1
|
Afzal M, Hameed H, Paiva-Santos AC, Saleem M, Hameed A, Ahmad SM. Bioengineered exosomes: Cellular membrane-camouflaged biomimetic nanocarriers for Parkinson's disease management. Eur J Pharmacol 2024; 987:177199. [PMID: 39662659 DOI: 10.1016/j.ejphar.2024.177199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/21/2024] [Accepted: 12/09/2024] [Indexed: 12/13/2024]
Abstract
Parkinson's disease is a prevalent neurological condition that affects around 1% of adults over 60 worldwide. Deep brain stimulation and dopamine replacement therapy are common therapies for Parkinson's disease, yet they are unable to reverse the disease it simply because of the blood brain barrier. The use of bioengineered exosomes to treat Parkinson's disease is being studied because they have the ability to cross the blood-brain barrier. Their natural ability to cross the blood-brain barrier (BBB) and their biocompatibility make them highly suitable for delivering therapeutic agents to manage PD, specifically the role of astrocytes, microglial cells, and alpha-synuclein. It also explores the biogenesis and preparation of these bioengineered exosomes. In comparison to conventional nanocarriers, the modified exosomal-membrane-camouflaged abiotic nanocarriers show improved resilience and compatibility. Improved cellular absorption and targeted delivery of therapeutic payloads, such as medications and enzymes, are being shown in laboratory trials. A viable strategy for treating PD involves combining abiotic nanocarriers with bioengineered exosomal membranes. Despite their promising potential, successful clinical application requires overcoming hurdles related to scalable production, regulatory approval, and long-term safety evaluation. Nevertheless, the innovative use of bioengineered exosomes holds significant promise for advancing PD management and improving patient outcomes through more targeted and effective therapeutic strategies.
Collapse
Affiliation(s)
- Maham Afzal
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan.
| | - Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan.
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal.
| | - Makkia Saleem
- Department of Human Nutrition and Dietetics, Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Gulberg III, Lahore, 54000, Pakistan.
| | - Anam Hameed
- Department of Human Nutrition and Dietetics, Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Gulberg III, Lahore, 54000, Pakistan.
| | - Syed Muhammad Ahmad
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan.
| |
Collapse
|
2
|
Ungvari Z, Kunutsor SK. Coffee consumption and cardiometabolic health: a comprehensive review of the evidence. GeroScience 2024; 46:6473-6510. [PMID: 38963648 PMCID: PMC11493900 DOI: 10.1007/s11357-024-01262-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024] Open
Abstract
This review provides a comprehensive synthesis of longitudinal observational and interventional studies on the cardiometabolic effects of coffee consumption. It explores biological mechanisms, and clinical and policy implications, and highlights gaps in the evidence while suggesting future research directions. It also reviews evidence on the causal relationships between coffee consumption and cardiometabolic outcomes from Mendelian randomization (MR) studies. Findings indicate that while coffee may cause short-term increases in blood pressure, it does not contribute to long-term hypertension risk. There is limited evidence indicating that coffee intake might reduce the risk of metabolic syndrome and non-alcoholic fatty liver disease. Furthermore, coffee consumption is consistently linked with reduced risks of type 2 diabetes (T2D) and chronic kidney disease (CKD), showing dose-response relationships. The relationship between coffee and cardiovascular disease is complex, showing potential stroke prevention benefits but ambiguous effects on coronary heart disease. Moderate coffee consumption, typically ranging from 1 to 5 cups per day, is linked to a reduced risk of heart failure, while its impact on atrial fibrillation remains inconclusive. Furthermore, coffee consumption is associated with a lower risk of all-cause mortality, following a U-shaped pattern, with the largest risk reduction observed at moderate consumption levels. Except for T2D and CKD, MR studies do not robustly support a causal link between coffee consumption and adverse cardiometabolic outcomes. The potential beneficial effects of coffee on cardiometabolic health are consistent across age, sex, geographical regions, and coffee subtypes and are multi-dimensional, involving antioxidative, anti-inflammatory, lipid-modulating, insulin-sensitizing, and thermogenic effects. Based on its beneficial effects on cardiometabolic health and fundamental biological processes involved in aging, moderate coffee consumption has the potential to contribute to extending the healthspan and increasing longevity. The findings underscore the need for future research to understand the underlying mechanisms and refine health recommendations regarding coffee consumption.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Department of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Setor K Kunutsor
- Leicester Real World Evidence Unit, Diabetes Research Centre, University of Leicester, Leicester General Hospital, Gwendolen Road, Leicester, LE5 4WP, UK.
