1
|
Shi X, Hu C, Fan L, Guo B, Zhang J, Tang C, Wang F. High-Throughput Computer Screen Aids Discovery of Methotrexate as miR-20b Inhibitor to Suppress Nonsmall Cell Lung Cancer Progression. ACS Chem Biol 2024. [PMID: 39736132 DOI: 10.1021/acschembio.4c00706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2025]
Abstract
MicroRNAs (miRNAs) play a significant role in tumor progression, and regulating miRNA expression with small molecules may offer a new approach to cancer therapy. Among them, miRNA-20b has been found to be dysregulated in several cancers, including nonsmall cell lung cancer (NSCLC). Herein, an in silico high-throughput computer screen was conducted to identify small molecules that downregulate miR-20b using the three-dimensional structure of the Dicer binding site on pre-miR-20b. Among 1058 small molecule compounds, Methotrexate (MTX), was discovered to be a potential miR-20b-specific inhibitor, which has been found to suppress miR-20b by specifically blocking Dicer processing in p53 wild-type A549 NSCLC cells but not in H1299 cells with p53 depletion. MTX effectively inhibited the proliferation, survival, migration, and invasion of A549 cells in a dose-dependent manner. Furthermore, the treatment of MTX up-regulated the expression of miR-20b target genes PTEN, STAT3, and HIF1α. Notably, MTX also significantly inhibited tumor growth in a mouse xenograft tumor model of NSCLC, with no observed tissue toxicity. Our findings indicate that MTX may have a novel role as an established drug in p53 wild-type NSCLC tumor therapy by down-regulating miR-20b expression. These findings are expected to provide preclinical evidence for miR-20b-targeting NSCLC therapeutic strategies.
Collapse
Affiliation(s)
- Xiaorui Shi
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Chong Hu
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Liangli Fan
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Bin Guo
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- Institute of Medical Engineering, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jingyu Zhang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Chu Tang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Fu Wang
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- Institute of Medical Engineering, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China
- Xianyang Key Laboratory of Molecular Imaging and Drug Synthesis, School of Pharmacy, Shaanxi University of International Trade & Commerce, Xianyang, Shaanxi 712046, China
| |
Collapse
|
2
|
Zhang K, Wu D, Huang C. Crosstalk between non-coding RNA and apoptotic signaling in diabetic nephropathy. Biochem Pharmacol 2024; 230:116621. [PMID: 39542182 DOI: 10.1016/j.bcp.2024.116621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/18/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Diabetic nephropathy (DN) is a leading cause of end-stage renal disease in diabetes mellitus. It is also a significant contributor to cardiovascular morbidity and mortality in diabetic patients Thereby, Innovative therapeutic approaches are needed to retard the initiation and advancement of DN. Hyperglycemia can induce apoptosis, a regulated form of cell death, in multiple renal cell types, such as podocytes, mesangial cells, and proximal tubule epithelial cells, ultimately contributing to the pathogenesis of DN. Recent genome-wide investigations have revealed the widespread transcription of the human genome, resulting in the production of numerous regulatory non-protein-coding RNAs (ncRNAs), including microRNAs (miRNAs) and diverse categories of long non-coding RNAs (lncRNAs). They play a critical role in preserving physiological homeostasis, while their dysregulation has been implicated in a broad spectrum of disorders, including DN. Considering the established association between apoptotic processes and the expression of ncRNAs in DN, a thorough understanding of their intricate interplay is essential. Therefore, the current work thoroughly analyzes the intricate interplay among miRNAs, lncRNAs, and circular RNAs in the context of apoptosis within the pathogenesis of DN. Additionally, in the final section, we demonstrated that ncRNA-mediated modulation of apoptosis can be achieved through stem cell-derived exosomes and herbal medicines, presenting potential avenues for the treatment of DN.
