1
|
Liu H, Mei M, Lin S, Luo J, Huang S, Zhou J. Wuling San regulates AVPR2-cAMP-PKA-CREB pathway to delay cellular senescence and ameliorate acute kidney injury. JOURNAL OF ETHNOPHARMACOLOGY 2025; 347:119679. [PMID: 40216046 DOI: 10.1016/j.jep.2025.119679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/17/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cellular senescence in renal resident cells plays a pivotal role in the progression of acute kidney injury (AKI), necessitating the expansion of effective drug targets. Traditional Chinese medicine (TCM) formulations, characterized by their multi-target effects, offer a promising perspective for advancing research on AKI. Wuling San (WLS), a well-established compound used in treating urological disorders, has yet to elucidate its potential pharmacological targets and mechanisms in ameliorating AKI and delaying cellular senescence. AIM OF THE STUDY This study sought to elucidate the mechanisms by which WLS modulates the AVPR2-cAMP-PKA-CREB pathway to mitigate cellular senescence and promote recovery from AKI. METHODS We first prepared WLS-containing serum and performed RT-qPCR experiments to screen for GPCRs that were differentially expressed in response to WLS. Next, we established an in vitro AKI mouse model to assess the renal protective effects of the WLS by measuring renal function, renal pathology, and oxidative stress levels. After this, we performed RNA sequencing (RNA-Seq) profiling to identify differentially expressed genes (DEGs) affected by WLS treatment. We also conducted Gene Ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses to identify potential signaling pathways involved. We then utilized the Gene Expression Omnibus (GEO) data to screen for cellular senescence related differentially expressed genes (CSRDEGs) in AKI patients and performed enrichment analysis, as well as a joint analysis of specific genes in relation to the RNA-Seq profiling results. We also examined how WLS affects the expression of proteins linked to cellular senescence in the AKI mouse model by targeting the AVPR2-cAMP-PKA-CREB pathway. RESULTS WLS markedly enhanced the expression of Arginine Vasopressin Receptor 2 (AVPR2) and ameliorated renal function indicators, as well as pathological changes and oxidative stress levels in the mouse model of AKI. RNA-Seq profiling revealed significant enrichment of the cAMP signaling pathway following WLS intervention. Bioinformatics analysis indicated that genes associated with cellular senescence in AKI patients were notably enriched in the p53 signaling pathway. Data mining from the GEO database, in conjunction with RNA-Seq profiling, demonstrated a substantial reduction in key genes after WLS treatment. Additionally, WLS elevated both the expression and phosphorylation of pivotal proteins within the AVPR2-cAMP-PKA-CREB pathway, while concurrently decreasing proteins associated with cellular senescence. CONCLUSION The results demonstrated that WLS significantly elevated the expression of AVPR2, which may underlie its nephroprotective effects and facilitate the mitigation of AKI by modulating the AVPR2-cAMP-PKA-CREB pathway, ultimately contributing to a delay in cellular senescence.
Collapse
Affiliation(s)
- Hong Liu
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Manxue Mei
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Shuyin Lin
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Jiahui Luo
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Sirong Huang
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Jiuyao Zhou
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
| |
Collapse
|
2
|
Zheng X, Zhou L, Xu T, Wang G, Peng Y, Wen C, Wu M, Tao H, Dai Y. Applications and prospects of phosphoproteomics in renal disease research. PeerJ 2025; 13:e18950. [PMID: 40124608 PMCID: PMC11930217 DOI: 10.7717/peerj.18950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 01/16/2025] [Indexed: 03/25/2025] Open
Abstract
Introduction Phosphoproteomics, an advanced branch of molecular biology, utilizes specific techniques such as mass spectrometry, affinity chromatography, and bioinformatics analysis to explore protein phosphorylation, shedding light on the cellular mechanisms that drive various biological processes. This field has become instrumental in advancing our understanding of renal diseases, from identifying underlying mechanisms to pinpointing new therapeutic targets. Areas covered This review will discuss the evolution of phosphoproteomics from its early experimental observations to its current application in renal disease research using liquid chromatography-tandem mass spectrometry (LC-MS/MS). We will explore its role in the identification of disease biomarkers, the elucidation of pathogenic mechanisms, and the development of novel therapeutic strategies. Additionally, the potential of phosphoproteomics in enhancing drug discovery and improving treatment outcomes for renal diseases will be highlighted. Expert opinion Phosphoproteomics is rapidly transforming renal disease research by offering unprecedented insights into cellular processes. Utilizing techniques such as LC-MS/MS, it enables the identification of novel biomarkers and therapeutic targets, enhancing our understanding of drug mechanisms. This field promises significant advancements in the diagnosis and treatment of renal diseases, shifting towards more personalized and effective therapeutic strategies. As the technology evolves, its integration into clinical practice is pivotal for revolutionizing renal healthcare.