- Section of Cardiology, Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Saint Boniface Hospital, Winnipeg, MB, R2H 2A6, Canada.
| |
Collapse
|
3
|
Gil-Kulik P, Kluz N, Przywara D, Petniak A, Wasilewska M, Frączek-Chudzik N, Cieśla M. Potential Use of Exosomal Non-Coding MicroRNAs in Leukemia Therapy: A Systematic Review. Cancers (Basel) 2024; 16:3948. [PMID: 39682135 DOI: 10.3390/cancers16233948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Leukemia is a heterogeneous group of hematological malignancies. Despite the enormous progress that has been made in the field of hemato-oncology in recent years, there are still many problems related to, among others, disease recurrence and drug resistance, which is why the search for ideal biomarkers with high clinical utility continues. Research shows that exosomes play a critical role in the biology of leukemia and are associated with the drug resistance, metastasis, and immune status of leukemias. Exosomes with their cargo of non-coding RNAs act as a kind of intermediary in intercellular communication and, at the same time, have the ability to manipulate the cell microenvironment and influence the reaction, proliferative, angiogenic, and migratory properties of cells. Exosomal ncRNAs (in particular, circRNAs and microRNAs) appear to be promising cell-free biomarkers for diagnostic, prognostic, and treatment monitoring of leukemias. This review examines the expression of exosomal ncRNAs in leukemias and their potential regulatory role in leukemia therapy but also in conditions such as disease relapse, drug resistance, metastasis, and immune status. Given the key role of ncRNAs in regulating gene networks and intracellular pathways through their ability to interact with DNA, transcripts, and proteins and identifying their specific target genes, defining potential functions and therapeutic strategies will provide valuable information.
Collapse
Affiliation(s)
- Paulina Gil-Kulik
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., 20-080 Lublin, Poland
| | - Natalia Kluz
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., 20-080 Lublin, Poland
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Dominika Przywara
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., 20-080 Lublin, Poland
| | - Alicja Petniak
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., 20-080 Lublin, Poland
| | - Małgorzata Wasilewska
- Department of Physical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| | - Natalia Frączek-Chudzik
- Institute of Medical Science, College of Medical Science, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Marek Cieśla
- Institute of Medical Science, College of Medical Science, University of Rzeszow, 35-959 Rzeszow, Poland
| |
Collapse
|
4
|
Ryu JY, Choi TS, Kim KT. Fluorescein-switching-based lateral flow assay for the detection of microRNAs. Org Biomol Chem 2024; 22:8182-8188. [PMID: 39291769 DOI: 10.1039/d4ob01311e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Lateral flow assays (LFAs) are a cost-effective and rapid colorimetric technology that can be effectively used for nucleic acid tests (NATs) in various fields such as medical diagnostics and biotechnology. Given their importance, developing more diverse LFAs that operate through novel working mechanisms is essential for designing highly selective and sensitive NATs and providing insights for designing various practical point-of-care testing (POCT) systems. Herein we report a new type of lateral flow assay (LFA) based on fluorescein-switching, enabled by nucleic acid-templated photooxidation of reduced fluorescein by riboflavin tetraacetate (RFTA). The LFA design leverages the fact that a reduced form of fluorescein, which weakly binds to gold nanoparticle (GNP)-conjugated anti-fluorescein antibodies, is oxidized in the presence of target nucleic acids to yield its native state, which then strongly binds to the antibodies. The study involved designing and optimizing probe sequences to detect miR-6090 and miR-141, which are significant markers for prostate cancer. To minimize background signals of LFAs, sodium borohydride (NaBH4) was specifically introduced as a reducing agent, and detailed procedures were established. The developed LFA system accurately identified low fmol levels of target microRNAs with minimal false positives, all detectable with the naked eye, making the system a promising tool for point-of-care diagnostics.
Collapse
Affiliation(s)
- Ji Young Ryu
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea.
| | - Tae Su Choi
- Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Ki Tae Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea.
| |
Collapse
|
5
|
Shaheen N, Shaheen A, Osama M, Nashwan AJ, Bharmauria V, Flouty O. MicroRNAs regulation in Parkinson's disease, and their potential role as diagnostic and therapeutic targets. NPJ Parkinsons Dis 2024; 10:186. [PMID: 39369002 PMCID: PMC11455891 DOI: 10.1038/s41531-024-00791-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/15/2024] [Indexed: 10/07/2024] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression by binding to target messenger RNA (mRNA) molecules and promoting their degradation or blocking their translation. Parkinson's disease (PD) is a neurodegenerative disorder caused by the loss of dopaminergic neurons in the substantia nigra. There is increasing evidence to suggest that miRNAs play a role in the pathogenesis of PD. Studies have identified several miRNAs that are dysregulated in the brains of PD patients, and animal models of the disease. MiRNA expression dysregulation contributes to the onset and progression of PD by modulating neuroinflammation, oxidative stress, and protein aggregation genes. Moreover, miRNAs have emerged as potential therapeutic targets for PD. This review elucidates the changes in miRNA expression profiles associated with PD, emphasising their potential as diagnostic biomarkers and therapeutic targets, and detailing specific miRNAs implicated in PD and their downstream targets. Integrated Insights into miRNA Function, Microglial Activation, Diagnostic, and Treatment Prospects in PD Note: This figure is an original figure created by the authors.