Collapse
Affiliation(s)
- Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| |
Collapse
|
3
|
Abdel Mageed SS, Elimam H, Elesawy AE, Abulsoud AI, Raouf AA, Tabaa MME, Mohammed OA, Zaki MB, Abd-Elmawla MA, El-Dakroury WA, Mangoura SA, Elrebehy MA, Elballal MS, Mohamed AA, Ashraf A, Abdel-Reheim MA, Eleragi AMS, Abdellatif H, Doghish AS. Unraveling the impact of miRNAs on gouty arthritis: diagnostic significance and therapeutic opportunities. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03603-9. [PMID: 39560752 DOI: 10.1007/s00210-024-03603-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/03/2024] [Indexed: 11/20/2024]
Abstract
Gouty arthritis is a prevalent inflammatory illness. Gout attacks begin when there is an imbalance in the body's uric acid metabolism, which leads to urate buildup and the development of the ailment. A family of conserved, short non-coding RNAs known as microRNAs (miRNAs) can regulate post-transcriptional protein synthesis by attaching to the 3' untranslated region (UTR) of messenger RNA (mRNA). An increasing amount of research is pointing to miRNAs as potential players in several inflammatory diseases, including gouty arthritis. miRNAs may influence the progression of the disease by regulating immune function and inflammatory responses. This review mainly focused on miRNAs and how they contribute to gouty arthritis. It also looked at how miRNAs could be used as diagnostic, prognostic, and potential therapeutic targets.
Collapse
Affiliation(s)
- Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Hanan Elimam
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Ahmed Amr Raouf
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Mohamed Bakr Zaki
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Safwat Abdelhady Mangoura
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Galala University, New Galala City, 43713, Suez,, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Goyang, Republic of Korea
| | - Aya A Mohamed
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | | | - Ali M S Eleragi
- Department of Microorganisms and Clinical Parasitology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Hussein Abdellatif
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
- Department of Anatomy and Embryology, Faculty of Medicine, University of Mansoura, Mansoura, 35516, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| |
Collapse
|
4
|
Kang D, Kim T, Choi GE, Park A, Yoon J, Yu J, Suh N. miR-29a-3p orchestrates key signaling pathways for enhanced migration of human mesenchymal stem cells. Cell Commun Signal 2024; 22:365. [PMID: 39020373 PMCID: PMC11256664 DOI: 10.1186/s12964-024-01737-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/04/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND The homing of human mesenchymal stem cells (hMSCs) is crucial for their therapeutic efficacy and is characterized by the orchestrated regulation of multiple signaling modules. However, the principal upstream regulators that synchronize these signaling pathways and their mechanisms during cellular migration remain largely unexplored. METHODS miR-29a-3p was exogenously expressed in either wild-type or DiGeorge syndrome critical region 8 (DGCR8) knockdown hMSCs. Multiple pathway components were analyzed using Western blotting, immunohistochemistry, and real-time quantitative PCR. hMSC migration was assessed both in vitro and in vivo through wound healing, Transwell, contraction, and in vivo migration assays. Extensive bioinformatic analyses using gene set enrichment analysis and Ingenuity pathway analysis identified enriched pathways, upstream regulators, and downstream targets. RESULTS The global depletion of microRNAs (miRNAs) due to DGCR8 gene silencing, a critical component of miRNA biogenesis, significantly impaired hMSC migration. The bioinformatics analysis identified miR-29a-3p as a pivotal upstream regulator. Its overexpression in DGCR8-knockdown hMSCs markedly improved their migration capabilities. Our data demonstrate that miR-29a-3p enhances cell migration by directly inhibiting two key phosphatases: protein tyrosine phosphatase receptor type kappa (PTPRK) and phosphatase and tensin homolog (PTEN). The ectopic expression of miR-29a-3p stabilized the polarization of the Golgi apparatus and actin cytoskeleton during wound healing. It also altered actomyosin contractility and cellular traction forces by changing the distribution and phosphorylation of myosin light chain 2. Additionally, it regulated focal adhesions by modulating the levels of PTPRK and paxillin. In immunocompromised mice, the migration of hMSCs overexpressing miR-29a-3p toward a chemoattractant significantly increased. CONCLUSIONS Our findings identify miR-29a-3p as a key upstream regulator that governs hMSC migration. Specifically, it was found to modulate principal signaling pathways, including polarization, actin cytoskeleton, contractility, and adhesion, both in vitro and in vivo, thereby reinforcing migration regulatory circuits.
Collapse
Affiliation(s)
- Dayeon Kang
- Department of Medical Sciences, General Graduate School, Soon Chun Hyang University, Asan, 31538, Republic of Korea
- Department of Pharmaceutical Engineering, College of Medical Sciences, Soon Chun Hyang University, Asan, 31538, Republic of Korea
| | - Taehwan Kim
- Department of Medical Sciences, General Graduate School, Soon Chun Hyang University, Asan, 31538, Republic of Korea
| | - Ga-Eun Choi
- Department of Medical Sciences, General Graduate School, Soon Chun Hyang University, Asan, 31538, Republic of Korea
| | - Arum Park
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Jin Yoon
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Jinho Yu
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Nayoung Suh
- Department of Medical Sciences, General Graduate School, Soon Chun Hyang University, Asan, 31538, Republic of Korea.
