reproductive age, affecting 4-20% of pre-menopausal women worldwide. MicroRNAs (miRNAs) are endogenous, single-stranded, non-coding, regulatory ribonucleic acid molecules found in eukaryotic cells. Abnormal miRNA expression has been associated with several diseases and could possibly explain their underlying pathophysiology. MiRNAs have been extensively studied for their potential diagnostic, prognostic, and therapeutic uses in many diseases, such as type 2 diabetes, obesity, cardiovascular disease, PCOS, and endometriosis. In women with PCOS, miRNAs were found to be abnormally expressed in theca cells, follicular fluid, granulosa cells, peripheral blood leukocytes, serum, and adipose tissue when compared to those without PCOS, making miRNAs a useful potential biomarker for the disease. Key pathways involved in PCOS, such as folliculogenesis, steroidogenesis, and cellular adhesion, are regulated by miRNA. This also highlights their importance as potential prognostic markers. In addition, recent evidence suggests a role for miRNAs in regulating the circadian rhythm (CR). CR is crucial for regulating reproduction through the various functions of the hypothalamic-pituitary-gonadal (HPG) axis and the ovaries. A disordered CR affects reproductive outcomes by inducing insulin resistance, oxidative stress, and systemic inflammation. Moreover, miRNAs were demonstrated to interact with lncRNA and circRNAs, which are thought to play a role in the pathogenesis of PCOS. This review discusses what is currently understood about miRNAs in PCOS, the cellular pathways involved, and their potential role as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Jenan Sh. Nasser
- School of Medicine, Royal College of Surgeons of Ireland, Busaiteen, Adliya 15503, Bahrain; (J.S.N.); (N.A.); (S.A.); (A.A.)
| | - Noor Altahoo
- School of Medicine, Royal College of Surgeons of Ireland, Busaiteen, Adliya 15503, Bahrain; (J.S.N.); (N.A.); (S.A.); (A.A.)
| | - Sayed Almosawi
- School of Medicine, Royal College of Surgeons of Ireland, Busaiteen, Adliya 15503, Bahrain; (J.S.N.); (N.A.); (S.A.); (A.A.)
| | - Abrar Alhermi
- School of Medicine, Royal College of Surgeons of Ireland, Busaiteen, Adliya 15503, Bahrain; (J.S.N.); (N.A.); (S.A.); (A.A.)
| | - Alexandra E. Butler
- Research Department, Royal College of Surgeons of Ireland, Busaiteen, Adliya 15503, Bahrain
| |
Collapse
|
16
|
Jiang D, Xu Y, Yang L, Li P, Han X, Li Q, Yang Y, Chao L. Identification and validation of senescence-related genes in polycystic ovary syndrome. J Ovarian Res 2024; 17:7. [PMID: 38184636 PMCID: PMC10770899 DOI: 10.1186/s13048-023-01338-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is an exceedingly intractable issue affecting female endocrine and reproductive health. However, the etiology and intricate pathological mechanisms of PCOS remain unclear. Nowadays, aging was found to share multiple common pathological mechanisms with PCOS, which causes probing into the pathogenesis of PCOS from senescence. However, no bioinformatics analyses have specifically focused on connection between PCOS and ovarian aging. METHODS Differentially expressed aging-related genes in PCOS were identified and then analyzed using function enrichment method. Hub genes were determined based on multiple algorithms, and expression validation of hub genes was performed in both datasets and experiments (human granulosa-like tumor cell line, KGN; human Granulosa Cell, hGCs). Finally, a transcription factor-miRNA-gene network of hub genes was constructed. RESULTS Here, we identified 73 aging-related differential expression genes (ARDEGs) by intersecting DEGs in PCOS and senescence-related gene set. Furthermore, we performed biological functions and potential pathways of ARDEGs and potential hub genes were also screened by multiple algorithms. From the perspective of immune dysfunction, we analyzed the correlation between PCOS and immune cells. Finally, TF-miRNA-gene networks were constructed. Finally, TF-miRNA-gene networks were constructed. CONCLUSIONS Our work aimed to elucidate the relation between PCOS and cellular senescence based on bioinformatics strategy, deepening the understanding of mechanisms and to seek for novel therapy strategies for improving reproductive lifespan and female health. Exploring the potential molecular mechanism of cell aging in PCOS is expected to bring a new breakthrough for PCOS diagnosis and therapy strategies. And this, might deepen our understanding about intricate mechanisms of ovarian aging.