Collapse
Affiliation(s)
- XueJia Zheng
- The First Affiliated Hospital of Anhui University of Science and Technology, Huainan, Anhui, China
| | - LingLing Zhou
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - TianTian Xu
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - GuoYing Wang
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - YaLi Peng
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - ChunMei Wen
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - MengYao Wu
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - HuiHui Tao
- School of Medicine, Anhui University of Science and Technology, Huainan, China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, Anhui, China
- Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan, Anhui, China
| | - Yong Dai
- The First Affiliated Hospital of Anhui University of Science and Technology, Huainan, Anhui, China
- School of Medicine, Anhui University of Science and Technology, Huainan, China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, Anhui, China
- Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan, Anhui, China
| |
Collapse
|
3
|
Babu M, Rao RM, Babu A, Jerom JP, Gogoi A, Singh N, Seshadri M, Ray A, Shelley BP, Datta A. Antioxidant Effect of Naringin Demonstrated Through a Bayes' Theorem Driven Multidisciplinary Approach Reveals its Prophylactic Potential as a Dietary Supplement for Ischemic Stroke. Mol Neurobiol 2025; 62:3918-3933. [PMID: 39352635 DOI: 10.1007/s12035-024-04525-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 09/23/2024] [Indexed: 01/03/2025]
Abstract
Naringin (NAR), a flavanone glycoside, occurs widely in citrus fruits, vegetables, and alcoholic beverages. Despite evidence of the neuroprotective effects of NAR on animal models of ischemic stroke, brain cell-type-specific data about the antioxidant efficacy of NAR and possible protein targets of such beneficial effects are limited. Here, we demonstrate the brain cell type-specific prophylactic role of NAR, an FDA-listed food additive, in an in vitro oxygen-glucose deprivation (OGD) model of cerebral ischemia using MTT and DCFDA assays. Using Bayes' theorem-based predictive model, we first ranked the top-10 protein targets (ALDH2, ACAT1, CTSB, FASN, LDHA, PTGS1, CTSD, LGALS1, TARDBP, and CDK1) from a curated list of 289 NAR-interacting proteins in neurons that might be mediating its antioxidant effect in the OGD model. When preincubated with NAR for 2 days, N2a and CTX-TNA2 cells could withstand up to 8 h of OGD without a noticeable decrease in cell viability. This cerebroprotective effect is partly mediated by reducing intracellular ROS production in the above two brain cell types. The antioxidant effect of NAR was comparable with the equimolar (50 µM) concentration of clinically used ROS-scavenger and neuroprotective edaravone. Molecular docking of NAR with the top-10 protein targets from Bayes' analysis showed the lowest binding energy for CDK1 (- 8.8 kcal/M). Molecular dynamics simulation analysis showed that NAR acts by inhibiting CDK1 by stably occupying its ATP-binding cavity. Considering diet has been listed as a risk factor for stroke, NAR may be explored as a component of functional food for stroke or related neurological disorders.