- Department of Pharmaceutical Engineering, College of Medical Sciences, Soon Chun Hyang University, Asan, 31538, Republic of Korea.
| |
Collapse
|
5
|
Abdul Manap AS, Wisham AA, Wong FW, Ahmad Najmi HR, Ng ZF, Diba RS. Mapping the function of MicroRNAs as a critical regulator of tumor-immune cell communication in breast cancer and potential treatment strategies. Front Cell Dev Biol 2024; 12:1390704. [PMID: 38726321 PMCID: PMC11079208 DOI: 10.3389/fcell.2024.1390704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
Among women, breast cancer ranks as the most prevalent form of cancer, and the presence of metastases significantly reduces prognosis and diminishes overall survival rates. Gaining insights into the biological mechanisms governing the conversion of cancer cells, their subsequent spread to other areas of the body, and the immune system's monitoring of tumor growth will contribute to the advancement of more efficient and targeted therapies. MicroRNAs (miRNAs) play a critical role in the interaction between tumor cells and immune cells, facilitating tumor cells' evasion of the immune system and promoting cancer progression. Additionally, miRNAs also influence metastasis formation, including the establishment of metastatic sites and the transformation of tumor cells into migratory phenotypes. Specifically, dysregulated expression of these genes has been associated with abnormal expression of oncogenes and tumor suppressor genes, thereby facilitating tumor development. This study aims to provide a concise overview of the significance and function of miRNAs in breast cancer, focusing on their involvement as tumor suppressors in the antitumor immune response and as oncogenes in metastasis formation. Furthermore, miRNAs hold tremendous potential as targets for gene therapy due to their ability to modulate specific pathways that can either promote or suppress carcinogenesis. This perspective highlights the latest strategies developed for miRNA-based therapies.
Collapse
Affiliation(s)
- Aimi Syamima Abdul Manap
- Department of Biomedical Science, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | | | - Fei Wen Wong
- Faculty of Biosciences, MAHSA University, Kuala Langat, Selangor, Malaysia
| | | | - Zhi Fei Ng
- Faculty of Biosciences, MAHSA University, Kuala Langat, Selangor, Malaysia
| | | |
Collapse
|
6
|
Mathur A, Singh A, Hussain Y, Mishra A, Meena A, Mishra N, Luqman S. Regulating pri/pre-microRNA up/down expressed in cancer proliferation, angiogenesis and metastasis using selected potent triterpenoids. Int J Biol Macromol 2024; 257:127945. [PMID: 37951434 DOI: 10.1016/j.ijbiomac.2023.127945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/17/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
MicroRNAs (miRNAs) play a crucial role in cancer progression by selectively inducing translational degradation of messenger RNA (mRNA) via sequence-specific interactions with the 3'-untranslated region (3'-UTR). The potential targeting of miRNA has been recognized as a significant avenue for investigating the biological progression of diverse cancer types. Consequently, targeting of pri-miRNA and pre-miRNA by phytochemicals emerges as a viable strategy in the realm of anticancer therapies. Among phytochemicals, triterpenoids have garnered significant recognition for their chemotherapeutic and chemopreventive capabilities in combating multiple cancers. To date, there is a dearth of literature about the molecular interactions between triterpenoids and miRNAs. The primary objective of this investigation is to discern the potential triterpenoids that can function as modulators for specific miRNAs, namely pri-miRNA-19b-2, pre-miR21, microRNA 20b, pri-miRNA-208a, pri-miRNA-378a, pri-miRNA-320b-2, and pri-miRNA-300, achieved through the use of in silico investigations. The study primarily focused on performing drug-likeness, computer-aided toxicity, and pharmacokinetic prediction studies for triterpenoids. Furthermore, molecular docking and simulation techniques were employed to investigate these compounds. The triterpenoids studied were shown to have drug-likeness characteristics, although asiatic acid, lupeol, and pristimerin were able to pass all toxicity tests. Among the triterpenoids that underwent docking, pristimerin had a significant binding energy of -10.9 kcal/mol during its interaction with pri-miR-378a. The stable interaction between the pristimerin and miRNA complex was demonstrated by molecular dynamics simulation. As a result, pristimerin has the potential to act as a modulator of carcinogenic miRNAs, making it a promising candidate for cancer prevention and treatment due to its tailored modulation of miRNA activity.