Collapse
Affiliation(s)
- Danni Jiang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
| | - Yang Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
- Department of Reproductive Medicine, Linyi People's Hospital, Shandong University, Linyi, China
| | - Lin Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
| | - Pengfei Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
| | - Xiaojuan Han
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
| | - Qianni Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
| | - Yang Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
| | - Lan Chao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China.
| |
Collapse
|
17
|
Zhou Q, Liu Z, Liao Z, Zhang Y, Qu M, Wu F, Tian J, Zhao H, Peng Q, Zheng W, Huang M, Yang S. miRNA profiling of granulosa cell-derived exosomes reveals their role in promoting follicle development. J Cell Physiol 2024; 239:20-35. [PMID: 38149730 DOI: 10.1002/jcp.31140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 12/28/2023]
Abstract
To explore whether granulosa cell (GC)-derived exosomes (GC-Exos) and follicular fluid-derived exosomes (FF-Exos) have functional similarities in follicle development and to establish relevant experiments to validate whether GC-Exos could serve as a potential substitute for follicular fluid-derived exosomes to improve folliculogenesis. GC-Exos were characterized. MicroRNA (miRNA) profiles of exosomes from human GCs and follicular fluid were analyzed in depth. The signature was associated with folliculogenesis, such as phosphatidylinositol 3 kinases-protein kinase B signal pathway, mammalian target of rapamycin signal pathway, mitogen-activated protein kinase signal pathway, Wnt signal pathway, and cyclic adenosine monophosphate signal pathway. A total of five prominent miRNAs were found to regulate the above five signaling pathways. These miRNAs include miRNA-486-5p, miRNA-10b-5p, miRNA-100-5p, miRNA-99a-5p, and miRNA-21-5p. The exosomes from GCs and follicular fluid were investigated to explore the effect on folliculogenesis by injecting exosomes into older mice. The proportion of follicles at each stage is counted to help us understand folliculogenesis. Exosomes derived from GCs were isolated successfully. miRNA profiles demonstrated a remarkable overlap between the miRNA profiles of FF-Exos and GC-Exos. The shared miRNA signature exhibited a positive influence on follicle development and activation. Furthermore, exosomes derived from GCs and follicular fluid promoted folliculogenesis in older female mice. Exosomes derived from GCs had similar miRNA profiles and follicle-promoting functions as follicular fluid exosomes. Consequently, GC-Exos are promising for replacing FF-Exos and developing new commercial reagents to improve female fertility.
Collapse
Affiliation(s)
- Qilin Zhou
- Department of Health Inspection and Quarantine, School of Public Health, Guangdong Medical University, Dongguan, China
- Department of Reproductive Medicine, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhen Liu
- Department of Reproductive Medicine, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Zhengdong Liao
- Department of Reproductive Medicine, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yangzhuohan Zhang
- School of Clinical Medicine, Hubei University of Science and Technology, Xianning, China
| | - Mengyuan Qu
- Department of Reproductive Medicine, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Fanggui Wu
- Department of Reproductive Medicine, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jingyan Tian
- Department of Reproductive Medicine, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Huan Zhao
- Department of Reproductive Medicine, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Qianwen Peng
- Department of Reproductive Medicine, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Wenchao Zheng
- Department of Reproductive Medicine, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Mingyuan Huang
- Department of Health Inspection and Quarantine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Sheng Yang
- Department of Reproductive Medicine, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
18
|
Zhang Z, Shi C, Wang Z. The physiological functions and therapeutic potential of exosomes during the development and treatment of polycystic ovary syndrome. Front Physiol 2023; 14:1279469. [PMID: 38028777 PMCID: PMC10657906 DOI: 10.3389/fphys.2023.1279469] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Polycystic ovary syndrome is a very common disease of gynecological endocrine, accompanied by irregular menstruation, hyperandrogenism, metabolic abnormalities, reproductive disorders and other clinical symptoms, which seriously endangers women's physical and mental health, but its etiology and pathogenesis are not completely clear. Recently, the contribution of exosomes to the diagnosis and treatment of various diseases in the biomedical field has attracted much attention, including PCOS. Exosomes are extracellular vesicles secreted by cells, containing various biologically active molecules such as cell-specific proteins, lipids, and nucleic acids. They are important signaling regulators in vivo and widely participate in various physiopathological processes. They are new targets for disease diagnosis and treatment. Considering the important role of non-coding RNAs during the development and treatment of PCOS, this article takes exosomal miRNAs as the breakthrough point for elucidating the physiological functions and therapeutic potential of exosomes during the development and treatment of PCOS through analyzing the effects of exosomal miRNAs on ovarian follicle development, hormone secretion, oxidative stress, inflammatory response and insulin resistance, thus providing new research directions and theoretical basis for PCOS pathogenesis, clinical diagnosis and prognosis improvement.