Collapse
Affiliation(s)
- Manju Babu
- Laboratory of Translational Neuroscience, Division of Neuroscience, Yenepoya Research Center, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, Karnataka, India
| | - Rajas M Rao
- Division of Data Analytics, Bioinformatics and Structural Biology, Yenepoya Research Center, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, Karnataka, India
| | - Anju Babu
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, 462066, MP, India
| | | | - Anaekshi Gogoi
- Laboratory of Translational Neuroscience, Division of Neuroscience, Yenepoya Research Center, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, Karnataka, India
| | - Nikhil Singh
- Laboratory of Translational Neuroscience, Division of Neuroscience, Yenepoya Research Center, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, Karnataka, India
| | - Meenakshi Seshadri
- Department of Pharmacology, Yenepoya Pharmacy College and Research Center, Naringana, Deralakatte, Mangalore, 575018, Karnataka, India
| | - Animikh Ray
- Father Muller Research Center, Father Muller Medical College, Mangalore, 575002, Karnataka, India
| | - Bhaskara P Shelley
- Department of Neurology, Yenepoya Medical College, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, Karnataka, India
| | - Arnab Datta
- Laboratory of Translational Neuroscience, Division of Neuroscience, Yenepoya Research Center, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, Karnataka, India.
- Department of Pharmacology, Yenepoya Pharmacy College and Research Center, Naringana, Deralakatte, Mangalore, 575018, Karnataka, India.
| |
Collapse
|
4
|
Deshpande V, Park E, Jayatissa NU, Khan S, Mejia R, Yang CR, Chou CL, Raghuram V, Knepper MA. Bayesian mapping of protein kinases to vasopressin-regulated phosphorylation sites in renal collecting duct. Am J Physiol Renal Physiol 2024; 327:F591-F598. [PMID: 39024358 PMCID: PMC11918269 DOI: 10.1152/ajprenal.00142.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/01/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
Vasopressin controls water permeability in the renal collecting duct by regulating the water channel protein, aquaporin-2 (AQP2). Phosphoproteomic studies have identified multiple proteins that undergo phosphorylation changes in response to vasopressin. The kinases responsible for the phosphorylation of most of these sites have not been identified. Here, we use large-scale Bayesian data integration to predict the responsible kinases for 51 phosphoproteomically identified vasopressin-regulated phosphorylation sites in the renal collecting duct. To do this, we applied Bayes' rule to rank the 515 known mammalian protein kinases for each site. Bayes' rule was applied recursively to integrate each of the seven independent datasets, each time using the posterior probability vector of a given step as the prior probability vector of the next step. In total, 30 of the 33 phosphorylation sites that increase with vasopressin were predicted to be phosphorylated by protein kinase A (PKA) catalytic subunit-α, consistent with prior studies implicating PKA in vasopressin signaling. Eighteen of the vasopressin-regulated phosphorylation sites were decreased in response to vasopressin and all but three of these sites were predicted to be targets of extracellular signal-regulated kinases, ERK1 and ERK2. This result implies that ERK1 and ERK2 are inhibited in response to vasopressin V2 receptor occupation, secondary to PKA activation. The six phosphorylation sites not predicted to be phosphorylated by PKA or ERK1/2 are potential targets of other protein kinases previously implicated in aquaporin-2 regulation, including cyclin-dependent kinase 18 (CDK18), calmodulin-dependent kinase 2δ (CAMK2D), AMP-activated kinase catalytic subunit-α-1 (PRKAA1) and CDC42 binding protein kinase β (CDC42BPB).NEW & NOTEWORTHY Vasopressin regulates water transport in the renal collecting duct in part through phosphorylation or dephosphorylation of proteins that regulate aquaporin-2. Prior studies have identified 51 vasopressin-regulated phosphorylation sites in 45 proteins. This study uses Bayesian data integration techniques to combine information from multiple prior proteomics and transcriptomics studies to predict the protein kinases that phosphorylate the 51 sites. Most of the regulated sites were predicted to be phosphorylated by protein kinase A or ERK1/ERK2.