Collapse
Affiliation(s)
- Anurag Mathur
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Akanksha Singh
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Yusuf Hussain
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Anamika Mishra
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj 211012, Uttar Pradesh, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| | - Nidhi Mishra
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj 211012, Uttar Pradesh, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
7
|
Zhang Y, Sun X, Li Z, Han X, Wang W, Xu P, Liu Y, Xue Y, Wang Z, Xu S, Wang X, Li G, Tian Y, Zhao Q. Interactions between miRNAs and the Wnt/β-catenin signaling pathway in endometriosis. Biomed Pharmacother 2024; 171:116182. [PMID: 38262146 DOI: 10.1016/j.biopha.2024.116182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/25/2024] Open
Abstract
Endometriosis is a disease characterized by the ectopic growth of endometrial tissue (glands and stroma) outside the confines of the uterus and often involves vital organs such as the intestines and urinary system. Endometriosis is considered a refractory disease owing to its enigmatic etiology, propensity for recurrence following conservative or surgical interventions, and the absence of radical treatment and long-term management. In recent years, the incidence of endometriosis has gradually increased, rendering it a pressing concern among women of childbearing age. A more profound understanding of its pathogenesis can significantly improve prognosis. Recent research endeavors have spotlighted the molecular mechanisms by which microRNAs (miRNAs) regulate the occurrence and progression of endometriosis. Many miRNAs have been reported to be aberrantly expressed in the affected tissues of both patients and animal models. These miRNAs actively participate in the regulation of inflammatory reactions, cellular proliferation, angiogenesis, and tissue remodeling. Their capacity to modulate crucial signaling pathways, such as the Wnt/β-catenin signaling pathway, reinforces their potential utility as diagnostic markers or therapeutic agents for endometriosis. In this review, we provide the latest insights into the role of miRNAs that interact with the Wnt/β-catenin pathway to regulate the biological behaviors of endometriosis cells and disease-related symptoms, such as pain and infertility. We hope that this review will provide novel insights and promising targets for innovative therapies addressing endometriosis.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Xueyu Sun
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China; Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Zhongkang Li
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China
| | - Xianhong Han
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Wenjun Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Penglin Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Yangyang Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Yuna Xue
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Zhe Wang
- Department of Basic Medicine, Chengde Medical College, Chengde, Hebei 067000, PR China
| | - Shuling Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Xueying Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Gailing Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Yanpeng Tian
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China.
| | - Qian Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China.
| |
Collapse
|
8
|
Silaghi H, Pop LA, Georgescu CE, Muntean D, Crișan D, Silaghi P, Lungu I, Nasui BA, Dulf EH, Braicu C, Berindan-Neagoe I, Silaghi CA. MicroRNA Expression Profiling-Potential Molecular Discrimination of Papillary Thyroid Carcinoma Subtypes. Biomedicines 2024; 12:136. [PMID: 38255241 PMCID: PMC10813560 DOI: 10.3390/biomedicines12010136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Recent research has revealed the importance of miRNAs in the diagnosis and clinical evolution of papillary thyroid cancer (PTC). We aim to identify a specific miRNA profile that could differentiate between specific subtypes of PTC. METHODS In this cross-sectional study, total RNA was extracted from paraffin-embedded tissues of 43 patients, 17 with an infiltrative follicular variant of PTC (iFVPTC) and 26 with a conventional variant of PTC (cPTC). Nine miRNAs were evaluated using qRT-PCR technology and specific miRNA assays. RESULTS We found specific patterns for cPTC and iFVPTC, such as miRNA altered in both types of tumours (miR-146b-5p, miR-181a-5p, miR-221-3p, miR-21-5p and miR-222-3p) and two miRNAs significantly expressed only in cPTC (miR-20b-5p, miR-21-5p). The iFVPTC group presented strong and moderate correlations between miRNA expression and clinical data. miR-221-3p, miR-195-5p, miR-181-5p, miR-146b-5p and miR-222 were correlated with age, tumour size (TS) or lymph node metastases (N), while only miR-20b-5p, miR-195-5p and miR-181-5p were correlated with TS, N and age in the cPTC group. CONCLUSIONS The present study allowed the identification of a signature of two miRNAs to confirm miRNA differences between the two histological subtypes of TC. Our results provide advances in the molecular diagnosis of TC and could help to improve the diagnostic performance of already existing molecular classifiers.
