1
|
Chang J, Yao Y, Sun X, Wang W, Qian H, Liu Y, Xue C, Ye W, Jiang F. JAG1 mediates apoptosis in herpes simplex keratitis by suppressing autophagy via ROS/JAG1/NOTCH1/pULK1 signaling pathway. Cell Biol Toxicol 2024; 41:1. [PMID: 39704867 DOI: 10.1007/s10565-024-09968-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Herpes simplex keratitis (HSK), an ocular disease resulted from herpes simplex virus type 1 (HSV-1) infection, leads to the majority of infectious corneal blindness worldwide. The apoptosis of corneal epithelial cells (CECs) resulted from HSV-1 disrupts the epithelial barrier and exacerbates the infection; however, there is no definitive cure for HSK. Jagged1 (JAG1), one of the primary functional ligands for NOTCH receptors, plays a crucial role in regulating apoptosis and autophagy; however, its role in HSK is unclear. Our transcriptome analysis showed JAG1 was significantly upregulated in HSV-1-infected human CECs. We aimed to explore JAG1's role in regulating apoptosis in HSV-1-infected human CECs and in HSK mice. HSV-1 infection induced apoptosis and reactive oxygen species (ROS) generation in CECs. HSV-1 also activated the JAG1/NOTCH1 signaling pathway. The ROS scavenger N-acetylcysteine significantly mitigated these effects. Additionally, inhibiting the JAG1/NOTCH1 pathway with short hairpin RNA against JAG1 or a NOTCH1 inhibitor (N-[N-{3,5-difuorophenacetyl}-1-alanyl]-S-phenylglycine t-butyl ester [DAPT]) alleviated HSV-1-induced CEC apoptosis. Transmission electron microscopy and western blotting revealed that HSV-1 infection suppressed ULK1-mediated autophagy in CECs, while DAPT treatment enhanced autophagy by suppressing ULK1 phosphorylation. The activation of autophagy by rapamycin treatment markedly reduced ROS levels and apoptosis in HSV-1-infected CECs, revealing a synergistic effect between the suppressed autophagy and increased ROS levels, ultimately leading to apoptosis. Thus, HSV-1 induces CEC apoptosis by suppressing autophagy through ROS/JAG1/NOTCH1/pULK1 signaling pathway in vitro and in vivo, providing potential therapeutic targets for HSK.
Collapse
Affiliation(s)
- Jingyao Chang
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
- Department of Ophthalmology, Jinling Hospital, Nanjing, 210002, Jiangsu, China
| | - Yao Yao
- Department of Ophthalmology, Jinling Hospital, Nanjing, 210002, Jiangsu, China
| | - Xinghong Sun
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Nanjing, 210011, Jiangsu, China
| | - Wenzhe Wang
- Department of Ophthalmology, Jinling Hospital, Nanjing, 210002, Jiangsu, China
| | - Haochen Qian
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
- Department of Ophthalmology, Jinling Hospital, Nanjing, 210002, Jiangsu, China
| | - Yumeilan Liu
- Department of Ophthalmology, Jinling Hospital, Nanjing, 210002, Jiangsu, China
| | - Chunyan Xue
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.
- Department of Ophthalmology, Hainan Hospital of Chinese PLA General Hospital, Sanya, 572013, Hainan, China.
| | - Wei Ye
- Department of Ophthalmology, Jinling Hospital, Nanjing, 210002, Jiangsu, China.
| | - Feng Jiang
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Nanjing, 210011, Jiangsu, China.
| |
Collapse
|
2
|
Chao S, Shan S, Liu Z, Liu Z, Wang S, Qiang Y, Ni W, Li H, Cheng D, Jia Q, Song F. Both TREM2-dependent macrophages and Kupffer cells play a protective role in APAP-induced acute liver injury. Int Immunopharmacol 2024; 141:112926. [PMID: 39159559 DOI: 10.1016/j.intimp.2024.112926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/22/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024]
Abstract
The inflammatory response is a significant factor in acetaminophen (APAP)-induced acute liver injury. And it can be mediated by macrophages of different origins. However, whether Kupffer cells and mononuclear-derived macrophages play an injury or protective role in APAP hepatotoxicity is still unclear. In this study, C57/BL6N mice were performed to establish the APAP acute liver injury model. Intervention experiments were also carried out using clodronate liposomes or TREM2 knockout. We found that APAP overdose triggered the activation of inflammatory factors and enhanced the expression of the RIPK1-MLKL pathway in mice's livers. Moreover, our study showed that inflammation-related protein expression was increased after clodronate liposome administration or TREM2 knockout. The RIPK1-MLKL-mediated necroptosis was also significantly activated after the elimination of Kupffer cells or the inhibition of mononuclear-derived macrophages. More importantly, clodronate liposomes treatment and TREM2 deficiency all worsen APAP-induced liver damage in mice. In conclusion, the results indicate that Kupffer cells and mononuclear macrophages play a protective role in APAP-induced liver injury by regulating necroptosis. Therefore, macrophages hold as a potential therapeutic target for APAP-induced liver damage.