Collapse
Affiliation(s)
- Nour Shaheen
- Alexandria University, Alexandria Faculty of Medicine, Alexandria, Egypt
| | - Ahmed Shaheen
- Alexandria University, Alexandria Faculty of Medicine, Alexandria, Egypt
| | - Mahmoud Osama
- Department of Neurosurgery, Nasser Institute for Research and Treatment, Cairo, Egypt
| | | | - Vishal Bharmauria
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
- Center for Vision Research and Center for Integrative and Applied Neuroscience, York University, Toronto, ON, Canada
- Tampa Human Neurophysiology Lab, Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, USA
| | - Oliver Flouty
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA.
- Tampa Human Neurophysiology Lab, Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, USA.
| |
Collapse
|
6
|
Payandeh Z, Tangruksa B, Synnergren J, Heydarkhan-Hagvall S, Nordin JZ, Andaloussi SE, Borén J, Wiseman J, Bohlooly-Y M, Lindfors L, Valadi H. Extracellular vesicles transport RNA between cells: Unraveling their dual role in diagnostics and therapeutics. Mol Aspects Med 2024; 99:101302. [PMID: 39094449 DOI: 10.1016/j.mam.2024.101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/11/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
Modern methods of molecular diagnostics and therapy have revolutionized the field of medicine in recent years by providing more precise and effective tools for detecting and treating diseases. This progress includes a growing exploration of the body's secreted vesicles, known as extracellular vesicles (EVs), for both diagnostic and therapeutic purposes. EVs are a heterogeneous population of lipid bilayer vesicles secreted by almost every cell type studied so far. They are detected in body fluids and conditioned culture media from living cells. EVs play a crucial role in communication between cells and organs, both locally and over long distances. They are recognized for their ability to transport endogenous RNA and proteins between cells, including messenger RNA (mRNA), microRNA (miRNA), misfolded neurodegenerative proteins, and several other biomolecules. This review explores the dual utilization of EVs, serving not only for diagnostic purposes but also as a platform for delivering therapeutic molecules to cells and tissues. Through an exploration of their composition, biogenesis, and selective cargo packaging, we elucidate the intricate mechanisms behind RNA transport between cells via EVs, highlighting their potential use for both diagnostic and therapeutic applications. Finally, it addresses challenges and outlines prospective directions for the clinical utilization of EVs.
Collapse
Affiliation(s)
- Zahra Payandeh
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41346, Sweden
| | - Benyapa Tangruksa
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41346, Sweden; Systems Biology Research Center, School of Bioscience, University of Skövde, 541 28, Skövde, Sweden
| | - Jane Synnergren
- Systems Biology Research Center, School of Bioscience, University of Skövde, 541 28, Skövde, Sweden; Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41345, Sweden
| | - Sepideh Heydarkhan-Hagvall
- Systems Biology Research Center, School of Bioscience, University of Skövde, 541 28, Skövde, Sweden; Global Patient Safety - Biopharma, AstraZeneca, 431 83, Gothenburg, Mölndal, Sweden
| | - Joel Z Nordin
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | | | - Jan Borén
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sweden
| | - John Wiseman
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 431 83, Gothenburg, Mölndal, Sweden
| | - Mohammad Bohlooly-Y
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 431 83, Gothenburg, Mölndal, Sweden
| | - Lennart Lindfors
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 431 83, Mölndal, Sweden
| | - Hadi Valadi
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41346, Sweden.
| |
Collapse
|
7
|
Agrawal P, Olgun G, Singh A, Gopalan V, Hannenhalli S. Characterizing the role of exosomal miRNAs in metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608894. [PMID: 39372783 PMCID: PMC11451750 DOI: 10.1101/2024.08.20.608894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Background Exosomal microRNAs (exomiRs), transported via exosomes, play a pivotal role in intercellular communication. In cancer, exomiRs influence tumor progression by regulating key cellular processes such as proliferation, angiogenesis, and metastasis. Their role in mediating communication between cancer cells and the tumor microenvironment highlights their significance as potential diagnostic and therapeutic targets. Methodology In this study, we aimed to characterize the role of exomiRs in influencing the pre-metastatic niche (PMN). Across 7 tumor types, including 4 cell lines and three tumors, we extracted high confidence exomiRs (Log FC >= 2 in exosomes relative to control) and their targets (experimentally identified and targeted by at least 2 exomiRs). Subsequently, we identified enriched pathways and selected the top 100 high-confidence exomiR targets based on the frequency of their appearance in the enriched pathways. These top 100 targets were consistently used throughout the analysis. Results Cancer cell line and tumor derived ExomiRs have significantly higher GC content relative to genomic background. Pathway enriched among the top exomiR targets included general cancer-associated processes such as "wound healing" and "regulation of epithelial cell proliferation", as well as cancer-specific processes, such as "regulation of angiogenesis in kidney" (KIRC), "ossification" in lung (LUAD), and "positive regulation of cytokine production" in pancreatic cancer (PAAD). Similarly, 'Pathways in