Collapse
Affiliation(s)
- Horatiu Silaghi
- Department of Surgery V, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania;
| | - Laura Ancuța Pop
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, 400337 Cluj-Napoca, Romania; (C.B.); (I.B.-N.)
| | - Carmen Emanuela Georgescu
- Department of Endocrinology, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (C.E.G.); (C.A.S.)
| | - Diana Muntean
- Department of Pathology, Clinic Municipal Hospital Cluj-Napoca, Tăbăcarilor Street 11, 400139 Cluj-Napoca, Romania;
| | - Doinița Crișan
- Department of Pathology, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, 6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania;
| | - Patricia Silaghi
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, 6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania;
| | - Ionela Lungu
- Cardiomed Medical Center, 17 Republicii Street, 400015 Cluj-Napoca, Romania;
| | - Bogdana Adriana Nasui
- Department of Community Health, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, 6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania;
| | - Eva-H. Dulf
- Department of Automation, Faculty of Automation and Computer Science, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400014 Cluj-Napoca, Romania;
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, 400337 Cluj-Napoca, Romania; (C.B.); (I.B.-N.)
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, 400337 Cluj-Napoca, Romania; (C.B.); (I.B.-N.)
| | - Cristina Alina Silaghi
- Department of Endocrinology, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (C.E.G.); (C.A.S.)
| |
Collapse
|
9
|
Daneshdoust D, Luo M, Li Z, Mo X, Alothman S, Kallakury B, Schlegel R, Zhang J, Guo D, Furth PA, Liu X, Li J. Unlocking Translational Potential: Conditionally Reprogrammed Cells in Advancing Breast Cancer Research. Cells 2023; 12:2388. [PMID: 37830602 PMCID: PMC10572051 DOI: 10.3390/cells12192388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/07/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023] Open
Abstract
Preclinical in vitro models play an important role in studying cancer cell biology and facilitating translational research, especially in the identification of drug targets and drug discovery studies. This is particularly relevant in breast cancer, where the global burden of disease is quite high based on prevalence and a relatively high rate of lethality. Predictive tools to select patients who will be responsive to invasive or morbid therapies (radiotherapy, chemotherapy, immunotherapy, and/or surgery) are relatively lacking. To be clinically relevant, a model must accurately replicate the biology and cellular heterogeneity of the primary tumor. Addressing these requirements and overcoming the limitations of most existing cancer cell lines, which are typically derived from a single clone, we have recently developed conditional reprogramming (CR) technology. The CR technology refers to a co-culture system of primary human normal or tumor cells with irradiated murine fibroblasts in the presence of a Rho-associated kinase inhibitor to allow the primary cells to acquire stem cell properties and the ability to proliferate indefinitely in vitro without any exogenous gene or viral transfection. This innovative approach fulfills many of these needs and offers an alternative that surpasses the deficiencies associated with traditional cancer cell lines. These CR cells (CRCs) can be reprogrammed to maintain a highly proliferative state and reproduce the genomic and histological characteristics of the parental tissue. Therefore, CR technology may be a clinically relevant model to test and predict drug sensitivity, conduct gene profile analysis and xenograft research, and undertake personalized medicine. This review discusses studies that have applied CR technology to conduct breast cancer research.