Collapse
Affiliation(s)
- Shihua Chao
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China; Qinghai Center for Disease Control and Prevention, No. 55, Bayi Middle Road, Chengdong District, Xining City, Qinghai Province 810000, China
| | - Shulin Shan
- Department of Health Test and Detection, Shandong Center for Disease Control and Prevention, 16992 Jingshi Road, Ji'nan, Shandong 250014, China
| | - Zhaoxiong Liu
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China
| | - Zhidan Liu
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Ji'nan 250062, China
| | - Shuai Wang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China
| | - Yalong Qiang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China
| | - Wenting Ni
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China
| | - Hui Li
- Department of Health Test and Detection, Shandong Center for Disease Control and Prevention, 16992 Jingshi Road, Ji'nan, Shandong 250014, China
| | - Dong Cheng
- Department of Health Test and Detection, Shandong Center for Disease Control and Prevention, 16992 Jingshi Road, Ji'nan, Shandong 250014, China
| | - Qiang Jia
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Ji'nan 250062, China
| | - Fuyong Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China.
| |
Collapse
|
3
|
Guo K, van den Beucken T. Advances in drug-induced liver injury research: in vitro models, mechanisms, omics and gene modulation techniques. Cell Biosci 2024; 14:134. [PMID: 39488681 PMCID: PMC11531151 DOI: 10.1186/s13578-024-01317-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024] Open
Abstract
Drug-induced liver injury (DILI) refers to drug-mediated damage to the structure and function of the liver, ranging from mild elevation of liver enzymes to severe hepatic insufficiency, and in some cases, progressing to liver failure. The mechanisms and clinical symptoms of DILI are diverse due to the varying combination of drugs, making clinical treatment and prevention complex. DILI has significant public health implications and is the primary reason for post-marketing drug withdrawals. The search for reliable preclinical models and validated biomarkers to predict and investigate DILI can contribute to a more comprehensive understanding of adverse effects and drug safety. In this review, we examine the progress of research on DILI, enumerate in vitro models with potential benefits, and highlight cellular molecular perturbations that may serve as biomarkers. Additionally, we discuss omics approaches frequently used to gather comprehensive datasets on molecular events in response to drug exposure. Finally, three commonly used gene modulation techniques are described, highlighting their application in identifying causal relationships in DILI. Altogether, this review provides a thorough overview of ongoing work and approaches in the field of DILI.
Collapse
Affiliation(s)
- Kaidi Guo
- Department of Toxicogenomics, GROW - Research Institute for Oncology & Reproduction, Maastricht University, Maastricht, 6200, MD, The Netherlands.
| | - Twan van den Beucken
- Department of Toxicogenomics, GROW - Research Institute for Oncology & Reproduction, Maastricht University, Maastricht, 6200, MD, The Netherlands
| |
Collapse
|
4
|
Wright B, King S, Suphioglu C. The Importance of Phosphoinositide 3-Kinase in Neuroinflammation. Int J Mol Sci 2024; 25:11638. [PMID: 39519189 PMCID: PMC11546674 DOI: 10.3390/ijms252111638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Neuroinflammation, characterised by the activation of immune cells in the central nervous system (CNS), plays a dual role in both protecting against and contributing to the progression of neurodegenerative diseases, such as Alzheimer's disease (AD) and multiple sclerosis (MS). This review explores the role of phosphoinositide 3-kinase (PI3K), a key enzyme involved in cellular survival, proliferation, and inflammatory responses, within the context of neuroinflammation. Two PI3K isoforms of interest, PI3Kγ and PI3Kδ, are specific to the regulation of CNS cells, such as microglia, astrocytes, neurons, and oligodendrocytes, influencing pathways, such as Akt, mTOR, and NF-κB, that control cytokine production, immune cell activation, and neuroprotection. The dysregulation of PI3K signalling is implicated in chronic neuroinflammation, contributing to the exacerbation of neurodegenerative diseases. Preclinical studies show promise in targeting neuronal disorders using PI3K inhibitors, such as AS605240 (PI3Kγ) and idelalisib (PI3Kδ), which have reduced inflammation, microglial activation, and neuronal death in in vivo models of AD. However, the clinical translation of these inhibitors faces challenges, including blood-brain barrier (BBB) permeability, isoform specificity, and long-term safety concerns. This review highlights the therapeutic potential of PI3K modulation in neuroinflammatory diseases, identifying key gaps in the current research, particularly in the need for brain-penetrating and isoform-specific inhibitors. These findings underscore the importance of future research to develop targeted therapies that can effectively modulate PI3K activity and provide neuroprotection in chronic neurodegenerative disorders.
Collapse
Affiliation(s)
- Brock Wright
- NeuroAllergy Research Laboratory (NARL), School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia; (B.W.); (S.K.)
- Centre for Sustainable Bioproducts, School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia
| | - Samuel King
- NeuroAllergy Research Laboratory (NARL), School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia; (B.W.); (S.K.)