Collapse
Affiliation(s)
- Venkatesh Deshpande
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Euijung Park
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Nipun U Jayatissa
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Shaza Khan
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Raymond Mejia
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Chin-Rang Yang
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Chung-Lin Chou
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Viswanathan Raghuram
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
5
|
Yang H, Wang Y, Liu W, He T, Liao J, Qian Z, Zhao J, Cong Z, Sun D, Liu Z, Wang C, Zhu L, Chen S. Genome-wide pan-GPCR cell libraries accelerate drug discovery. Acta Pharm Sin B 2024; 14:4296-4311. [PMID: 39525595 PMCID: PMC11544303 DOI: 10.1016/j.apsb.2024.06.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/02/2024] [Accepted: 06/19/2024] [Indexed: 11/16/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are pivotal in mediating diverse physiological and pathological processes, rendering them promising targets for drug discovery. GPCRs account for about 40% of FDA-approved drugs, representing the most successful drug targets. However, only approximately 15% of the 800 human GPCRs are targeted by market drugs, leaving numerous opportunities for drug discovery among the remaining receptors. Cell expression systems play crucial roles in the GPCR drug discovery field, including novel target identification, structural and functional characterization, potential ligand screening, signal pathway elucidation, and drug safety evaluation. Here, we discuss the principles, applications, and limitations of widely used cell expression systems in GPCR-targeted drug discovery, GPCR function investigation, signal pathway characterization, and pharmacological property studies. We also propose three strategies for constructing genome-wide pan-GPCR cell libraries, which will provide a powerful platform for GPCR ligand screening, and facilitate the study of GPCR mechanisms and drug safety evaluation, ultimately accelerating the process of GPCR-targeted drug discovery.
Collapse
Affiliation(s)
- Hanting Yang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yongfu Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Liu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Taiping He
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Basic Medical Science, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiayu Liao
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
- The Huaxi-Cal Research Center for Predictive Intervention Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhongzhi Qian
- Chinese Pharmacopoeia Commission, Beijing 100061, China
| | - Jinghao Zhao
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhaotong Cong
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dan Sun
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhixiang Liu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Can Wang
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lingping Zhu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
6
|
Pokhrel R, Morgan AL, Robinson HR, Stone MJ, Foster SR. Unravelling G protein-coupled receptor signalling networks using global phosphoproteomics. Br J Pharmacol 2024; 181:2359-2370. [PMID: 36772927 DOI: 10.1111/bph.16052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/13/2023] [Accepted: 02/04/2023] [Indexed: 02/12/2023] Open
Abstract
G protein-coupled receptor (GPCR) activation initiates signalling via a complex network of intracellular effectors that combine to produce diverse cellular and tissue responses. Although we have an advanced understanding of the proximal events following receptor stimulation, the molecular detail of GPCR signalling further downstream often remains obscure. Unravelling these GPCR-mediated signalling networks has important implications for receptor biology and drug discovery. In this context, phosphoproteomics has emerged as a powerful approach for investigating global GPCR signal transduction. Here, we provide a brief overview of the phosphoproteomic workflow and discuss current limitations and future directions for this technology. By highlighting some of the novel insights into GPCR signalling networks gained using phosphoproteomics, we demonstrate the utility of global phosphoproteomics to dissect GPCR signalling networks and to accelerate discovery of new targets for therapeutic development. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Rina Pokhrel
- Department of Biochemistry & Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Alexandra L Morgan
- Department of Biochemistry & Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | | | - Martin J Stone
- Department of Biochemistry & Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Simon R Foster
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
7
|
Kharin A, Klussmann E. Many kinases for controlling the water channel aquaporin-2. J Physiol 2024; 602:3025-3039. [PMID: 37440212 DOI: 10.1113/jp284100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/26/2023] [Indexed: 07/14/2023] Open
Abstract
Aquaporin-2 (AQP2) is a member of the aquaporin water channel family. In the kidney, AQP2 is expressed in collecting duct principal cells where it facilitates water reabsorption in response to antidiuretic hormone (arginine vasopressin, AVP). AVP induces the redistribution of AQP2 from intracellular vesicles and its incorporation into the plasma membrane. The plasma membrane insertion of AQP2 represents the crucial step in AVP-mediated water reabsorption. Dysregulation of the system preventing the AQP2 plasma membrane insertion causes diabetes insipidus (DI), a disease characterised by an impaired urine concentrating ability and polydipsia. There is no satisfactory treatment of DI available. This review discusses kinases that control the localisation of AQP2 and points out potential kinase-directed targets for the treatment of DI.
