1
|
Lin Z, Zhuang J, He L, Zhu S, Kong W, Lu W, Zhang Z. Exploring Smad5: a review to pave the way for a deeper understanding of the pathobiology of common respiratory diseases. Mol Med 2024; 30:225. [PMID: 39578779 PMCID: PMC11585160 DOI: 10.1186/s10020-024-00961-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/16/2024] [Indexed: 11/24/2024] Open
Abstract
Smad5 (small mothers against decapentaplegic 5) protein is a receptor-regulated member of the Smad family proteins, mainly participating in the bone morphogenetic protein (BMP) signaling pathway in its phosphorylated form. This article will provide a detailed review of Smad5, focusing on its gene characteristics, protein structure, and subcellular localization properties. We will also explore the related signaling pathways and the mechanisms of Smad5 in respiratory diseases, including chronic obstructive pulmonary disease (COPD), bronchial asthma, pulmonary arterial hypertension(PAH), lung cancer, and idiopathic pulmonary fibrosis (IPF). Additionally, the review will cover aspects such as proliferation, differentiation, apoptosis, anti-fibrosis, and mitochondrial function metabolism. In addition, the review will cover aspects of proliferation, differentiation, apoptosis, anti-fibrosis and functional mitochondrial metabolism related to the above topics. Numerous studies suggest that Smad5 may play a unique and important role in the pathogenesis of respiratory system diseases. However, in previous research, Smad5 was mainly used to broadly determine the activation of the BMP signaling pathway, and its own function has not been given much attention. It is worth noting that Smad5 has distinct nuclear-cytoplasmic distribution characteristics different from Smad1 and Smad8. It can undergo significant nuclear-cytoplasmic shuttling when intracellular pH (pHi) changes, playing important roles in both the classical BMP signaling pathway and non-BMP signaling pathways. Given that Smad5 can move intracellularly in response to changes in physicochemical properties, its cellular localization may play a crucial role in the development of respiratory diseases. This article will explore the possibility that its distribution characteristics may be an important factor that is easily overlooked and not adequately considered in disease research.
Collapse
Affiliation(s)
- Zeqiang Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiayu Zhuang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lixia He
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Siyuan Zhu
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Weiguo Kong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
- Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Zili Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
- Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Zhong Q, Li D, Yang XP. Progress in antitumor mechanisms and applications of phenformin (Review). Oncol Rep 2024; 52:151. [PMID: 39301645 PMCID: PMC11421015 DOI: 10.3892/or.2024.8810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024] Open
Abstract
Phenformin, a biguanide compound, has attracted increased attention due to its prominent antitumor activity. As a multi‑target agent, the antitumor effects of phenformin involve a wide range of factors, including inhibition of mitochondrial complex I, activation of AMP‑activated protein kinase, impact on the tumor microenvironment, suppression of cancer stem cells and others. In addition, phenformin has been shown to markedly augment the effectiveness of various clinical treatment methods, including radiotherapy, chemotherapy, targeted therapy and immunotherapy. It is noteworthy that breakthrough progress has been made in the treatment of cancer with phenformin with application in clinical trials for the treatment of melanoma. Phenformin not only reduces the lesion area of patients, but also enhances the efficacy of dalafinib/trimetinib. In the present review, the novel breakthroughs in the antitumor effects and mechanisms of phenformin were discussed. In addition, the current review focuses on the clinical development value of phenformin, striving to provide new insights into the future research direction of phenformin in the field of tumor treatment.