Collapse
Affiliation(s)
| | | | - Zhengchao Wang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
19
|
Zhou R, Liu D. The function of exosomes in ovarian granulosa cells. Cell Tissue Res 2023; 394:257-267. [PMID: 37603064 DOI: 10.1007/s00441-023-03820-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 07/25/2023] [Indexed: 08/22/2023]
Abstract
Granulosa cells (GCs), as the basic components of ovarian tissue, play an indispensable role in maintaining normal ovarian functions such as hormone synthesis and ovulation. The abnormality of GCs often leads to ovarian endocrine disorders, which exert a negative effect on life quality and life expectancy. However, the pathogenesis and treatment of diseases are still poorly understood. Exosomes contain regulatory molecules and can transmit biological information in cell interaction. The role of exosomes in GCs has been studied extensively. This review summarizes the regulatory function of exosomes in GCs, as well as their participation in etiopathogenesis and their promising application in treatment when it comes to ovarian endocrine diseases, which can help us better understand ovarian diseases from the perspective of GCs.
Collapse
Affiliation(s)
- Ruotong Zhou
- Department of Endocrinology, First Affiliated Hospital of Dalian Medical University, Zhongshan Str.222, Dalian, 116011, Liaoning, China
| | - Dan Liu
- Department of Endocrinology, First Affiliated Hospital of Dalian Medical University, Zhongshan Str.222, Dalian, 116011, Liaoning, China.
| |
Collapse
|
20
|
Zhu Q, Li Y, Ma J, Ma H, Liang X. Potential factors result in diminished ovarian reserve: a comprehensive review. J Ovarian Res 2023; 16:208. [PMID: 37880734 PMCID: PMC10598941 DOI: 10.1186/s13048-023-01296-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/07/2023] [Indexed: 10/27/2023] Open
Abstract
The ovarian reserve is defined as the quantity of oocytes stored in the ovary or the number of oocytes that can be recruited. Ovarian reserve can be affected by many factors, including hormones, metabolites, initial ovarian reserve, environmental problems, diseases, and medications, among others. With the trend of postponing of pregnancy in modern society, diminished ovarian reserve (DOR) has become one of the most common challenges in current clinical reproductive medicine. Attributed to its unclear mechanism and complex clinical features, it is difficult for physicians to administer targeted treatment. This review focuses on the factors associated with ovarian reserve and discusses the potential influences and pathogenic factors that may explain the possible mechanisms of DOR, which can be improved or built upon by subsequent researchers to verify, replicate, and establish further study findings, as well as for scientists to find new treatments.
Collapse
Affiliation(s)
- Qinying Zhu
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Yi Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Jianhong Ma
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Hao Ma
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xiaolei Liang
- Department of Obstetrics and Gynecology, Key Laboratory for Gynecologic Oncology Gansu Province, The First Hospital of Lanzhou University, No.1, Donggangxi Rd, Chengguan District, 730000, Lanzhou, China.
| |
Collapse
|
21
|
Zhang M, Xing J, Zhao S, Chen H, Yin X, Zhu X. Engineered extracellular vesicles in female reproductive disorders. Biomed Pharmacother 2023; 166:115284. [PMID: 37572637 DOI: 10.1016/j.biopha.2023.115284] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/14/2023] Open
Abstract
Biologically active and nanoscale extracellular vesicles (EVs) participate in a variety of cellular physiological and pathological processes in a cell-free manner. Unlike cells, EVs not only do not cause acute immune rejection, but are much smaller and have a low risk of tumorigenicity or embolization. Because of their unique advantages, EVs show promise in applications in the diagnosis and treatment of reproductive disorders. As research broadens, engineering strategies for EVs have been developed, and engineering strategies for EVs have substantially improved their application potential while circumventing the defects of natural EVs, driving EVs toward clinical applications. In this paper, we will review the engineering strategies of EVs, as well as their regulatory effects and mechanisms on reproductive disorders (including premature ovarian insufficiency (POI), polycystic ovarian syndrome (PCOS), recurrent spontaneous abortion (RSA), intrauterine adhesion (IUA), and endometriosis (EMS)) and their application prospects. This work provides new ideas for the treatment of female reproductive disorders by engineering EVs.