- Centre for Sustainable Bioproducts, School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia
| | - Cenk Suphioglu
- NeuroAllergy Research Laboratory (NARL), School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia; (B.W.); (S.K.)
- Centre for Sustainable Bioproducts, School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia
| |
Collapse
|
5
|
Cao L, Wang XL, Chu T, Wang YW, Fan YQ, Chen YH, Zhu YW, Zhang J, Ji XY, Wu DD. Role of gasotransmitters in necroptosis. Exp Cell Res 2024; 442:114233. [PMID: 39216662 DOI: 10.1016/j.yexcr.2024.114233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Gasotransmitters are endogenous gaseous signaling molecules that can freely pass through cell membranes and transmit signals between cells, playing multiple roles in cell signal transduction. Due to extensive and ongoing research in this field, we have successfully identified many gasotransmitters so far, among which nitric oxide, carbon monoxide, and hydrogen sulfide are best studied. Gasotransmitters are implicated in various diseases related to necroptosis, such as cardiovascular diseases, inflammation, ischemia-reperfusion, infectious diseases, and neurological diseases. However, the mechanisms of their effects on necroptosis are not fully understood. This review focuses on endogenous gasotransmitter synthesis and metabolism and discusses their roles in necroptosis, aiming to offer new insights for the therapeutic approaches to necroptosis-associated diseases.
Collapse
Affiliation(s)
- Lei Cao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Xue-Li Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Ti Chu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yan-Wen Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yong-Qi Fan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yu-Hang Chen
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yi-Wen Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Jing Zhang
- Department of Stomatology, The First Affiliated Hospital of Henan University, Kaifeng, Henan, 475001, China.
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, 450064, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Kaifeng, Henan, 475000, China; Kaifeng Key Laboratory of Periodontal Tissue Engineering, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
6
|
Zheng C, Chen Y, He T, Xiu Y, Dong X, Wang X, Wen X, Li C, Yao Q, Chen S, Zhan X, Gao L, Bai Z. Pentagalloylglucose alleviates acetaminophen-induced acute liver injury by modulating inflammation via cGAS-STING pathway. Mol Med 2024; 30:160. [PMID: 39333876 PMCID: PMC11428449 DOI: 10.1186/s10020-024-00924-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The cGAS-STING pathway is an important component of the innate immune system and plays significant role in acetaminophen-induced liver injury (AILI). Pentagalloylglucose (PGG) is a natural polyphenolic compound with various beneficial effects, including anti-cancer, antioxidant, anti-inflammatory, and liver-protective properties; however, whether it can be used for the treatment of AILI and the specific mechanism remain unclear. MATERIALS AND METHODS A cell culture model was created to study the effect of PGG on cGAS-STING pathway activation using various techniques including western blotting (WB), real-time quantitative polymerase chain reaction (RT-qPCR), immunofluorescence (IF), and immunoprecipitation (IP). The effect of PGG was investigated in vivo by establishing a dimethylxanthenone acetic acid (DMXAA)-mediated activation model. An AILI model was used to evaluate the hepatoprotective and therapeutic effects of PGG by detecting liver function indicators, liver histopathology, and cGAS-STING pathway-related indicators in mice with AILI. RESULTS PGG blocked cGAS-STING pathway activation in bone marrow-derived macrophages (BMDMs), THP-1 cells, and peripheral blood mononuclear cells (PBMCs) in vitro. Furthermore, PGG inhibited the generation of type I interferons (IFN-I) and the secretion of inflammatory factors in DMXAA-induced in vivo experiments. In addition, PGG also reduced serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP), improved liver tissue damage and apoptosis, and inhibited the cGAS-STING pathway activation caused by acetaminophen. In terms of the mechanism, PGG disrupted the connection between STING and TBK1. CONCLUSIONS PGG exerts a protective effect against AILI by blocking the cGAS-STING pathway, offering a promising treatment strategy.
Collapse
Affiliation(s)
- Congyang Zheng
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology, The Second Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Yuanyuan Chen
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Tingting He
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Ye Xiu
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Xu Dong
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology, The Second Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Xianling Wang
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Xinru Wen
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Chengwei Li
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Qing Yao
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Simin Chen
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Xiaoyan Zhan
- Medical School of Chinese PLA, Beijing, China.
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| | - Lili Gao
- Medical School of Chinese PLA, Beijing, China.
- Department of Gastroenterology, The Second Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| | - Zhaofang Bai
- Medical School of Chinese PLA, Beijing, China.