cancer' and 'MicroRNAs in cancer' ranked among the top 10 enriched KEGG pathways in all cancer types. ExomiR targets were not only enriched for cancer-specific tumor suppressor genes (TSG) but are also downregulated in pre-metastatic niche formed in lungs compared to normal lung. Motif analysis shows high similarity among motifs identified from exomiRs across cancer types. Our analysis recapitulates exomiRs associated with M2 macrophage differentiation and chemoresistance such as miR-21 and miR-222-3p, regulating signaling pathways such as PTEN/PI3/Akt, NF-κB, etc. Cox regression indicated that exomiR targets are significantly associated with overall survival of patients in TCGA. Lastly, a Support Vector Machine (SVM) model using exomiR target gene expression classified responders and non-responders to neoadjuvant chemotherapy with an AUROC of 0.96 (in LUAD), higher than other previously reported gene signatures. Conclusion Our study characterizes the pivotal role of exomiRs in shaping the PMN in diverse cancers, underscoring their diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Piyush Agrawal
- Department of Medical Research, SRM Medical College Hospital & Research Centre, SRMIST, Kattankulathur, Chennai, Tamil Nadu, India
| | - Gulden Olgun
- Department of Computer Engineering, Hacettepe University, 06800, Ankara, Turkey
| | - Arashdeep Singh
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| | - Vishaka Gopalan
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
8
|
Li D, Li D, Wang Z, Li J, Shahzad KA, Wang Y, Tan F. Signaling pathways activated and regulated by stem cell-derived exosome therapy. Cell Biosci 2024; 14:105. [PMID: 39164778 PMCID: PMC11334359 DOI: 10.1186/s13578-024-01277-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/10/2024] [Indexed: 08/22/2024] Open
Abstract
Stem cell-derived exosomes exert comparable therapeutic effects to those of their parental stem cells without causing immunogenic, tumorigenic, and ethical disadvantages. Their therapeutic advantages are manifested in the management of a broad spectrum of diseases, and their dosing versatility are exemplified by systemic administration and local delivery. Furthermore, the activation and regulation of various signaling cascades have provided foundation for the claimed curative effects of exosomal therapy. Unlike other relevant reviews focusing on the upstream aspects (e.g., yield, isolation, modification), and downstream aspects (e.g. phenotypic changes, tissue response, cellular behavior) of stem cell-derived exosome therapy, this unique review endeavors to focus on various affected signaling pathways. After meticulous dissection of relevant literature from the past five years, we present this comprehensive, up-to-date, disease-specific, and pathway-oriented review. Exosomes sourced from various types of stem cells can regulate major signaling pathways (e.g., the PTEN/PI3K/Akt/mTOR, NF-κB, TGF-β, HIF-1α, Wnt, MAPK, JAK-STAT, Hippo, and Notch signaling cascades) and minor pathways during the treatment of numerous diseases encountered in orthopedic surgery, neurosurgery, cardiothoracic surgery, plastic surgery, general surgery, and other specialties. We provide a novel perspective in future exosome research through bridging the gap between signaling pathways and surgical indications when designing further preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Ding Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Danni Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China
| | - Zhao Wang
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiaojiao Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China
| | - Khawar Ali Shahzad
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China
| | - Yanhong Wang
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China
| | - Fei Tan
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China.
- The Royal College of Surgeons in Ireland, Dublin, Ireland.
- The Royal College of Surgeons of England, London, UK.
| |
Collapse
|
9
|
Li G, Zhao Y, Wang H, Zhang Y, Cai D, Zhang Y, Song W. The M2 Macrophages Derived Migrasomes From the Surface of Titania Nanotubes Array as a New Concept for Enhancing Osteogenesis. Adv Healthc Mater 2024; 13:e2400257. [PMID: 38520188 DOI: 10.1002/adhm.202400257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/15/2024] [Indexed: 03/25/2024]
Abstract
As newly discovered substrate anchored extracellular vesicles, migrasomes (Migs) may bring a new opportunity for manipulating target cells bioactivities. In this study, the M2 macrophages derived Migs are obtained by titania nanotubes surface (NTs). Due to the benefits of nanostructuring, the NTs surface is not only able to induce RAW264.7 for M2 polarization but also to generate more Migs formation, which can be internalized by following seeded mesenchymal stem cells (MSCs). Then, the NTs surface induced Migs are collected by density-gradient centrifugation for MSCs treatment. As indicated by immunofluorescence staining, alkaline phosphatase activity, and alizarin red staining, the osteogenic differentiation capacity of MSCs is significantly enhanced by Migs treatment, in line with the dosage. By RNA-sequence analysis, the enhancement of osteogenic differentiation is correlated with PI3K-AKT pathway activation that may originate from the M2 polarization state of donor cells. Finally, the Migs are coated onto Ti surface for therapeutic application. Both the in vitro and in vivo analysis reveal that the Migs coated Ti implant shows significant enhancement of osteogenesis. In conclusion, this study suggests that the nanosurface may be a favorable platform for Migs production, which may bring a new concept for tissue regeneration.