Collapse
Affiliation(s)
- Andrii Kharin
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Enno Klussmann
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
| |
Collapse
|
8
|
Poll BG, Leo KT, Deshpande V, Jayatissa N, Pisitkun T, Park E, Yang CR, Raghuram V, Knepper MA. A resource database for protein kinase substrate sequence-preference motifs based on large-scale mass spectrometry data. Cell Commun Signal 2024; 22:137. [PMID: 38374071 PMCID: PMC10875805 DOI: 10.1186/s12964-023-01436-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/12/2023] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Protein phosphorylation is one of the most prevalent posttranslational modifications involved in molecular control of cellular processes, and is mediated by over 520 protein kinases in humans and other mammals. Identification of the protein kinases responsible for phosphorylation events is key to understanding signaling pathways. Unbiased phosphoproteomics experiments have generated a wealth of data that can be used to identify protein kinase targets and their preferred substrate sequences. METHODS This study utilized prior data from mass spectrometry-based studies identifying sites of protein phosphorylation after in vitro incubation of protein mixtures with recombinant protein kinases. PTM-Logo software was used with these data to generate position-dependent Shannon information matrices and sequence motif 'logos'. Webpages were constructed for facile access to logos for each kinase and a new stand-alone application was written in Python that uses the position-dependent Shannon information matrices to identify kinases most likely to phosphorylate a particular phosphorylation site. RESULTS A database of kinase substrate target preference logos allows browsing, searching, or downloading target motif data for each protein kinase ( https://esbl.nhlbi.nih.gov/Databases/Kinase_Logos/ ). These logos were combined with phylogenetic analysis of protein kinase catalytic sequences to reveal substrate preference patterns specific to particular groups of kinases ( https://esbl.nhlbi.nih.gov/Databases/Kinase_Logos/KinaseTree.html ). A stand-alone program, KinasePredictor, is provided ( https://esbl.nhlbi.nih.gov/Databases/Kinase_Logos/KinasePredictor.html ). It takes as input, amino-acid sequences surrounding a given phosphorylation site and generates a ranked list of protein kinases most likely to phosphorylate that site. CONCLUSIONS This study provides three new resources for protein kinase characterization. It provides a tool for prediction of kinase-substrate interactions, which in combination with other types of data (co-localization, etc.), can predict which kinases are likely responsible for a given phosphorylation event in a given tissue. Video Abstract.
Collapse
Affiliation(s)
- Brian G Poll
- Epithelial Systems Biology Laboratory, Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Drive, National Institutes of Health, Bethesda, MD, 20892-1603, USA
| | - Kirby T Leo
- Epithelial Systems Biology Laboratory, Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Drive, National Institutes of Health, Bethesda, MD, 20892-1603, USA
| | - Venky Deshpande
- Epithelial Systems Biology Laboratory, Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Drive, National Institutes of Health, Bethesda, MD, 20892-1603, USA
| | - Nipun Jayatissa
- Epithelial Systems Biology Laboratory, Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Drive, National Institutes of Health, Bethesda, MD, 20892-1603, USA
| | - Trairak Pisitkun
- Epithelial Systems Biology Laboratory, Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Drive, National Institutes of Health, Bethesda, MD, 20892-1603, USA
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Euijung Park
- Epithelial Systems Biology Laboratory, Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Drive, National Institutes of Health, Bethesda, MD, 20892-1603, USA
| | - Chin-Rang Yang
- Epithelial Systems Biology Laboratory, Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Drive, National Institutes of Health, Bethesda, MD, 20892-1603, USA
| | - Viswanathan Raghuram
- Epithelial Systems Biology Laboratory, Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Drive, National Institutes of Health, Bethesda, MD, 20892-1603, USA
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Drive, National Institutes of Health, Bethesda, MD, 20892-1603, USA.