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|
7
|
Lin W, Gu B, Gu Y, Zhao R, Huang Y, Fan R, Rong W, Liu Z. Taraxasterol protects against acetaminophen-induced hepatotoxicity by reducing liver inflammatory response and ameliorating oxidative stress in mice. Int Immunopharmacol 2024; 138:112580. [PMID: 38943970 DOI: 10.1016/j.intimp.2024.112580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Acute liver failure is mainly caused by the overdose of acetaminophen (APAP) globally. The traditional Chinese medicinal (TCM) herb, Taraxacum, contains Taraxasterol (TAX) as one of the active components. It is a pentacyclic-triterpene compound isolated from this herb. Present work aimed to investigate the in vitro and in vivo protection effect of TAX in APAP-induced acute liver injury, and determine the potential regulatory mechamisms. The liver injury caused by APAP is attenuated by TAX, as shown by the alleviated pathological changes of mice liver and the reduced serological indexes. TAX evidently controlled the oxidative stress and liver inflammation in mice liver. In vitro studies found that TAX reversed the decrease in LO2 cell viability induced by APAP, and protected LO2 cells from APAP-induced injury. In addition, TAX reduced the secretion of inflammatory factors in RAW264.7 macrophages as induced via APAP. Besides, TAX inhibited oxidative stress in LO2 cells induced by APAP in vitro. Noteworthy, TAX enhanced protein and mRNA expressions of Nrf2 in vivo, and knockdown of Nrf2 by using adeno-associated virus (AAV)-Nrf2-KO attenuated inhibitory impact of TAX in acute liver injury induced by APAP. Also, AAV-NRF2-KO weakened the inhibitory impact of TAX against APAP-triggered liver inflammation and oxidative stress of mice liver. Moreover, TAX activated the Nrf2 signaling in APAP-induced LO2 cells, as shown by the increased nuclear Nrf2 expression together with downstream HO-1 expression in vitro. Inhibition of Nrf2 by using ML-385, anNrf2inhibitor, weakened the inhibitory effect of TAX against APAP-induced oxidative stress and cell injury in LO2 cells. Moreover, inhibition of Nrf2 attenuated anti-inflammatory effect of TAX for APAP-induced RAW264.7 cells. Collectively, TAX could protect against APAP-triggered hepatotoxicitythrough suppression of liver oxidative stress and inflammatory response in mice.
Collapse
Affiliation(s)
- Weiling Lin
- School of Pharmacy, Nantong University, Nantong 226019, China
| | - Bangjie Gu
- School of Pharmacy, Nantong University, Nantong 226019, China
| | - Yuanyuan Gu
- School of Pharmacy, Nantong University, Nantong 226019, China
| | - Rui Zhao
- School of Pharmacy, Nantong University, Nantong 226019, China
| | - Yumeng Huang
- School of Pharmacy, Nantong University, Nantong 226019, China
| | - Rui Fan
- School of Pharmacy, Nantong University, Nantong 226019, China
| | - Weihao Rong
- Department of Orthopedics, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing 211299, Jiangsu, China.
| | - Zhaoguo Liu
- School of Pharmacy, Nantong University, Nantong 226019, China.
| |
Collapse
|
8
|
Liu Y, Zhou W, Zhao J, Chu M, Xu M, Wang X, Xie L, Zhou Y, Song L, Wang J, Yang T. Regulation of YAP translocation by myeloid Pten deficiency alleviates acute lung injury via inhibition of oxidative stress and inflammation. Free Radic Biol Med 2024; 222:199-210. [PMID: 38901501 DOI: 10.1016/j.freeradbiomed.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is intricately involved in modulating the inflammatory response in acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Nevertheless, the myeloid PTEN governing Hippo-YAP pathway mediated oxidative stress and inflammation in lipopolysaccharide (LPS)-induced ALI remains to be elucidate. METHODS The floxed Pten (PtenFL/FL) and myeloid-specific Pten knockout (PtenM-KO) mice were intratracheal instill LPS (5 mg/kg) to establish ALI, then Yap siRNA mix with the mannose-conjugated polymers was used to knockdown endogenous macrophage YAP in some PtenM-KO mice before LPS challenged. The bone marrow-derived macrophages (BMMs) from PtenFL/FL and PtenM-KO mice were obtained, and BMMs were transfected with CRISPR/Cas9-mediated glycogen synthase kinase 3 Beta (GSK3β) knockout (KO) or Yes-associated protein (YAP) KO vector subjected to LPS (100 ng/ml) challenged or then cocultured with MLE12 cells. RESULTS Here, our findings demonstrate that myeloid-specific PTEN deficiency exerts a protective against LPS-induced oxidative stress and inflammation dysregulated in ALI model. Moreover, ablation of the PTEN-YAP axis in macrophages results in reduced nuclear factor-E2-related factor-2 (NRF2) expression, a decrease in antioxidant gene expression, augmented levels of free radicals, lipid and protein peroxidation, heightened generation of pro-inflammatory cytokines, ultimately leading to increased apoptosis in MLE12 cells. Mechanistically, it is noteworthy that the deletion of myeloid PTEN promotes YAP translocation and regulates NRF2 expression, alleviating LPS-induced ALI via the inhibition of GSK3β and MST1 binding. CONCLUSIONS Our study underscores the crucial role of the myeloid PTEN-YAP-NRF2 axis in governing oxidative stress and inflammation dysregulated in ALI, indicating its potential as a therapeutic target for ALI.