Collapse
Affiliation(s)
- Qi Zhong
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Duo Li
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Xiao-Ping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
3
|
Toussaint A, Singh M, Wang G, Driscoll M, Bhatt V, Ndong JDLC, Shuaib S, Zoltowski H, Gilleran J, Peng Y, Tsymbal A, Jia D, Roberge J, Chiou H, Guo JY, Herranz D, Langenfeld J. BMP receptor 2 inhibition regulates mitochondrial bioenergetics to induce synergistic cell death with BCL-2 inhibitors in leukemia and NSLC cells. RESEARCH SQUARE 2024:rs.3.rs-5065904. [PMID: 39315260 PMCID: PMC11419183 DOI: 10.21203/rs.3.rs-5065904/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Background Bone morphogenetic protein (BMP) signaling cascade is a phylogenetically conserved stem cell regulator that is aberrantly expressed in non-small cell lung cancer (NSLC) and leukemias. BMP signaling negatively regulates mitochondrial bioenergetics in lung cancer cells. The impact of inhibiting BMP signaling on mitochondrial bioenergetics and the effect this has on the survival of NSLC and leukemia cells are not known. Methods Utilizing the BMP type 2 receptor (BMPR2) JL189, BMPR2 knockout (KO) in cancer cells, and BMP loss of function mutants in C elegans, we determined the effects of BMPR2 inhibition (BMPR2i) on TCA cycle metabolic intermediates, mitochondrial respiration, and the regulation of mitochondrial superoxide anion (SOA) and Ca++ levels. We also examined whether BMPR2i altered the threshold cancer therapeutics induce cell death in NSLC and leukemia cell lines. KO of the mitochondria uniporter (MCU) was used to determine the mechanism BMPR2i regulates the uptake of Ca++ into the mitochondria, mitochondrial bioenergetics, and cell death. Results BMPR2i increases mtCa++ levels and enhances mitochondrial bioenergetics in both NSLC and leukemia cell lines that is conserved in C elegans. BMPR2i induced increase in mtCa++ levels is regulated through the MCU, effecting mitochondria mass and cell survival. BMPR2i synergistically induced cell death when combined with BCL-2 inhibitors or microtubule targeting agents in both NSLC and leukemia cells. Cell death is caused by synergistic increase in mitochondrial ROS and Ca++ levels. BMPR2i enhances Ca++ uptake into the mitochondria induced by reactive oxygen species (ROS) produced by cancer therapeutics. Both acute myeloid leukemia (AML) and T-cell lymphoblastic leukemia cells lines were more responsive to the JL189 alone and when combined with venetoclax or navitoclax compared to NSLC.
Collapse
|
4
|
Wang L, Qi L, Huang X, Feng X, Gan J, Zhang J, Xi Y, Zhang S, Meng Q. RHBDF1 modulates cisplatin sensitivity of small cell lung cancer through YAP1/Smad2 signaling pathway. Heliyon 2024; 10:e33454. [PMID: 39027514 PMCID: PMC11254170 DOI: 10.1016/j.heliyon.2024.e33454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Small cell lung cancer (SCLC) is a fatal tumor type that is prone to drug resistance. In our previous study, we showed that human rhomboid-5 homolog-1 (RHBDF1) was differentially expressed in 5 intrinsic cisplatin-resistant SCLC tissues compared with 5 intrinsic cisplatin-sensitive SCLC tissues by RNA sequencing, which intrigued us. We performed gain- and loss-of-function experiments to investigate RHBDF1 function, bioinformatics analysis, qRT-PCR, western blotting, and immunoprecipitation to elucidate the molecular mechanisms as well as detect RHBDF1 expression in SCLC by immunohistochemistry. We found that RHBDF1 knockdown promoted cell proliferation and cisplatin chemoresistance and inhibited apoptosis in vitro and in vivo. These effects could be reversed by overexpressing RHBDF1 in vitro. Mechanistically, RHBDF1 interacted with YAP1, which increased the phosphorylation of Smad2 and transported Smad2 to the nucleus. Among clinical specimens, the RHBDF1 was a low expression in SCLC and was associated with clinicopathological features and prognosis. We are the first to reveal that RHBDF1 inhibited cell proliferation and promoted cisplatin sensitivity in SCLC and elucidate a novel mechanism through RHBDF1/YAP1/Smad2 signaling pathway which played a crucial role in cisplatin chemosensitivity. Targeting this pathway can be a promising therapeutic strategy for chemotherapy resistance in SCLC.