| |
Collapse
|
9
|
Rodriguez FD, Covenas R. Association of Neurokinin-1 Receptor Signaling Pathways with Cancer. Curr Med Chem 2024; 31:6460-6486. [PMID: 37594106 DOI: 10.2174/0929867331666230818110812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/14/2023] [Accepted: 07/01/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND Numerous biochemical reactions leading to altered cell proliferation cause tumorigenesis and cancer treatment resistance. The mechanisms implicated include genetic and epigenetic changes, modified intracellular signaling, and failure of control mechanisms caused by intrinsic and extrinsic factors alone or combined. No unique biochemical events are responsible; entangled molecular reactions conduct the resident cells in a tissue to display uncontrolled growth and abnormal migration. Copious experimental research supports the etiological responsibility of NK-1R (neurokinin-1 receptor) activation, alone or cooperating with other mechanisms, in cancer appearance in different tissues. Consequently, a profound study of this receptor system in the context of malignant processes is essential to design new treatments targeting NK-1R-deviated activity. METHODS This study reviews and discusses recent literature that analyzes the main signaling pathways influenced by the activation of neurokinin 1 full and truncated receptor variants. Also, the involvement of NK-1R in cancer development is discussed. CONCLUSION NK-1R can signal through numerous pathways and cross-talk with other receptor systems. The participation of override or malfunctioning NK-1R in malignant processes needs a more precise definition in different types of cancers to apply satisfactory and effective treatments. A long way has already been traveled: the current disposal of selective and effective NK-1R antagonists and the capacity to develop new drugs with biased agonistic properties based on the receptor's structural states with functional significance opens immediate research action and clinical application.
Collapse
Affiliation(s)
- Francisco David Rodriguez
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, University of Salamanca, 37007 Salamanca, Spain
- Group GIR USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, Salamanca, Spain
| | - Rafael Covenas
- Group GIR USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, Salamanca, Spain
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla y León (INCYL), University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
10
|
Kovanich D, Low TY, Zaccolo M. Using the Proteomics Toolbox to Resolve Topology and Dynamics of Compartmentalized cAMP Signaling. Int J Mol Sci 2023; 24:4667. [PMID: 36902098 PMCID: PMC10003371 DOI: 10.3390/ijms24054667] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
cAMP is a second messenger that regulates a myriad of cellular functions in response to multiple extracellular stimuli. New developments in the field have provided exciting insights into how cAMP utilizes compartmentalization to ensure specificity when the message conveyed to the cell by an extracellular stimulus is translated into the appropriate functional outcome. cAMP compartmentalization relies on the formation of local signaling domains where the subset of cAMP signaling effectors, regulators and targets involved in a specific cellular response cluster together. These domains are dynamic in nature and underpin the exacting spatiotemporal regulation of cAMP signaling. In this review, we focus on how the proteomics toolbox can be utilized to identify the molecular components of these domains and to define the dynamic cellular cAMP signaling landscape. From a therapeutic perspective, compiling data on compartmentalized cAMP signaling in physiological and pathological conditions will help define the signaling events underlying disease and may reveal domain-specific targets for the development of precision medicine interventions.
Collapse
Affiliation(s)
- Duangnapa Kovanich
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford OX1 3PT, UK
| |
Collapse
|
11
|
Park E, Yang CR, Raghuram V, Deshpande V, Datta A, Poll BG, Leo KT, Kikuchi H, Chen L, Chou CL, Knepper MA. Data resource: vasopressin-regulated protein phosphorylation sites in the collecting duct. Am J Physiol Renal Physiol 2023; 324:F43-F55. [PMID: 36264882 PMCID: PMC9762968 DOI: 10.1152/ajprenal.00229.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/04/2022] [Accepted: 10/17/2022] [Indexed: 02/04/2023] Open
Abstract
Vasopressin controls renal water excretion through actions to regulate aquaporin-2 (AQP2) trafficking, transcription, and degradation. These actions are in part dependent on vasopressin-induced phosphorylation changes in collecting duct cells. Although most efforts have focused on the phosphorylation of AQP2 itself, phosphoproteomic studies have identified many vasopressin-regulated phosphorylation sites in proteins other than AQP2. The goal of this bioinformatics-based review is to create a compendium of vasopressin-regulated phosphorylation sites with a focus on those that are seen in both native rat inner medullary collecting ducts and cultured collecting duct cells from the mouse (mpkCCD), arguing that these sites are the best candidates for roles in AQP2 regulation. This analysis identified 51 vasopressin-regulated phosphorylation sites in 45 proteins. We provide resource web pages at https://esbl.nhlbi.nih.gov/Databases/AVP-Phos/ and https://esbl.nhlbi.nih.gov/AVP-Network/, listing the phosphorylation sites and describing annotated functions of each of the vasopressin-targeted phosphoproteins. Among these sites are 23 consensus protein kinase A (PKA) sites that are increased in response to vasopressin, consistent with a central role for PKA in vasopressin signaling. The remaining sites are predicted to be phosphorylated by other kinases, most notably ERK1/2, which accounts for decreased phosphorylation at sites with a X-p(S/T)-P-X motif. Additional protein kinases that undergo vasopressin-induced changes in phosphorylation are Camkk2, Cdk18, Erbb3, Mink1, and Src, which also may be activated directly or indirectly by PKA. The regulated phosphoproteins are mapped to processes that hypothetically can account for vasopressin-mediated control of AQP2 trafficking, cytoskeletal alterations, and Aqp2 gene expression, providing grist for future studies.NEW & NOTEWORTHY Vasopressin regulates renal water excretion through control of the aquaporin-2 water channel in collecting duct cells. Studies of vasopressin-induced protein phosphorylation have focused mainly on the phosphorylation of aquaporin-2. This study describes 44 phosphoproteins other than aquaporin-2 that undergo vasopressin-mediated phosphorylation changes and summarizes potential physiological roles of each.