Collapse
Affiliation(s)
- Yang Liu
- Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang School of Clinical Medicine with Nanjing Medical University, Zhenjiang, Jiangsu, China
| | - Wenqin Zhou
- Department of Emergency Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jiaying Zhao
- Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang School of Clinical Medicine with Nanjing Medical University, Zhenjiang, Jiangsu, China; Department of Infectious Diseases, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mingqiang Chu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mingcui Xu
- Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang School of Clinical Medicine with Nanjing Medical University, Zhenjiang, Jiangsu, China
| | - Xiao Wang
- Department of Infectious Diseases, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liangjie Xie
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ying Zhou
- Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang School of Clinical Medicine with Nanjing Medical University, Zhenjiang, Jiangsu, China
| | - Lijia Song
- Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang School of Clinical Medicine with Nanjing Medical University, Zhenjiang, Jiangsu, China
| | - Jian Wang
- Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang School of Clinical Medicine with Nanjing Medical University, Zhenjiang, Jiangsu, China
| | - Tao Yang
- Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang School of Clinical Medicine with Nanjing Medical University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
9
|
Shen P, Xue M, Hu Z, Han L, Deng X. Direct targeting of S100A9 with Icariin counteracted acetaminophen‑induced hepatotoxicity. Int Immunopharmacol 2024; 136:112296. [PMID: 38810310 DOI: 10.1016/j.intimp.2024.112296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024]
Abstract
Acetaminophen (APAP) is a widely used antipyretic and analgesic medication, but its overdose can induce acute liver failure with lack of effective therapies. Icariin is a bioactive compound derived from the herb Epimedium that displays hepatoprotective activities. Here, we explored the protective effects and mechanism of icariin on APAP-induced hepatotoxicity. Icariin (25/50 mg/kg) or N-Acetylcysteine (NAC, 300 mg/kg) were orally administered in wild-type C57BL/6 mice for 7 consecutive days before the APAP administration. Icariin attenuated APAP-induced acute liver injury in mice, as measured by alleviated serum enzymes activities and hepatic apoptosis. In vitro, icariin pretreatment significantly inhibited hepatocellular damage and apoptosis by reducing the BAX/Bcl-2 ratio as well as the expression of cleaved-caspase 3 and cleaved-PARP depended on the p53 pathway. Moreover, icariin attenuated APAP-mediated inflammatory response and oxidative stress via the Nrf2 and NF-κB pathways. Importantly, icariin reduced the expression of S100A9, icariin interacts with S100A9 as a direct cellular target, which was supported by molecular dynamics simulation and surface plasmon resonance assay (equilibrium dissociation constant, KD = 1.14 μM). In addition, the genetic deletion and inhibition of S100A9 not only alleviated APAP-induced injury but also reduced the icariin's protective activity in APAP-mediated liver injury. These data indicated that icariin targeted S100A9 to alleviate APAP-induced liver damage via the following signaling pathways NF-κB, p53, and Nrf2.
Collapse
Affiliation(s)
- Pan Shen
- Department of Rheumatology and Immunology, Zhongnan Hospital, Wuhan University, China; Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, China.
| | - Mei Xue
- Department of Endocrinology, Zhongnan Hospital, Wuhan University, China.
| | - Zhishuo Hu
- Department of Emergency, Wuhan No.1 Hospital, China.
| | - Liang Han
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, China.
| | - Xuan Deng
- Department of Nephrology, Zhongnan Hospital, Wuhan University, China.
| |
Collapse
|
10
|
Wei H, Zhao T, Liu X, Ding Q, Yang J, Bi X, Cheng Z, Ding C, Liu W. Mechanism of Action of Dihydroquercetin in the Prevention and Therapy of Experimental Liver Injury. Molecules 2024; 29:3537. [PMID: 39124941 PMCID: PMC11314611 DOI: 10.3390/molecules29153537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Liver disease is a global health problem that affects the well-being of tens of thousands of people. Dihydroquercetin (DHQ) is a flavonoid compound derived from various plants. Furthermore, DHQ has shown excellent activity in the prevention and treatment of liver injury, such as the inhibition of hepatocellular carcinoma cell proliferation after administration, the normalization of oxidative indices (like SOD, GSH) in this tissue, and the down-regulation of pro-inflammatory molecules (such as IL-6 and TNF-α). DHQ also exerts its therapeutic effects by affecting molecular pathways such as NF-κB and Nrf2. This paper discusses the latest research progress of DHQ in the treatment of various liver diseases (including viral liver injury, drug liver injury, alcoholic liver injury, non-alcoholic liver injury, fatty liver injury, and immune liver injury). It explores how to optimize the application of DHQ to improve its effectiveness in treating liver diseases, which is valuable for preparing potential therapeutic drugs for human liver diseases in conjunction with DHQ.
Collapse
Affiliation(s)
- Hewei Wei
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (H.W.); (Q.D.); (J.Y.); (X.B.); (Z.C.)
| | - Ting Zhao
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China; (T.Z.); (X.L.)
| | - Xinglong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China; (T.Z.); (X.L.)
| | - Qiteng Ding
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (H.W.); (Q.D.); (J.Y.); (X.B.); (Z.C.)