Collapse
Affiliation(s)
- Guangwen Li
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
| | - Yuqi Zhao
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Haochen Wang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yan Zhang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Dongxuan Cai
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yumei Zhang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Wen Song
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
10
|
Wang Y, Ma H, Zhang X, Xiao X, Yang Z. The Increasing Diagnostic Role of Exosomes in Inflammatory Diseases to Leverage the Therapeutic Biomarkers. J Inflamm Res 2024; 17:5005-5024. [PMID: 39081872 PMCID: PMC11287202 DOI: 10.2147/jir.s475102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024] Open
Abstract
Inflammatory diseases provide substantial worldwide concerns, affecting millions of people and healthcare systems by causing ongoing discomfort, diminished quality of life, and increased expenses. In light of the progress made in treatments, the limited effectiveness and negative side effects of present pharmaceuticals need a more comprehensive comprehension of the underlying processes in order to develop more precise remedies. Exosomes, which are tiny vesicles that play a vital role in cell communication, have been identified as prospective vehicles for effective delivery of anti-inflammatory medicines, immunomodulators, and gene treatments. Vesicles, which are secreted by different cells, have a crucial function in communicating between cells. This makes them valuable in the fields of diagnostics and therapies, particularly for inflammatory conditions. Exosomes have a role in regulating the immune system, transporting cytokines, and influencing cell signaling pathways associated with inflammation. They consist of proteins, lipids, and genetic information that have an impact on immune responses and inflammation. Scientists are now investigating exosomes as biomarkers for inflammatory disease. This review article aims to develop non-invasive diagnostic techniques with improved sensitivity and specificity. Purpose of this review is a thorough examination of exosomes in pharmacology, specifically emphasizing their origin, contents, and functions, with the objective of enhancing diagnostic and therapeutic strategies for inflammatory conditions. Gaining a comprehensive understanding of the intricate mechanisms involved in exosome-mediated interactions and their impact on immune responses is of utmost importance in order to devise novel approaches for tackling inflammatory disease and enhancing patient care.
Collapse
Affiliation(s)
- Yan Wang
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, 130000, People’s Republic of China
| | - Hui Ma
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, 130000, People’s Republic of China
| | - Xiaohua Zhang
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, 130000, People’s Republic of China
| | - Xia Xiao
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, 130000, People’s Republic of China
| | - Zecheng Yang
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130000, People’s Republic of China
| |
Collapse
|
11
|
Xiao Y, Yuan Y, Hu D, Wang H. Exosome-Derived microRNA: Potential Target for Diagnosis and Treatment of Sepsis. J Immunol Res 2024; 2024:4481452. [PMID: 39104595 PMCID: PMC11300089 DOI: 10.1155/2024/4481452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/23/2024] [Accepted: 07/06/2024] [Indexed: 08/07/2024] Open
Abstract
Exosome-derived microRNAs (miRNAs) are emerging as pivotal players in the pathophysiology of sepsis, representing a new frontier in both the diagnosis and treatment of this complex condition. Sepsis, a severe systemic response to infection, involves intricate immune and nonimmune mechanisms, where exosome-mediated communication can significantly influence disease progression and outcomes. During the progress of sepsis, the miRNA profile of exosomes undergoes notable alterations, is reflecting, and may affect the progression of the disease. This review comprehensively explores the biology of exosome-derived miRNAs, which originate from both immune cells (such as macrophages and dendritic cells) and nonimmune cells (such as endothelial and epithelial cells) and play a dynamic role in modulating pathways that affect the course of sepsis, including those related to inflammation, immune response, cell survival, and apoptosis. Taking into account these dynamic changes, we further discuss the potential of exosome-derived miRNAs as biomarkers for the early detection and prognosis of sepsis and advantages over traditional biomarkers due to their stability and specificity. Furthermore, this review evaluates exosome-based therapeutic miRNA delivery systems in sepsis, which may pave the way for targeted modulation of the septic response and personalized treatment options.
