1
|
Wei L, Li Y, Chen J, Wang Y, Wu J, Yang H, Zhang Y. Alternative splicing in ovarian cancer. Cell Commun Signal 2024; 22:507. [PMID: 39425166 PMCID: PMC11488268 DOI: 10.1186/s12964-024-01880-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024] Open
Abstract
Ovarian cancer is the second leading cause of gynecologic cancer death worldwide, with only 20% of cases detected early due to its elusive nature, limiting successful treatment. Most deaths occur from the disease progressing to advanced stages. Despite advances in chemo- and immunotherapy, the 5-year survival remains below 50% due to high recurrence and chemoresistance. Therefore, leveraging new research perspectives to understand molecular signatures and identify novel therapeutic targets is crucial for improving the clinical outcomes of ovarian cancer. Alternative splicing, a fundamental mechanism of post-transcriptional gene regulation, significantly contributes to heightened genomic complexity and protein diversity. Increased awareness has emerged about the multifaceted roles of alternative splicing in ovarian cancer, including cell proliferation, metastasis, apoptosis, immune evasion, and chemoresistance. We begin with an overview of altered splicing machinery, highlighting increased expression of spliceosome components and associated splicing factors like BUD31, SF3B4, and CTNNBL1, and their relationships to ovarian cancer. Next, we summarize the impact of specific variants of CD44, ECM1, and KAI1 on tumorigenesis and drug resistance through diverse mechanisms. Recent genomic and bioinformatics advances have enhanced our understanding. By incorporating data from The Cancer Genome Atlas RNA-seq, along with clinical information, a series of prognostic models have been developed, which provided deeper insights into how the splicing influences prognosis, overall survival, the immune microenvironment, and drug sensitivity and resistance in ovarian cancer patients. Notably, novel splicing events, such as PIGV|1299|AP and FLT3LG|50,941|AP, have been identified in multiple prognostic models and are associated with poorer and improved prognosis, respectively. These novel splicing variants warrant further functional characterization to unlock the underlying molecular mechanisms. Additionally, experimental evidence has underscored the potential therapeutic utility of targeting alternative splicing events, exemplified by the observation that knockdown of splicing factor BUD31 or antisense oligonucleotide-induced BCL2L12 exon skipping promotes apoptosis of ovarian cancer cells. In clinical settings, bevacizumab, a humanized monoclonal antibody that specifically targets the VEGF-A isoform, has demonstrated beneficial effects in the treatment of patients with advanced epithelial ovarian cancer. In conclusion, this review constitutes the first comprehensive and detailed exposition of the intricate interplay between alternative splicing and ovarian cancer, underscoring the significance of alternative splicing events as pivotal determinants in cancer biology and as promising avenues for future diagnostic and therapeutic intervention.
Collapse
Affiliation(s)
- Liwei Wei
- Medical School, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310030, China
| | - Yisheng Li
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310030, China
| | - Jiawang Chen
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, 325101, China
| | - Yuanmei Wang
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310030, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianmin Wu
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310030, China
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Huanming Yang
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310030, China.
| | - Yi Zhang
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310030, China.
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
2
|
Kuppuswamy S, Annex BH, Ganta VC. Targeting Anti-Angiogenic VEGF 165b-VEGFR1 Signaling Promotes Nitric Oxide Independent Therapeutic Angiogenesis in Preclinical Peripheral Artery Disease Models. Cells 2022; 11:2676. [PMID: 36078086 PMCID: PMC9454804 DOI: 10.3390/cells11172676] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/16/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Nitric oxide (NO) is the critical regulator of VEGFR2-induced angiogenesis. Neither VEGF-A over-expression nor L-Arginine (NO-precursor) supplementation has been effective in helping patients with Peripheral Artery Disease (PAD) in clinical trials. One incompletely studied reason may be due to the presence of the less characterized anti-angiogenic VEGF-A (VEGF165b) isoform. We have recently shown that VEGF165b inhibits ischemic angiogenesis by blocking VEGFR1, not VEGFR2 activation. Here we wanted to determine whether VEGF165b inhibition using a monoclonal isoform-specific antibody against VEGF165b vs. control, improved perfusion recovery in preclinical PAD models that have impaired VEGFR2-NO signaling, including (1) type-2 diabetic model, (2) endothelial Nitric oxide synthase-knock out mice, and (3) Myoglobin transgenic mice that have impaired NO bioavailability. In all PAD models, VEGF165b inhibition vs. control enhanced perfusion recovery, increased microvascular density in the ischemic limb, and activated VEGFR1-STAT3 signaling. In vitro, VEGF165b inhibition vs. control enhanced a VEGFR1-dependent endothelial survival/proliferation and angiogenic capacity. These data demonstrate that VEGF165b inhibition induces VEGFR1-STAT3 activation, which does not require increased NO to induce therapeutic angiogenesis in PAD. These results may have implications for advancing therapies for patients with PAD where the VEGFR2-eNOS-NO pathway is impaired.