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China; (T.Z.); (X.L.)
| | - Junran Yang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (H.W.); (Q.D.); (J.Y.); (X.B.); (Z.C.)
| | - Xiaoyu Bi
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (H.W.); (Q.D.); (J.Y.); (X.B.); (Z.C.)
| | - Zhiqiang Cheng
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (H.W.); (Q.D.); (J.Y.); (X.B.); (Z.C.)
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (H.W.); (Q.D.); (J.Y.); (X.B.); (Z.C.)
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China; (T.Z.); (X.L.)
| |
Collapse
|
11
|
Tsai PJ, Chen MY, Hsu WC, Lin SF, Chan PC, Chen HH, Kao CY, Lin WJ, Chuang TH, Yu GY, Su YW. PTEN acts as a crucial inflammatory checkpoint controlling TLR9/IL-6 axis in B cells. iScience 2024; 27:110388. [PMID: 39092178 PMCID: PMC11292540 DOI: 10.1016/j.isci.2024.110388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/27/2024] [Accepted: 06/24/2024] [Indexed: 08/04/2024] Open
Abstract
Phosphatase and tensin homolog (PTEN) is vital for B cell development, acting as a key negative regulator in the PI3K signaling pathway. We used CD23-cre to generate PTEN-conditional knockout mice (CD23-cKO) to examine the impact of PTEN mutation on peripheral B cells. Unlike mb1-cre-mediated PTEN deletion in early B cells, CD23-cKO mutants exhibited systemic inflammation with increased IL-6 production in mature B cells upon CpG stimulation. Inflammatory B cells in CD23-cKO mice showed elevated phosphatidylinositol 3-phosphate [PI(3)P] levels and increased TLR9 endosomal localization. Pharmacological inhibition of PI(3)P synthesis markedly reduced TLR9-mediated IL-6. Single-cell RNA-sequencing (RNA-seq) revealed altered endocytosis, BANK1, and NF-κB1 expression in PTEN-deficient B cells. Ectopic B cell receptor (BCR) expression on non-inflammatory mb1-cKO B cells restored BANK1 and NF-κB1 expression, enhancing TLR9-mediated IL-6 production. Our study highlights PTEN as a crucial inflammatory checkpoint, regulating TLR9/IL-6 axis by fine-tuning PI(3)P homeostasis. Additionally, BCR downregulation prevents the differentiation of inflammatory B cells in PTEN deficiency.
Collapse
Affiliation(s)
- Pei-Ju Tsai
- Immunology Research Center, National Health Research Institutes, Zhunan Town, Miaoli County 350401, Taiwan
| | - Ming-Yu Chen
- Immunology Research Center, National Health Research Institutes, Zhunan Town, Miaoli County 350401, Taiwan
| | - Wei-Chan Hsu
- Immunology Research Center, National Health Research Institutes, Zhunan Town, Miaoli County 350401, Taiwan
| | - Su-Fang Lin
- National Institute of Cancer Research, National Health Research Institutes, Zhunan Town, Miaoli County 350401, Taiwan
| | - Po-Chiang Chan
- Immunology Research Center, National Health Research Institutes, Zhunan Town, Miaoli County 350401, Taiwan
| | - Hsin-Hsin Chen
- Immunology Research Center, National Health Research Institutes, Zhunan Town, Miaoli County 350401, Taiwan
| | - Cheng-Yuan Kao
- Immunology Research Center, National Health Research Institutes, Zhunan Town, Miaoli County 350401, Taiwan
| | - Wen-Jye Lin
- Immunology Research Center, National Health Research Institutes, Zhunan Town, Miaoli County 350401, Taiwan
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan Town, Miaoli County 350401, Taiwan
| | - Guann-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County 350401, Taiwan
| | - Yu-Wen Su
- Immunology Research Center, National Health Research Institutes, Zhunan Town, Miaoli County 350401, Taiwan
| |
Collapse
|
12
|
Laddha AP, Wu H, Manautou JE. Deciphering Acetaminophen-Induced Hepatotoxicity: The Crucial Role of Transcription Factors like Nuclear Factor Erythroid 2-Related Factor 2 as Genetic Determinants of Susceptibility to Drug-Induced Liver Injury. Drug Metab Dispos 2024; 52:740-753. [PMID: 38857948 DOI: 10.1124/dmd.124.001282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/20/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024] Open
Abstract
Acetaminophen (APAP) is the most commonly used over-the-counter medication throughout the world. At therapeutic doses, APAP has potent analgesic and antipyretic effects. The efficacy and safety of APAP are influenced by multifactorial processes dependent upon dosing, namely frequency and total dose. APAP poisoning by repeated ingestion of supratherapeutic doses, depletes glutathione stores in the liver and other organs capable of metabolic bioactivation, leading to hepatocellular death due to exhausted antioxidant defenses. Numerous genes, encompassing transcription factors and signaling pathways, have been identified as playing pivotal roles in APAP toxicity, with the liver being the primary organ studied due to its central role in APAP metabolism and injury. Nuclear factor erythroid 2-related factor 2 (NRF2) and its array of downstream responsive genes are crucial in counteracting APAP toxicity. NRF2, along with its negative regulator Kelch-like ECH-associated protein 1, plays a vital role in regulating intracellular redox homeostasis. This regulation is significant in modulating the oxidative stress, inflammation, and hepatocellular death induced by APAP. In this review, we provide an updated overview of the mechanisms through which NRF2 activation and signaling critically influence the threshold for developing APAP toxicity. We also describe how genetically modified rodent models for NRF2 and related genes have been pivotal in underscoring the significance of this antioxidant response pathway. While NRF2 is a primary focus, the article comprehensively explores other genetic factors involved in phase I and phase II metabolism of APAP, inflammation, oxidative stress, and related pathways that contribute to APAP toxicity, thereby providing a holistic understanding of the genetic landscape influencing susceptibility to this condition. SIGNIFICANCE STATEMENT: This review summarizes the genetic elements and signaling pathways underlying APAP-induced liver toxicity, focusing on the crucial protective role of the transcription factor NRF2. This review also delves into the genetic intricacies influencing APAP safety and potential liver harm. It also emphasizes the need for deeper insight into the molecular mechanisms of hepatotoxicity, especially the interplay of NRF2 with other pathways.