Collapse
Affiliation(s)
- Mengxue Zhang
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China; Institute of Reproductive Sciences, Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China; Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Jie Xing
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China; Institute of Reproductive Sciences, Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China; Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Shijie Zhao
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China; Institute of Reproductive Sciences, Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China; Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Hui Chen
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Xinming Yin
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Xiaolan Zhu
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China; Institute of Reproductive Sciences, Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China.
| |
Collapse
|
22
|
Yang Z, Wu S, He S, Han L, Zhou M, Yang J, Chen J, Wu G. LncRNA AOC4P impacts the differentiation of macrophages and T-lymphocyte by regulating the NF-κB pathways of KGN cells: Potential pathogenesis of polycystic ovary syndrome. Am J Reprod Immunol 2023; 90:e13776. [PMID: 37766402 DOI: 10.1111/aji.13776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a multifactorial endocrine disease, which is an important cause of female infertility worldwide. PCOS patients are in a state of chronic low-grade inflammation, and immune imbalance is considered as a potential cause of its pathogenesis. METHODS The expression of AOC4P in PCOS and normal ovarian granulosa cells (GCs) was detected by real-time quantitative PCR. KGN cells were induced by dihydrotestosterone at 500 ng/mL to construct the PCOS model. After lentivirus-infected, KGN cells were constructed with AOC4P overexpression cell lines, the proliferation and apoptosis levels of KGN cells in AOC4P and NC groups were detected. Human monocyte cell line (THP-1)-derived macrophages and peripheral blood mononuclear cells (PBMC) were co-cultured with KGN cells for 48 h, respectively, and the differentiation of macrophages and CD4+ T cells were detected by flow cytometry. RESULTS Decreased AOC4P expression was found in PCOS patients. After constructing the PCOS cell model, we observed that overexpression of AOC4P promoted KGN cell proliferation and inhibited apoptosis. After co-culture with AOC4P overexpressed KGN cells, M1 macrophages decreased, M2 macrophages increased, T helper cells type 1 (Th1)/Th2 ratio increased, and regulatory T cell (Treg) cells increased. Finally, we found that AOC4P inhibited the activation of the nuclear factor κ B (NF-κB) pathway in KGN cells. CONCLUSIONS In this study, we found that AOC4P regulated the NF-κB signaling pathway by inhibiting the phosphorylation of P65, thereby affecting the proliferation and apoptosis of GCs, altering the differentiation of macrophages and T cells, thus contributing to the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Zhe Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, People's Republic of China
| | - Shujuan Wu
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, People's Republic of China
| | - Shaojing He
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, People's Republic of China
| | - Lu Han
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, People's Republic of China
| | - Mengqi Zhou
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, People's Republic of China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, People's Republic of China
| | - Jiao Chen
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, People's Republic of China
| | - Gengxiang Wu
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
23
|
Hu LL, Chen S, Shen MY, Huang QY, Li HG, Sun SC, Wang JL, Luo XQ. Aflatoxin B1 impairs porcine oocyte quality via disturbing intracellular membrane system and ATP production. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115213. [PMID: 37421895 DOI: 10.1016/j.ecoenv.2023.115213] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023]
Abstract
Aflatoxin is the most common type of mycotoxins in contaminated corn, peanuts and rice, which affects the livestock and ultimately endangers human health. Aflatoxin is reported to have carcinogenicity, mutation, growth retardation, immunosuppression and reproductive toxicity. In present study we reported the causes for the declined porcine oocyte quality under aflatoxin exposure. We set up an in vitro exposure model and showed that aflatoxin B1 disturbed cumulus cell expansion and oocyte polar body extrusion. We found that aflatoxin B1 exposure disrupted ER distribution and elevated the expression of GRP78, indicating the occurrence of ER stress, and the increased calcium storage also confirmed this. Besides, the structure of cis-Golgi apparatus, another intracellular membrane system was also affected, showing with decreased GM130 expression. The oocytes under aflatoxin B1 exposure showed aberrant lysosome accumulation and higher LAMP2 expression, a marker for lysosome membrane protection, and this might be due to the aberrant mitochondria function with low ATP production and the increase of apoptosis, since we found that BAX expression increased, and ribosomal protein which is also an apoptosis-related factor RPS3 decreased. Taken together, our study revealed that aflatoxin B1 impairs intracellular membrane system ER, Golgi apparatus, lysosome and mitochondria function to affect porcine oocyte maturation quality.