Collapse
Affiliation(s)
- Euijung Park
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Chin-Rang Yang
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Viswanathan Raghuram
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Venkatesh Deshpande
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Arnab Datta
- Laboratory of Translational Neuroscience, Division of Neuroscience, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore, India
| | - Brian G Poll
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Kirby T Leo
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Hiroaki Kikuchi
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Lihe Chen
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Chung-Lin Chou
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
12
|
Miao X, Zhao Y, Li H, Ren Y, Hu G, Yang J, Liu L, Li X. Phosphoproteomics Profile of Chicken Cecum in the Response to Salmonella enterica Serovar Enteritidis Inoculation. Animals (Basel) 2022; 13:ani13010078. [PMID: 36611688 PMCID: PMC9817708 DOI: 10.3390/ani13010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Salmonella enterica serovar Enteritidis (S. Enteritidis) is a foodborne pathogen, which can cause great threats to human health through the consumption of contaminated poultry products. This research combines TMT labeling, HPLC and mass-spectrometry-based phosphoproteomics on cecum of the F1 cross of Guangxi Yao chicken and Jining Bairi chicken. The treated group was inoculated with 0.3 mL inoculum S. Enteritidis, and the control group was inoculated with 0.3 mL phosphate-buffered saline (PBS). A total of 338 differentially phosphorylated modification sites in 243 differentially phosphorylated proteins (DPPs) were chosen for downstream analyses. A total of 213 sites in 146 DPPs were up-regulated and 125 sites in 97 DPPs were down-regulated. Functional analysis was performed for DPPs based on gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and the protein domain. The DPPs were mainly enriched in immune- and metabolic-related GO-BP (biological process) and KEGG pathways. We predicted and classified the subcellular structure and COG/KOG of DPPs. Furthermore, protein-protein interaction network analyses were performed by using multiple algorithms. We identified 71 motifs of the phosphorylated modification sites and selected 18 sites randomly to detect the expression level through parallel reaction monitoring (PRM). S. Enteritidis inoculation caused phosphorylation alteration in immune- and metabolic-related proteins. The invasion of S. Enteritidis may be actualized by inducing cecum cell apoptosis through the endoplasmic reticulum pathway, and chickens could resist the invasion of S. Enteritidis by affecting the function of ECM receptors. The findings herein provide a crucial theoretical foundation to understand the molecular mechanism and epigenetic regulation in response to S. Enteritidis inoculation in chickens.
Collapse
Affiliation(s)
- Xiuxiu Miao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
| | - Ya’nan Zhao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
| | - Huilong Li
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
| | - Yanru Ren
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
| | - Geng Hu
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
| | - Jingchao Yang
- Shandong Animal Husbandry General Station, Jinan 250010, China
| | - Liying Liu
- College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
- Correspondence: (L.L.); (X.L.)
| | - Xianyao Li
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai’an 271018, China
- Correspondence: (L.L.); (X.L.)
| |
Collapse
|