Collapse
Affiliation(s)
- Danyal Daneshdoust
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Mingjue Luo
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Zaibo Li
- Departments of Pathology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Xiaokui Mo
- Department of Biostatics and Bioinformatics, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Sahar Alothman
- Departments of Oncology and Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Bhaskar Kallakury
- Departments of Pathology, Lombardi Comprehensive Cancer Center, Center for Cell Reprogramming, Georgetown University, Washington, DC 20057, USA
| | - Richard Schlegel
- Departments of Pathology, Lombardi Comprehensive Cancer Center, Center for Cell Reprogramming, Georgetown University, Washington, DC 20057, USA
| | - Junran Zhang
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Deliang Guo
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Priscilla A. Furth
- Departments of Oncology and Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Xuefeng Liu
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
- Departments of Pathology, Urology, and Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Jenny Li
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
10
|
El-Husseiny AA, Abdelmaksoud NM, Mageed SSA, Salman A, Zaki MB, El-Mahdy HA, Ismail A, Abd-Elmawla MA, El-Husseiny HM, Abulsoud AI, Elshaer SS, Elsakka EGE, Fathi D, El-Dakroury WA, Doghish AS. miRNAs orchestration of salivary gland cancer- Particular emphasis on diagnosis, progression, and drug resistance. Pathol Res Pract 2023; 248:154590. [PMID: 37295259 DOI: 10.1016/j.prp.2023.154590] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
Cancer of the salivary glands is one of the five major types of head and neck cancer. Due to radioresistance and a strong propensity for metastasis, the survival rate for nonresectable malignant tumors is dismal. Hence, more research is needed on salivary cancer's pathophysiology, particularly at the molecular level. The microRNAs (miRNAs) are a type of noncoding RNA that controls as many as 30% of all genes that code for proteins at the posttranscriptional level. Signature miRNA expression profiles have been established in several cancer types, suggesting a role for miRNAs in the incidence and progression of human malignancies. Salivary cancer tissues were shown to have significantly aberrant levels of miRNAs compared to normal salivary gland tissues, supporting the hypothesis that miRNAs play a crucial role in the carcinogenesis of salivary gland cancer (SGC). Besides, several SGC research articles reported potential biomarkers and therapeutic targets for the miRNA-based treatment of this malignancy. In this review, we will explore the regulatory impact of miRNAs on the processes underlying the molecular pathology of SGC and provide an up-to-date summary of the literature on miRNAs that impacted this malignancy. We will eventually share information about their possible use as diagnostic, prognostic, and therapeutic biomarkers in SGC.
Collapse
Affiliation(s)
- Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Aya Salman
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hussein M El-Husseiny
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt; Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt.
| | - Shereen Saeid Elshaer
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr city, Cairo 11823, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Doaa Fathi
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
11
|
Wiesehöfer M, Raczinski BBG, Wiesehöfer C, Dankert JT, Czyrnik ED, Spahn M, Kruithof-de Julio M, Wennemuth G. Epiregulin expression and secretion is increased in castration-resistant prostate cancer. Front Oncol 2023; 13:1107021. [PMID: 36994208 PMCID: PMC10040687 DOI: 10.3389/fonc.2023.1107021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/24/2023] [Indexed: 03/14/2023] Open
Abstract
IntroductionIn prostate cancer, long-term treatment directed against androgens often leads to the development of metastatic castration-resistant prostate cancer, which is more aggressive and not curatively treatable. Androgen deprivation results in elevated epiregulin expression in LNCaP cells which is a ligand of EGFR. This study aims to reveal the expression and regulation of epiregulin in different prostate cancer stages enabling a more specific molecular characterization of different prostate carcinoma types.MethodsFive different prostate carcinoma cell lines were used to characterize the epiregulin expression on the RNA and protein levels. Epiregulin expression and its correlation with different patient conditions were further analyzed using clinical prostate cancer tissue samples. Additionally, the regulation of epiregulin biosynthesis was examined at transcriptional, post-transcriptional and release level.ResultsAn increased epiregulin secretion is detected in castration-resistant prostate cancer cell lines and prostate cancer tissue samples indicating a correlation of epiregulin expression with tumor recurrence, metastasis and increased grading. Analysis regarding the activity of different transcription factors suggests the involvement of SMAD2/3 in the regulation of epiregulin expression. In addition, miR-19a, -19b, and -20b are involved in post-transcriptional epiregulin regulation. The release of mature epiregulin occurs via proteolytic cleavage by ADAM17, MMP2, and MMP9 which are increased in castration-resistant prostate cancer cells.DiscussionThe results demonstrate epiregulin regulation by different mechanism and suggest a potential role as a diagnostic tool to detect molecular alterations in prostate cancer progression. Additionally, although EGFR inhibitors false in prostate cancer, epiregulin could be a therapeutic target for patients with castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Marc Wiesehöfer
- Department of Anatomy, University Duisburg-Essen, Essen, Germany
| | | | | | | | | | - Martin Spahn
- Department of Urology, Lindenhofspital Bern, Bern, Switzerland
- Department of Urology, University Duisburg-Essen, Essen, Germany
| | - Marianna Kruithof-de Julio
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
- Department of Urology, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, Translation Organoid Research, University of Bern, Bern, Switzerland
- Bern Center for Precision Medicine, University of Bern and Inselspital, Bern, Switzerland
| | - Gunther Wennemuth
- Department of Anatomy, University Duisburg-Essen, Essen, Germany
- *Correspondence: Gunther Wennemuth,
| |
Collapse
|