Collapse
Affiliation(s)
- Lin-Lin Hu
- Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Shun Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Meng-Ying Shen
- Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Qiu-Yan Huang
- Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Hong-Ge Li
- Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jun-Li Wang
- Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China; Industrial College of Biomedicine and Health Industry, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China.
| | - Xiao-Qiong Luo
- Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China.
| |
Collapse
|
24
|
Wang M, Sun Y, Yuan D, Yue S, Yang Z. Follicular fluid derived exosomal miR-4449 regulates cell proliferation and oxidative stress by targeting KEAP1 in human granulosa cell lines KGN and COV434. Exp Cell Res 2023; 430:113735. [PMID: 37517590 DOI: 10.1016/j.yexcr.2023.113735] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/11/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023]
Abstract
Polycystic ovary syndrome (PCOS) is characterized by ovulatory dysfunction, hyperandrogenism, and polycystic ovary morphology, affecting more and more women of reproductive age. Our study aimed to explore the molecular mechanism and effect of exosomal miR-4449 on granulosa cells (GCs). Two immortalized human ovarian granulosa cells (KGN and COV434 cells) were used for in vitro functional studies. Our study found that follicular fluid (FF) derived exosomal miR-4449 was significantly decreased in women with PCOS compared with the control patients. And exosomal miR-4449 could alleviate GCs oxidative stress (OS) and promote GCs proliferation, while the opposite trend was observed after inhibiting the expression of miR-4449. In addition, we demonstrated that Kelch-like ECH-associated protein 1(KEAP1) was a direct target of miR-4449 through dual-luciferase reporter assay, and the expression patterns of KEAP1 and miR-4449 in PCOS FF-derived exosomes were exactly opposite. In addition, KEAP1/NRF2 signaling pathway may play an important role in GCs proliferation and OS. Our results demonstrated that the decreased FF-derived exosomal miR-4449 expression in PCOS might aggravate the OS of GCs and inhibit GCs proliferation via KEAP1/NRF2 signaling pathway. Exosomal miR-4449 might be a potential biomarker for the diagnosis of PCOS. Our study contributes to a new understanding of the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Min Wang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yixuan Sun
- Department of Gynecology and Obstetrics, Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, China
| | - Dong Yuan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Song Yue
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Zhu Yang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
25
|
Deng J, Tang Y, Li L, Huang R, Wang Z, Ye T, Xiao Z, Hu M, Wei S, Wang Y, Yang Y, Huang Y. miR-143-3p Promotes Ovarian Granulosa Cell Senescence and Inhibits Estradiol Synthesis by Targeting UBE2E3 and LHCGR. Int J Mol Sci 2023; 24:12560. [PMID: 37628741 PMCID: PMC10454865 DOI: 10.3390/ijms241612560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/25/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
The ovary is a highly susceptible organ to senescence, and granulosa cells (GCs) have a crucial role in oocyte development promotion and overall ovarian function maintenance. As age advances, GCs apoptosis and dysfunction escalate, leading to ovarian aging. However, the molecular mechanisms underpinning ovarian aging remain poorly understood. In this study, we observed a correlation between the age-related decline of fertility and elevated expression levels of miR-143-3p in female mice. Moreover, miR-143-3p was highly expressed in senescent ovarian GCs. The overexpression of miR-143-3p in GCs not only hindered their proliferation and induced senescence-associated secretory phenotype (SASP) but also impeded steroid hormone synthesis by targeting ubiquitin-conjugating enzyme E2 E3 (Ube2e3) and luteinizing hormone and human chorionic gonadotropin receptor (Lhcgr). These findings suggest that miR-143-3p plays a substantial role in senescence and steroid hormone synthesis in GCs, indicating its potential as a therapeutic target for interventions in the ovarian aging process.