Collapse
Affiliation(s)
- Lei Wang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Lishuang Qi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Xiaoyi Huang
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Xiao Feng
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, 250013, China
| | - Junqing Gan
- Department of Radiation Oncology, North China University of Science and Technology Affiliated Hospital, Tangshan, 063000, China
| | - Juxuan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Yuhui Xi
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Shuai Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Qingwei Meng
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| |
Collapse
|
5
|
Kobayashi H, Matsubara S, Yoshimoto C, Shigetomi H, Imanaka S. Current understanding of the pathogenesis of placenta accreta spectrum disorder with focus on mitochondrial function. J Obstet Gynaecol Res 2024; 50:929-940. [PMID: 38544343 DOI: 10.1111/jog.15936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/18/2024] [Indexed: 06/04/2024]
Abstract
AIM The refinement of assisted reproductive technology, including the development of cryopreservation techniques (vitrification) and ovarian stimulation protocols, makes frozen embryo transfer (FET) an alternative to fresh ET and has contributed to the success of assisted reproductive technology. Compared with fresh ET cycles, FET cycles were associated with better in vitro fertilization outcomes; however, the occurrence of pregnancy-induced hypertension, preeclampsia, and placenta accreta spectrum (PAS) was higher in FET cycles. PAS has been increasing steadily in incidence as a life-threatening condition along with cesarean rates worldwide. In this review, we summarize the current understanding of the pathogenesis of PAS and discuss future research directions. METHODS A literature search was performed in the PubMed and Google Scholar databases. RESULTS Risk factors associated with PAS incidence include a primary defect of the decidua basalis or scar dehiscence, aberrant vascular remodeling, and abnormally invasive trophoblasts, or a combination thereof. Freezing, thawing, and hormone replacement manipulations have been shown to affect multiple cellular pathways, including cell proliferation, invasion, epithelial-to-mesenchymal transition (EMT), and mitochondrial function. Molecules involved in abnormal migration and EMT of extravillous trophoblast cells are beginning to be identified in PAS placentas. Many of these molecules were also found to be involved in mitochondrial biogenesis and dynamics. CONCLUSION The etiology of PAS may be a multifactorial genesis with intrinsic predisposition (e.g., placental abnormalities) and certain environmental factors (e.g., defective decidua) as triggers for its development. A distinctive feature of this review is its focus on the potential factors linking mitochondrial function to PAS development.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology and Reproductive Medicine, Kashihara, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
| | - Sho Matsubara
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
- Department of Medicine, Kei Oushin Clinic, Nishinomiya, Japan
| | - Chiharu Yoshimoto
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
- Department of Obstetrics and Gynecology, Nara Prefecture General Medical Center, Nara, Japan
| | - Hiroshi Shigetomi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
- Department of Gynecology and Reproductive Medicine, Aska Ladies Clinic, Nara, Japan
| | - Shogo Imanaka
- Department of Gynecology and Reproductive Medicine, Kashihara, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
| |
Collapse
|
6
|
Zhou W, Yan K, Xi Q. BMP signaling in cancer stemness and differentiation. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:37. [PMID: 38049682 PMCID: PMC10695912 DOI: 10.1186/s13619-023-00181-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/06/2023] [Indexed: 12/06/2023]
Abstract
The BMP (Bone morphogenetic protein) signaling pathway plays a central role in metazoan biology, intricately shaping embryonic development, maintaining tissue homeostasis, and influencing disease progression. In the context of cancer, BMP signaling exhibits context-dependent dynamics, spanning from tumor suppression to promotion. Cancer stem cells (CSCs), a modest subset of neoplastic cells with stem-like attributes, exert substantial influence by steering tumor growth, orchestrating therapy resistance, and contributing to relapse. A comprehensive grasp of the intricate interplay between CSCs and their microenvironment is pivotal for effective therapeutic strategies. Among the web of signaling pathways orchestrating cellular dynamics within CSCs, BMP signaling emerges as a vital conductor, overseeing CSC self-renewal, differentiation dynamics, and the intricate symphony within the tumor microenvironment. Moreover, BMP signaling's influence in cancer extends beyond CSCs, intricately regulating cellular migration, invasion, and metastasis. This multifaceted role underscores the imperative of comprehending BMP signaling's contributions to cancer, serving as the foundation for crafting precise therapies to navigate multifaceted challenges posed not only by CSCs but also by various dimensions of cancer progression. This article succinctly encapsulates the diverse roles of the BMP signaling pathway across different cancers, spanning glioblastoma multiforme (GBM), diffuse intrinsic pontine glioma (DIPG), colorectal cancer, acute myeloid leukemia (AML), lung cancer, prostate cancer, and osteosarcoma. It underscores the necessity of unraveling underlying mechanisms and molecular interactions. By delving into the intricate tapestry of BMP signaling's engagement in cancers, researchers pave the way for meticulously tailored therapies, adroitly leveraging its dualistic aspects-whether as a suppressor or promoter-to effectively counter the relentless march of tumor progression.