Collapse
Affiliation(s)
- Yujie Xiao
- Department of Burns and Cutaneous SurgeryXijing HospitalFourth Military Medical University, 127 West Chang-le Road, Xi'an 710032, Shaanxi, China
| | - Yixuan Yuan
- Department of Burns and Cutaneous SurgeryXijing HospitalFourth Military Medical University, 127 West Chang-le Road, Xi'an 710032, Shaanxi, China
| | - Dahai Hu
- Department of Burns and Cutaneous SurgeryXijing HospitalFourth Military Medical University, 127 West Chang-le Road, Xi'an 710032, Shaanxi, China
| | - Hongtao Wang
- Department of Burns and Cutaneous SurgeryXijing HospitalFourth Military Medical University, 127 West Chang-le Road, Xi'an 710032, Shaanxi, China
| |
Collapse
|
12
|
Mohammadinasr M, Montazersaheb S, Hosseini V, Kahroba H, Talebi M, Molavi O, Ayromlou H, Hejazi MS. Epstein-Barr virus-encoded BART9 and BART15 miRNAs are elevated in exosomes of cerebrospinal fluid from relapsing-remitting multiple sclerosis patients. Cytokine 2024; 179:156624. [PMID: 38692184 DOI: 10.1016/j.cyto.2024.156624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/05/2024] [Accepted: 04/20/2024] [Indexed: 05/03/2024]
Abstract
Epstein-Barr virus (EBV) infection is approved as the main environmental trigger of multiple sclerosis (MS). In this path, we quantified ebv-miR-BART9-3p and ebv-miR-BART15 in exosomes of cerebrospinal fluid (CSF) of untreated relapsing-remitting MS (RRMS) patients in comparison with the control group. Interestingly, patients displayed significant upregulation of ebv-miR-BART9-3p (18.4-fold) and ebv-miR-BART15 (3.1-fold) expression in CSF exosomes. Moreover, the expression levels of hsa-miR-21-5p and hsa-miR-146a-5p were found to be significantly elevated in the CSF samples obtained from the patient group compared to those obtained from the HC group. The levels of Interferon-gamma (IFN-γ), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-17 (IL-17), interleukin-23 (IL-23), transforming growth factor beta (TGF-β), and tumor necrosis factor-alpha (TNF-α) were observed to be significantly elevated in the serum and CSF exosomes of the patients. The highest increase was observed in TGF-β (8.5-fold), followed by IL-23 (3.9-fold) in CSF exosomes. These findings are in agreement with the association between EBV infection and inflammatory cytokines induction. Furthermore, the ratios of TGF-β: TNF-α and TGF-β: IFN-γ attained values of 4 to 16.4 and 1.3 to 3.6, respectively, in the CSF exosomes of the patients, in comparison to those of the control group. These findings show EBV activity in RRMS patients is different from that of healthy ones. Elevation of ebv-miR-BART9-3p, ebv-miR-BART15, and inflammatory cytokines expression in CSF exosomes in RRMS patients provides a substantial link between EBV activity and the onset of the disease, as well as the transition from EBV infection to MS.
Collapse
Affiliation(s)
- Mina Mohammadinasr
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Vahid Hosseini
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Houman Kahroba
- Department of Toxicogenomics, GROW School of Oncology and Development Biology, Maastricht University, Maastricht, The Netherlands; Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium.
| | - Mahnaz Talebi
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ommoleila Molavi
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hormoz Ayromlou
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Saeid Hejazi
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
13
|
Bao Y, Zhang D, Guo H, Ma W. Beyond blood: Advancing the frontiers of liquid biopsy in oncology and personalized medicine. Cancer Sci 2024; 115:1060-1072. [PMID: 38308498 PMCID: PMC11007055 DOI: 10.1111/cas.16097] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 02/04/2024] Open
Abstract
Liquid biopsy is emerging as a pivotal tool in precision oncology, offering a noninvasive and comprehensive approach to cancer diagnostics and management. By harnessing biofluids such as blood, urine, saliva, cerebrospinal fluid, and pleural effusions, this technique profiles key biomarkers including circulating tumor DNA, circulating tumor cells, microRNAs, and extracellular vesicles. This review discusses the extended scope of liquid biopsy, highlighting its indispensable role in enhancing patient outcomes through early detection, continuous monitoring, and tailored therapy. While the advantages are notable, we also address the challenges, emphasizing the necessity for precision, cost-effectiveness, and standardized methodologies in its broader application. The future trajectory of liquid biopsy is set to expand its reach in personalized medicine, fueled by technological advancements and collaborative research.
Collapse
Affiliation(s)
- Ying Bao
- Key Laboratory for Translational MedicineThe First Hospital Affiliated with Huzhou UniversityHuzhouChina
| | - Dejing Zhang
- Department of General SurgeryPuyang Oilfield General HospitalPuyangChina
| | - Huihui Guo
- Key Laboratory for Translational MedicineThe First Hospital Affiliated with Huzhou UniversityHuzhouChina
| | - Wenxue Ma
- Department of Medicine, Moores Cancer Center, and Sanford Stem Cell InstituteUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
14
|
Arora S, Verma N. Exosomal microRNAs as potential biomarkers and therapeutic targets in corneal diseases. Mol Vis 2024; 30:92-106. [PMID: 38601014 PMCID: PMC11006010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/12/2024] [Indexed: 04/12/2024] Open
Abstract
Exosomes are a subtype of extracellular vesicle (EV) that are released and found in almost all body fluids. Exosomes consist of and carry a variety of bioactive molecules, including genetic information in the form of microRNAs (miRNAs). miRNA, a type of small non-coding RNA, plays a key role in regulating genes by suppressing their translation. miRNAs are often disrupted in the pathophysiology of different conditions, including eye disease. The stability and easy detectability of exosomal miRNAs in body fluids make them promising biomarkers for the diagnosis of different diseases. Additionally, due to the natural delivery capabilities of exosomes, they can be modified to transport therapeutic miRNAs to specific recipient cells. Most exosome research has primarily focused on cancer, so there is limited research highlighting the importance of exosomes in ocular biology, particularly in cornea-associated pathologies. This review provides an overview of the existing evidence regarding the primary functions of exosomal miRNAs and their potential role in diagnostic and therapeutic applications in the human cornea.