Collapse
Affiliation(s)
- Jingxian Deng
- Department of Pharmacology, Jinan University, Guangzhou 510632, China;
| | - Yan Tang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China (L.L.); (R.H.); (Z.W.); (T.Y.); (Z.X.); (M.H.); (S.W.); (Y.W.)
| | - Lu Li
- Department of Cell Biology, Jinan University, Guangzhou 510632, China (L.L.); (R.H.); (Z.W.); (T.Y.); (Z.X.); (M.H.); (S.W.); (Y.W.)
| | - Rufei Huang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China (L.L.); (R.H.); (Z.W.); (T.Y.); (Z.X.); (M.H.); (S.W.); (Y.W.)
| | - Zhaoyang Wang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China (L.L.); (R.H.); (Z.W.); (T.Y.); (Z.X.); (M.H.); (S.W.); (Y.W.)
| | - Tao Ye
- Department of Cell Biology, Jinan University, Guangzhou 510632, China (L.L.); (R.H.); (Z.W.); (T.Y.); (Z.X.); (M.H.); (S.W.); (Y.W.)
| | - Ziyan Xiao
- Department of Cell Biology, Jinan University, Guangzhou 510632, China (L.L.); (R.H.); (Z.W.); (T.Y.); (Z.X.); (M.H.); (S.W.); (Y.W.)
| | - Meirong Hu
- Department of Cell Biology, Jinan University, Guangzhou 510632, China (L.L.); (R.H.); (Z.W.); (T.Y.); (Z.X.); (M.H.); (S.W.); (Y.W.)
| | - Siying Wei
- Department of Cell Biology, Jinan University, Guangzhou 510632, China (L.L.); (R.H.); (Z.W.); (T.Y.); (Z.X.); (M.H.); (S.W.); (Y.W.)
| | - Yuxin Wang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China (L.L.); (R.H.); (Z.W.); (T.Y.); (Z.X.); (M.H.); (S.W.); (Y.W.)
| | - Yan Yang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China (L.L.); (R.H.); (Z.W.); (T.Y.); (Z.X.); (M.H.); (S.W.); (Y.W.)
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
| | - Yadong Huang
- Department of Pharmacology, Jinan University, Guangzhou 510632, China;
- Department of Cell Biology, Jinan University, Guangzhou 510632, China (L.L.); (R.H.); (Z.W.); (T.Y.); (Z.X.); (M.H.); (S.W.); (Y.W.)
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
| |
Collapse
|
26
|
Zhang JY, Zhang MY, Xiao SY, Zheng MF, Wang JL, Sun SC, Qin L. Nivalenol disrupts mitochondria functions during porcine oocyte meiotic maturation. Toxicon 2023:107223. [PMID: 37437783 DOI: 10.1016/j.toxicon.2023.107223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/29/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
Oocyte maturation is important for fertility in mammals, since the quality of oocytes directly affects fertilization, embryo attachment and survival. Nivalenol is widely present in nature as a common toxin that contaminates grain and feed, and it has been reported to cause acute toxicity, immunotoxicity, reproductive toxicity and carcinogenic effects. In this study, we explored the impact of nivalenol on the porcine oocyte maturation and its possible mechanisms. The extrusion of the first polar body was significantly inhibited after incubating oocytes with nivalenol. Meanwhile, nivalenol exposure led to the abnormal distribution of mitochondria, aberrant calcium concentration and the reduction of membrane potential caused a significant decrease in the capacity of mitochondria to generate ATP. In addition, nivalenol induced oxidative stress, and the level of ROS was significantly increased in the nivalenol-treated group, which was confirmed by the perturbation of oxidative stress-related genes. We found that nivalenol-treated oocytes showed positive Annexin-V and γH2A.X signals, indicating the occurrence of apoptosis and DNA damage. In all, our data suggest that nivalenol disrupted porcine oocyte maturation through its effects on mitochondria-related oxidative stress, apoptosis and DNA damage.
Collapse
Affiliation(s)
- Jing-Yi Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Meng-Yao Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shi-Yi Xiao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mei-Feng Zheng
- Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Jun-Li Wang
- Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Li Qin
- Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China.