Collapse
Affiliation(s)
- Ankit P Laddha
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| | - Hangyu Wu
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| | - José E Manautou
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
13
|
Xu Y, Jia B, Li J, Li Q, Luo C. The Interplay between Ferroptosis and Neuroinflammation in Central Neurological Disorders. Antioxidants (Basel) 2024; 13:395. [PMID: 38671843 PMCID: PMC11047682 DOI: 10.3390/antiox13040395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Central neurological disorders are significant contributors to morbidity, mortality, and long-term disability globally in modern society. These encompass neurodegenerative diseases, ischemic brain diseases, traumatic brain injury, epilepsy, depression, and more. The involved pathogenesis is notably intricate and diverse. Ferroptosis and neuroinflammation play pivotal roles in elucidating the causes of cognitive impairment stemming from these diseases. Given the concurrent occurrence of ferroptosis and neuroinflammation due to metabolic shifts such as iron and ROS, as well as their critical roles in central nervous disorders, the investigation into the co-regulatory mechanism of ferroptosis and neuroinflammation has emerged as a prominent area of research. This paper delves into the mechanisms of ferroptosis and neuroinflammation in central nervous disorders, along with their interrelationship. It specifically emphasizes the core molecules within the shared pathways governing ferroptosis and neuroinflammation, including SIRT1, Nrf2, NF-κB, Cox-2, iNOS/NO·, and how different immune cells and structures contribute to cognitive dysfunction through these mechanisms. Researchers' findings suggest that ferroptosis and neuroinflammation mutually promote each other and may represent key factors in the progression of central neurological disorders. A deeper comprehension of the common pathway between cellular ferroptosis and neuroinflammation holds promise for improving symptoms and prognosis related to central neurological disorders.
Collapse
Affiliation(s)
- Yejia Xu
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
- Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Bowen Jia
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Jing Li
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Qianqian Li
- NHC Key Laboratory of Drug Addiction Medicine, Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
- School of Forensic Medicine, Wannan Medical College, Wuhu 241002, China
| | - Chengliang Luo
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
- Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- NHC Key Laboratory of Drug Addiction Medicine, Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| |
Collapse
|
14
|
YILDIRIM Z, DOĞAN E, GÜLER KARA H, KOSOVA B, BOZOK V. STING activation increases the efficiency of temozolomide in PTEN harbouring glioblastoma cells. Turk J Med Sci 2024; 54:607-614. [PMID: 39049995 PMCID: PMC11265881 DOI: 10.55730/1300-0144.5828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 06/12/2024] [Accepted: 01/21/2024] [Indexed: 07/27/2024] Open
Abstract
Background/aim Glioblastoma is one of the most aggressive tumours, resistant to all applied therapy regiments and prone to relapse. Median survival rates are therefore only expressed as months. STING agonists are immunomodulatory molecules that activate type I interferon expression, making them potentially useful in regulating the tumour microenvironment. Since PTEN serves as a critical phosphatase in activating interferon-regulating transcription factors and is frequently mutated in glioblastoma cells, this study aimed to investigate STING activation in glioblastoma cell lines, examining whether they harbour the PTEN protein or not.°. Materials and methods T98G and U118MG glioblastoma cell lines were treated with the 2'3'-c-di-AM(PS)2(Rp,Rp) STING agonist together with or without the chemotherapeutic agent temozolomide. cGAS/STING pathway components were subsequently analysed using qRT-PCR, western blot, and ELISA methods. Results Our results showed that PTEN-harbouring T98G cells responded well to STING activation, leading to increased temozolomide efficacy. In contrast, STING activation in U118MG cells did not affect the response to temozolomide. mRNA expression levels of STING, IRF3, NF-KB, and RELA genes were significantly increased at the combined treatment groups in T98G cell line. Conversely, combined treatment with STING agonist and temozolomide did not affect mRNA expression levels of cGAS/STING pathway genes in U118MG cells. Conclusion Our data offers new evidence suggesting that STING agonists can effectively be used to increase temozolomide response in the presence of PTEN protein. Therefore, increased GBM therapy success rates can be achieved by employing the PTEN expression status as a predictive biomarker before treating patients with a chemotherapeutic agent in combination with STING agonist.