Collapse
Affiliation(s)
- Wei Zhou
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Kun Yan
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qiaoran Xi
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Joint Graduate Program of Peking-Tsinghua-NIBS, Tsinghua University, Beijing, China.
| |
Collapse
|
7
|
Li R, Luo R, Luo Y, Hou Y, Wang J, Zhang Q, Chen X, Hu L, Zhou J. Biological function, mediate cell death pathway and their potential regulated mechanisms for post-mortem muscle tenderization of PARP1: A review. Front Nutr 2022; 9:1093939. [PMID: 36590225 PMCID: PMC9797534 DOI: 10.3389/fnut.2022.1093939] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Tenderness is a key attribute of meat quality that affects consumers' willingness to purchase meat. Changes in the physiological environment of skeletal muscles following slaughter can disrupt the balance of redox homeostasis and may lead to cell death. Excessive accumulation of reactive oxygen species (ROS) in the myocytes causes DNA damage and activates poly ADP-ribose polymerase 1 (PARP1), which is involved in different intracellular metabolic pathways and is known to affect muscle tenderness during post-slaughter maturation. There is an urgent requirement to summarize the related research findings. Thus, this paper reviews the current research on the protein structure of PARP1 and its metabolism and activation, outlines the mechanisms underlying the function of PARP1 in regulating muscle tenderness through cysteine protease 3 (Caspase-3), oxidative stress, heat shock proteins (HSPs), and energy metabolism. In addition, we describe the mechanisms of PARP1 in apoptosis and necrosis pathways to provide a theoretical reference for enhancing the mature technology of post-mortem muscle tenderization.
Collapse
Affiliation(s)
- Rong Li
- School of Food and Wine, Ningxia University, Yinchuan, China,National R & D Center for Mutton Processing, Yinchuan, China
| | - Ruiming Luo
- School of Food and Wine, Ningxia University, Yinchuan, China,National R & D Center for Mutton Processing, Yinchuan, China
| | - Yulong Luo
- School of Food and Wine, Ningxia University, Yinchuan, China,National R & D Center for Mutton Processing, Yinchuan, China,*Correspondence: Yulong Luo,
| | - Yanru Hou
- School of Food and Wine, Ningxia University, Yinchuan, China,National R & D Center for Mutton Processing, Yinchuan, China
| | - Jinxia Wang
- School of Food and Wine, Ningxia University, Yinchuan, China,National R & D Center for Mutton Processing, Yinchuan, China
| | - Qian Zhang
- School of Food and Wine, Ningxia University, Yinchuan, China,National R & D Center for Mutton Processing, Yinchuan, China
| | - Xueyan Chen
- School of Food and Wine, Ningxia University, Yinchuan, China,National R & D Center for Mutton Processing, Yinchuan, China
| | - Lijun Hu
- School of Food and Wine, Ningxia University, Yinchuan, China
| | - Julong Zhou
- School of Food and Wine, Ningxia University, Yinchuan, China
| |
Collapse
|
8
|
Mondal A, Jia D, Bhatt V, Akel M, Roberge J, Guo JY, Langenfeld J. Ym155 localizes to the mitochondria leading to mitochondria dysfunction and activation of AMPK that inhibits BMP signaling in lung cancer cells. Sci Rep 2022; 12:13135. [PMID: 35908087 PMCID: PMC9338953 DOI: 10.1038/s41598-022-17446-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 07/26/2022] [Indexed: 12/28/2022] Open
Abstract
The imidazolium compound Ym155 was first reported to be a survivin inhibitor. Ym155 potently induces cell death of many types of cancer cells in preclinical studies. However, in phase II clinical trials Ym155 failed to demonstrate a significant benefit. Studies have suggested that the cytotoxic effects of Ym155 in cancer cells are not mediated by the inhibition of survivin. Understanding the mechanism by which Ym155 induces cell death would provide important insight how to improve its efficacy as a cancer therapeutic. We demonstrate a novel mechanism by which Ym155 induces cell death by localizing to the mitochondria causing mitochondrial dysfunction. Our studies suggest that Ym155 binds mitochondrial DNA leading to a decrease in oxidative phosphorylation, decrease in TCA cycle intermediates, and an increase in mitochondrial permeability. Furthermore, we show that mitochondrial stress induced by Ym155 and other mitochondrial inhibitors activates AMP-activated kinase leading to the downregulation to bone morphogenetic protein (BMP) signaling. We provide first evidence that Ym155 initiates cell death by disrupting mitochondrial function.
Collapse
Affiliation(s)
- Arindam Mondal
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08903, USA
| | - Dongxuan Jia
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08903, USA
| | - Vrushank Bhatt
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA
| | - Moumen Akel
- Rutgers University, Piscataway, NJ, 08854, USA
| | - Jacques Roberge
- Molecular Design and Synthesis, RUBRIC, Office for Research, Rutgers Translational Science, Rutgers University, Piscataway, NJ, 08854, USA
| | | | - John Langenfeld
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08903, USA.
| |
Collapse
|