Collapse
Affiliation(s)
- Swati Arora
- Pharma Services Group, Patheon/Thermo Fisher Scientific, Florence, SC
| | - Nagendra Verma
- Eye Program, Cedars Sinai Medical Center, Los Angeles, CA
- Board of Governors Regenerative Medicine Institute, Cedars Sinai Medical Center, Los Angeles, CA
- Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
15
|
Yamamoto K, Miyano K, Fujita M, Kurata W, Ohta H, Matsumoto K, Chiba M. Changes in cognitive ability and serum microRNA levels during aging in mice. Exp Ther Med 2024; 27:120. [PMID: 38361521 PMCID: PMC10867737 DOI: 10.3892/etm.2024.12408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024] Open
Abstract
Mild cognitive impairment (MCI) is an early stage that can result in dementia. MCI can be reversed, and diagnosis at an early stage is crucial to control the progression to dementia. Dementia is currently diagnosed based on interviews and screening tests; however, novel biomarkers must be identified to allow early MCI detection. Therefore, the present study aimed to identify novel biomarkers in the form of blood microRNAs (miRNAs/miRs) for the diagnosis of MCI or early dementia. Blood samples were collected from C57BL/6NJcl male mice at four time points, including 4-week-old (4W), 8-week-old (8W), 36-week-old (36W) and 58-week-old (58W), and serum was isolated. Body weight and blood total cholesterol levels were increased, and blood alkaline phosphatase was decreased with aging. The 8W mice exhibited the highest cognitive ability in the Morris water maze test, whereas the 58W mice demonstrated decreased cognitive ability. The serum RNA concentrations of the 4W, 8W, 36W and 58W mice demonstrated no significant differences. Furthermore, small RNA levels were detected in the serum of all mice. miRNA microarray analysis revealed a >1.5-fold increase in the serum expression of two miRNAs (miR-21a-5p and miR-92a-3p) and a >1.5-fold decrease in the serum expression of two other miRNAs (miR-6769b-5p and miR-709) in 58W mice compared with those in 8W mice. In the future, we aim to further analyze aged mice to discover novel MCI biomarkers.
Collapse
Affiliation(s)
- Keisuke Yamamoto
- Department of Bioscience and Laboratory Medicine, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Kohta Miyano
- Department of Medical Technology, School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Minami Fujita
- Department of Medical Technology, School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Wakana Kurata
- Department of Medical Technology, School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Hiroya Ohta
- Department of Medical Technology, School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Kana Matsumoto
- Department of Bioscience and Laboratory Medicine, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Mitsuru Chiba
- Department of Bioscience and Laboratory Medicine, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
- Research Center for Biomedical Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| |
Collapse
|
16
|
Farhana A, Alsrhani A, Alghsham RS, Derafa W, Khan YS, Rasheed Z. Gold Nanoparticles Downregulate IL-6 Expression/Production by Upregulating microRNA-26a-5p and Deactivating the RelA and NF-κBp50 Transcription Pathways in Activated Breast Cancer Cells. Int J Mol Sci 2024; 25:1404. [PMID: 38338683 PMCID: PMC10855246 DOI: 10.3390/ijms25031404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 02/12/2024] Open
Abstract
MicroRNAs (miRNAs) are involved in the modulation of pathogenic genes by binding to their mRNA sequences' 3' untranslated regions (3'UTR). Interleukin-6 (IL-6) is known to promote cancer progression and treatment resistance. In this study, we aimed to explore the therapeutic effects of gold nanoparticles (GNP) against IL-6 overexpression and the modulation of miRNA-26a-5p in breast cancer (BC) cells. GNP were synthesized using the trisodium citrate method and characterized through UV-Vis spectroscopy, dynamic light scattering (DLS), and transmission electron microscopy (TEM). To predict the binding of miR-26a-5p in the IL-6 mRNA's 3'UTR, we utilized bioinformatics algorithms. Luciferase reporter clone assays and anti-miRNA-26a-5p transfection were employed to validate the binding of miR26a-5p in the IL-6 mRNA's 3'UTR. The activity of RelA and NF-κBp50 was assessed and confirmed using Bay 11-7082. The synthesized GNP were spherical with a mean size of 28.3 nm, exhibiting high stability, and were suitable for BC cell treatment. We found that miR-26a-5p directly regulated IL-6 overexpression in MCF-7 cells activated with PMA. Treatment of MCF-7 cells with GNP resulted in the inhibition of IL-6 overexpression and secretion through the increase of miR26a-5p. Furthermore, GNP deactivated NF-κBp65/NF-κBp50 transcription activity. The newly engineered GNP demonstrated safety and showed promise as a therapeutic approach for reducing IL-6 overexpression. The GNP suppressed IL-6 overexpression and secretion by deactivating NF-κBp65/NF-κBp50 transcription activity and upregulating miR-26a-5p expression in activated BC cells. These findings suggest that GNP have potential as a therapeutic intervention for BC by targeting IL-6 expression and associated pathways.