Collapse
Affiliation(s)
| | - Eda DOĞAN
- Department of Medical Biology, Faculty of Medicine, Ege University, İzmir,
Turkiye
| | - Hale GÜLER KARA
- Department of Medical Biology, Faculty of Medicine, Ege University, İzmir,
Turkiye
- Department of Medical Biology, Faculty of Medicine, Harran University, Şanlıurfa,
Turkiye
| | - Buket KOSOVA
- Department of Medical Biology, Faculty of Medicine, Ege University, İzmir,
Turkiye
| | - Vildan BOZOK
- Department of Medical Biology, Faculty of Medicine, Ege University, İzmir,
Turkiye
| |
Collapse
|
15
|
Dogan E, Yildirim Z, Akalin T, Ozgiray E, Akinturk N, Aktan C, Solmaz AE, Biceroglu H, Caliskan KE, Ertan Y, Yurtseven T, Kosova B, Bozok V. Investigating the effects of PTEN mutations on cGAS-STING pathway in glioblastoma tumours. J Neurooncol 2024; 166:283-292. [PMID: 38214828 PMCID: PMC10834568 DOI: 10.1007/s11060-023-04556-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/27/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND PTEN is a tumour suppressor gene and well-known for being frequently mutated in several cancer types. Loss of immunogenicity can also be attributed to PTEN loss, because of its role in establishing the tumour microenvironment. Therefore, this study aimed to represent the link between PTEN and cGAS-STING activity, a key mediator of inflammation, in tumour samples of glioblastoma patients. METHODS Tumour samples of 36 glioblastoma patients were collected. After DNA isolation, all coding regions of PTEN were sequenced and analysed. PTEN expression status was also evaluated by qRT-PCR, western blot, and immunohistochemical methods. Interferon-stimulated gene expressions, cGAMP activity, CD8 infiltration, and Granzyme B expression levels were determined especially for the evaluation of cGAS-STING activity and immunogenicity. RESULTS Mutant PTEN patients had significantly lower PTEN expression, both at mRNA and protein levels. Decreased STING, IRF3, NF-KB1, and RELA mRNA expressions were also found in patients with mutant PTEN. Immunohistochemistry staining of PTEN displayed expressional loss in 38.1% of the patients. Besides, patients with PTEN loss had considerably lower amounts of IFNB and IFIT2 mRNA expressions. Furthermore, CD8 infiltration, cGAMP, and Granzyme B levels were reduced in the PTEN loss group. CONCLUSION This study reveals the immunosuppressive effects of PTEN loss in glioblastoma tumours via the cGAS-STING pathway. Therefore, determining the PTEN status in tumours is of great importance, like in situations when considering the treatment of glioblastoma patients with immunotherapeutic agents.
Collapse
Affiliation(s)
- Eda Dogan
- Department of Medical Biology, Ege University Faculty of Medicine, Izmir, Türkiye
| | - Zafer Yildirim
- Department of Medical Biology, Ege University Faculty of Medicine, Izmir, Türkiye
| | - Taner Akalin
- Department of Pathology, Ege University Faculty of Medicine, Izmir, Türkiye
| | - Erkin Ozgiray
- Department of Neurosurgery, Ege University Faculty of Medicine, Izmir, Türkiye
| | - Nevhis Akinturk
- Department of Neurosurgery, Ege University Faculty of Medicine, Izmir, Türkiye
| | - Cagdas Aktan
- Department of Medical Biology, Beykent University School of Medicine, İstanbul, Türkiye
| | - Asli Ece Solmaz
- Department of Medical Genetics, Ege University Faculty of Medicine, Izmir, Türkiye
| | - Huseyin Biceroglu
- Department of Neurosurgery, Ege University Faculty of Medicine, Izmir, Türkiye
| | - Kadri Emre Caliskan
- Department of Neurosurgery, Ege University Faculty of Medicine, Izmir, Türkiye
| | - Yesim Ertan
- Department of Pathology, Ege University Faculty of Medicine, Izmir, Türkiye
| | - Taskin Yurtseven
- Department of Neurosurgery, Ege University Faculty of Medicine, Izmir, Türkiye
| | - Buket Kosova
- Department of Medical Biology, Ege University Faculty of Medicine, Izmir, Türkiye
| | - Vildan Bozok
- Department of Medical Biology, Ege University Faculty of Medicine, Izmir, Türkiye.
| |
Collapse
|