| |
Collapse
|
27
|
Jiang X, Zhang Z, Hou M, Yang X, Cui L. Plasma exosomes and contained MiRNAs affect the reproductive phenotype in polycystic ovary syndrome. FASEB J 2023; 37:e22960. [PMID: 37335566 DOI: 10.1096/fj.202201940rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/01/2023] [Accepted: 04/25/2023] [Indexed: 06/21/2023]
Abstract
Anovulation is the main feature of infertile women with polycystic ovary syndrome (PCOS), and there is very limited understanding of the role of plasma exosomes and miRNAs in it. To identify the effect of PCOS patients' plasma exosomes and exosomal miRNAs, we isolated plasma exosomes of PCOS patients and normal women and injected into 8-week-old ICR female mice via tail vein. The changes in estrus cycle, serum hormone levels, and ovarian morphology were observed. KGN cells were cultured and transfected with mimics and inhibitors of differentially expressed exosomal miRNAs (miR-18a-3p, miR-20b-5p, miR-106a-5p, miR-126-3p, and miR-146a-5p) and then tested for steroid hormone synthesis, proliferation, and apoptosis. The results showed that female ICR mice injected with plasma exosomes from PCOS patients presented ovarian oligo-cyclicity. Hormone synthesis and proliferation of granulosa cells were affected by differentially expressed PCOS plasma-derived exosomal miRNAs, of which miR-126-3p having the most evident effect. MiR-126-3p affected the proliferation of granulosa cells by inhibiting PDGFRβ and its downstream PI3K-AKT pathway. Our results demonstrated plasma exosomes and contained miRNAs in PCOS patients affect the estrus cycle of mice, hormone secretion, and proliferation of granulosa cells. This study provides a novel understanding about the function of plasma exosomes and exosomal miRNAs in PCOS.
Collapse
Affiliation(s)
- Xiao Jiang
- Center for Reproductive Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Zhirong Zhang
- Center for Reproductive Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Min Hou
- Center for Reproductive Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Xiaohe Yang
- Center for Reproductive Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Linlin Cui
- Center for Reproductive Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| |
Collapse
|
28
|
Zhou Z, Zhang X, Yi G, Zhang Y, Zhang J, Tan C, Wan B, Li Y, Lu H, Lu W. LINC00092 derived from follicular fluid alleviated the symptoms of PCOS through inactivation of phosphatase and tensin homolog by recruiting KDM5A. Reprod Biol 2023; 23:100764. [PMID: 37084543 DOI: 10.1016/j.repbio.2023.100764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/26/2023] [Accepted: 04/09/2023] [Indexed: 04/23/2023]
Abstract
Mounting literatures suggest that follicular fluid-derived exosomes (FF-Evs) influence the progression of progression of polycystic ovary syndrome (PCOS). The present study was designed to dissect the underlying mechanisms by which FF-Evs affect the PCOS. A rat model of PCOS was established using Letrozole induction. After treatment with FF-Evs, rats were examined for alterations in hormones, blood glucose, and lipid levels in serum, oestrus cycle, pathology in the ovaries, and apoptosis of ovarian cells. The functional rescue assays were performed to analyze the impact of long non-coding RNA 00092 (LINC00092) on PCOS rats. The cis-regulatory elements involved in the regulation of phosphatase and tensin homolog (PTEN) expression were analyzed using bioinformatic analysis, followed by verification of the mechanism. FF-Evs treatment ameliorated Letrozole-induced enhancement of weight, insulin resistance, dyslipidemia, and LH/FSH ratio, reduction of luteal cells, granulosa cells, and healthy follicles, prolonged oestrus, oestrous cycle arrest, ovarian tissue fibrosis, and ovarian cell apoptosis in rats, which were counteracted by treatment with shRNA targeting LINC00092. Regarding the mechanism, FF-Evs augmented LINC00092 expression in rats. LINC00092 bound to lysine demethylase 5 A (KDM5A), and KDM5A facilitated the demethylation of H3K4me3 to restrain the transcriptional activity of PTEN. Taken together, FF-Evs delivered LINC00092 repressed the transcriptional activity of PTEN by binding to KDM5A to enhance demethylation of H3K4me3, thereby reducing apoptosis in ovarian cells and alleviating PCOS symptoms.
Collapse
Affiliation(s)
- Zhi Zhou
- Reproductive Medical Center, Hainan Women and Children's Medical Center, Haikou 570206, Hainan, PR China
| | - Xiaopo Zhang
- Key Laboratory of Tropical Translational Medicine of the Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, Hainan, PR China
| | - Guohui Yi
- Public Research Laboratory, Hainan Medical University, Haikou 571199, Hainan, PR China
| | - Yong Zhang
- Department of Pharmacology, School of Basic Medicine and Life Science, Hainan Medical University, Haikou 571199, Hainan, PR China
| | - Juan Zhang
- Reproductive Medical Center, Zhuzhou Central Hospital, Zhuzhou 412007, Hunan, China
| | - Can Tan
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Bangbei Wan
- Reproductive Medical Center, Hainan Women and Children's Medical Center, Haikou 570206, Hainan, PR China
| | - Yejuan Li
- Reproductive Medical Center, Hainan Women and Children's Medical Center, Haikou 570206, Hainan, PR China
| | - Hui Lu
- Reproductive Medical Center, Hainan Women and Children's Medical Center, Haikou 570206, Hainan, PR China
| | - Weiying Lu
- Reproductive Medical Center, Hainan Women and Children's Medical Center, Haikou 570206, Hainan, PR China.