Collapse
Affiliation(s)
- Aisha Farhana
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Abdullah Alsrhani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Ruqaih S. Alghsham
- Department of Pathology, College of Medicine, Qassim University, Buraidah 51452, Saudi Arabia; (R.S.A.); (Z.R.)
| | - Wassila Derafa
- Department of Chemistry, College of Science, Jouf University, Aljouf 72388, Saudi Arabia;
| | - Yusuf Saleem Khan
- Department of Anatomy, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Zafar Rasheed
- Department of Pathology, College of Medicine, Qassim University, Buraidah 51452, Saudi Arabia; (R.S.A.); (Z.R.)
| |
Collapse
|
17
|
Salehi A. A novel therapeutic strategy: the significance of exosomal miRNAs in acute myeloid leukemia. Med Oncol 2024; 41:62. [PMID: 38253748 DOI: 10.1007/s12032-023-02286-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024]
Abstract
Acute myeloid leukemia (AML) is a fast-growing blood cancer that interferes with the normal growth of blood cells in the bone marrow and blood. It is characterized by its unpredictable outlook and high death rate. The main treatment for AML is chemotherapy, but this often results in drug resistance and the possibility of the disease returning. For this reason, new biomarkers are necessary to diagnose, predict, and treat this disease. Research has demonstrated that cells responsible for AML release exosomes that interact with the disease's microenvironment. These exosomes have significant roles in promoting leukemia growth, suppressing normal hematopoiesis, facilitating angiogenesis, and contributing to drug resistance in AML. Further investigations have shown that these exosomes contain miRNAs, which are transferred to target cells and have functional roles. Biomarkers are utilized to assess various aspects of tumor cell behavior, including proliferation, apoptosis, angiogenesis, changes in the microenvironment, transfer of drug resistance, and stability in serum and blood plasma. In this research, we showed that exosomal miRNAs and exosomes have the potential to be used as indicators for detecting various phases of AML and can aid in its medical treatment. Furthermore, they can be specifically targeted for therapeutic purposes in addressing this condition.
Collapse
Affiliation(s)
- Ali Salehi
- Department of Cellular and Molecular Biology, Faculty of New Science and Technology, Tehran Medical Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
18
|
Kim IY, Kim HY, Song HW, Park JO, Choi YH, Choi E. Functional enhancement of exosomes derived from NK cells by IL-15 and IL-21 synergy against hepatocellular carcinoma cells: The cytotoxicity and apoptosis in vitro study. Heliyon 2023; 9:e16962. [PMID: 37484408 PMCID: PMC10361042 DOI: 10.1016/j.heliyon.2023.e16962] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 07/25/2023] Open
Abstract
Exosomes are released by various cells, including natural killer (NK) cells and transport signaling molecules for the intercellular communication. Hepatocellular carcinoma (HCC), also known as primary liver cancer, is often inoperable and difficult to accurate diagnosis. Notably, the prognosis and underlying mechanisms of HCC are not fully understood. Exosomes-derived NK cells (NK-exos) express unique cytotoxic proteins with a killing ability in tumors and can easily penetrate tumor tissues to improve their targeting ability. NK cell functions, inducing cellular cytotoxicity are modulated by cytokines such as interleukin (IL)-15 and IL-21. However, the mechanisms and effects of cytokines-stimulated NK-exos for the treatment of liver cancer, including HCC, are not well known. In this study, we aimed to investigate the synergistic anti-tumor effects of NK-exos stimulated with IL-15 and IL-21 (NK-exosIL-15/21) in Hep3B cells. Our findings revealed that NK-exosIL-15/21 expressed cytotoxic proteins (perforin and granzyme B) and contained typical exosome markers (CD9 and CD63) within the size range of 100-150 nm. Moreover, we demonstrated that NK-exosIL-15/21 induced the enhancement of cytotoxicity and apoptotic activity in Hep3B cells by activating the specific pro-apoptotic proteins (Bax, cleaved caspase 3, cleaved PARP, perforin, and granzyme B) and inhibiting the anti-apoptotic protein (Bcl-2). In summary, our results suggest that NK-exosIL-15/21 regulate strong anti-tumor effects of HCC cells, by increasing the cytotoxicity and apoptosis through the activation of specific cytotoxic molecules.
Collapse
Affiliation(s)
- In-Young Kim
- Korea Institute of Medical Microrobotics, 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Republic of Korea
| | - Ho Yong Kim
- Korea Institute of Medical Microrobotics, 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Republic of Korea
| | - Hyeong-woo Song
- Korea Institute of Medical Microrobotics, 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Republic of Korea
| | - Jong-Oh Park
- Korea Institute of Medical Microrobotics, 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Republic of Korea
| | - You Hee Choi
- Korea Institute of Medical Microrobotics, 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Republic of Korea
| | - Eunpyo Choi
- Korea Institute of Medical Microrobotics, 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Republic of Korea
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| |
Collapse
|