| |
Collapse
|
29
|
Hu J, Lin F, Yin Y, Shang Y, Xiao Z, Xu W. Adipocyte-derived exosomal miR-30c-5p promotes ovarian angiogenesis in polycystic ovary syndrome via the SOCS3/STAT3/VEGFA pathway. J Steroid Biochem Mol Biol 2023; 230:106278. [PMID: 36870372 DOI: 10.1016/j.jsbmb.2023.106278] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/07/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a systemic endocrine disease affecting women's reproductive health. Ovarian angiogenesis in PCOS patients is abnormal, manifested by increased ovarian stromal vascularization and upregulated proangiogenic factors such as vascular endothelial growth factor (VEGF). However, the specific mechanisms underlying these changes in PCOS remain unknown. In this study, we induced the adipogenic differentiation in preadipocyte 3T3-L1 cells and found that adipocyte-derived exosomes promoted proliferation, migration, tube formation, and VEGFA expression in human ovarian microvascular endothelial cells (HOMECs) by delivering miR-30c-5p. Mechanistically, dual luciferase reporter assay demonstrated that miR-30c-5p directly targeted the 3'- untranslated region (UTR) of suppressor of cytokine signaling 3 (SOCS3) mRNA. In addition, adipocyte-derived exosomal miR-30c-5p activated signal transducer and activator of transcription 3 (STAT3)/VEGFA pathway in HOMECs via targeting SOCS3. In vivo experiments indicated that tail vein injection of adipocyte-derived exosomes exacerbated endocrine and metabolic disorders and ovarian angiogenesis in mice with PCOS via miR-30c-5p. Taken together, the study revealed that adipocyte-derived exosomal miR-30c-5p promotes ovarian angiogenesis via the SOCS3/STAT3/VEGFA pathway, thereby participating in the development of PCOS.
Collapse
Affiliation(s)
- Jian Hu
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan 430060, China; Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430060, China
| | - Fangyou Lin
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuchen Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan 430060, China; Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430060, China
| | - Yunjie Shang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan 430060, China; Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430060, China
| | - Zhuoni Xiao
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan 430060, China; Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430060, China.
| | - Wangming Xu
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan 430060, China; Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430060, China.
| |
Collapse
|
30
|
Chen Z, Wang X. The Role and Application of Exosomes and Their Cargos in Reproductive Diseases: A Systematic Review. Vet Sci 2022; 9:vetsci9120706. [PMID: 36548867 PMCID: PMC9785507 DOI: 10.3390/vetsci9120706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
In recent years, the incidence of the reproductive diseases is increasing year-by-year, leading to abortion or fetal arrest, which seriously affects the reproductive health of human beings and the reproductive efficiency of animals. Exosomes are phospholipid bilayer vesicles that are widely distributed in living organisms and released by the cells of various organs and tissues. Exosomes contain proteins, RNA, lipids, and other components and are important carriers of information transfer between cells, which play a variety of physiological and pathological regulatory functions. More and more studies have found that exosomes and their connotations play an important role in the diagnosis, prognosis and treatment of diseases. A systematic review was conducted in this manuscript and then highlights our knowledge about the diagnostic and therapeutic applications of exosomes to reproductive diseases, such as polycystic ovary syndrome (PCOS), endometriosis, premature ovarian failure (POF), preeclampsia, polycystic, endometrial cancer, cervical cancer, ovarian cancer, and prostate gland cancer.
Collapse
Affiliation(s)
- Zhi Chen
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Xiangguo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
- Correspondence:
| |
Collapse
|
31
|
Cao J, Huo P, Cui K, Wei H, Cao J, Wang J, Liu Q, Lei X, Zhang S. Correction: Follicular fluid-derived exosomal miR-143-3p/miR-155-5p regulate follicular dysplasia by modulating glycolysis in granulosa cells in polycystic ovary syndrome. Cell Commun Signal 2022; 20:116. [PMID: 35915462 PMCID: PMC9341044 DOI: 10.1186/s12964-022-00938-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|