Collapse
Affiliation(s)
| | | | - Vijay C. Ganta
- Vascular Biology Center and Department of Medicine, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
3
|
Ceci C, Atzori MG, Lacal PM, Graziani G. Role of VEGFs/VEGFR-1 Signaling and its Inhibition in Modulating Tumor Invasion: Experimental Evidence in Different Metastatic Cancer Models. Int J Mol Sci 2020; 21:E1388. [PMID: 32085654 PMCID: PMC7073125 DOI: 10.3390/ijms21041388] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
The vascular endothelial growth factor (VEGF) family members, VEGF-A, placenta growth factor (PlGF), and to a lesser extent VEGF-B, play an essential role in tumor-associated angiogenesis, tissue infiltration, and metastasis formation. Although VEGF-A can activate both VEGFR-1 and VEGFR-2 membrane receptors, PlGF and VEGF-B exclusively interact with VEGFR-1. Differently from VEGFR-2, which is involved both in physiological and pathological angiogenesis, in the adult VEGFR-1 is required only for pathological angiogenesis. Besides this role in tumor endothelium, ligand-mediated stimulation of VEGFR-1 expressed in tumor cells may directly induce cell chemotaxis and extracellular matrix invasion. Furthermore, VEGFR-1 activation in myeloid progenitors and tumor-associated macrophages favors cancer immune escape through the release of immunosuppressive cytokines. These properties have prompted a number of preclinical and clinical studies to analyze VEGFR-1 involvement in the metastatic process. The aim of the present review is to highlight the contribution of VEGFs/VEGFR-1 signaling in the progression of different tumor types and to provide an overview of the therapeutic approaches targeting VEGFR-1 currently under investigation.
Collapse
Affiliation(s)
- Claudia Ceci
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.C.); (M.G.A.)
| | - Maria Grazia Atzori
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.C.); (M.G.A.)
| | - Pedro Miguel Lacal
- Laboratory of Molecular Oncology, “Istituto Dermopatico dell’Immacolata-Istituto di Ricovero e Cura a Carattere Scientifico”, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy;
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.C.); (M.G.A.)
| |
Collapse
|
4
|
Li H, Zhang W, Sun X, Chen J, Li Y, Niu C, Xu B, Zhang Y. Overexpression of kinesin family member 20A is associated with unfavorable clinical outcome and tumor progression in epithelial ovarian cancer. Cancer Manag Res 2018; 10:3433-3450. [PMID: 30254487 PMCID: PMC6140728 DOI: 10.2147/cmar.s169214] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background KIF20A plays an indispensable role in cytokinesis regulation, which is important for tumor proliferation and growth. Recently, the oncogenic role of KIF20A has been well documented in several cancers. However, its clinical role in epithelial ovarian cancer (EOC) remains not reported yet. We investigated its expression and its role in promoting invasion and chemoresistance in EOC cells. Patients and methods KIF20A transcription and translation levels were investigated in normal ovarian epithelial cell, ovarian cancer cells, and 10 pairs of fresh EOC tissues and adjacent normal ovarian tissues by real-time quantitative polymerase chain reaction and Western blots. Moreover, KIF20A protein level was also examined by immunohistochemistry in 150 EOC tissues. The correlation between KIF20A expression and clinical variables was analyzed by statistical methods. We also used wound healing assay, transwell assay MTT, and Annexin V/PI to explore KIF20A functions. Results KIF20A expression was obviously elevated at both mRNA and protein levels in EOC cell lines and clinical cancer tissues compared with normal ovarian epithelial cell and adjacent normal ovarian tissues. KIF20A protein expression was highly correlated with International Federation of Gynecology and Obstetrics stage (P=0.008), lymph node metastasis (P=0.002), intraperitoneal metastasis (P<0.001), vital status at last follow-up (P<0.001), intraperitoneal recurrence (P=0.030), tumor recurrence (P=0.005), drug resistance (P=0.013), and ascites with tumor cells (P<0.001). KIF20A overexpression was closely related to poorer overall survival and disease progression-free survival. Furthermore, Cox regression analysis revealed that KIF20A can act as an independent hazard indicator for predicting clinical outcomes in EOC patients. Interestingly, KIF20A overexpression promoted invasion and metastasis of EOC cells and also confers resistance to cisplatin. Conclusion Our findings indicated that KIF20A overexpression predicts unfavorable clinical outcome, revealing that KIF20A holds a promising potential to serve as a useful prognostic biomarker for EOC patients.
Collapse
Affiliation(s)
- Han Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China,
| | - Weijing Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China,
| | - Xiaoying Sun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China,
| | - Jueming Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China,
| | - Yue Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China,
| | - Chunhao Niu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, Guangdong, China,
| | - Benke Xu
- Department of Anatomy, Medical School of Yangtze University, Jingzhou, China,
| | - Yanna Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China,
| |
Collapse
|
5
|
Bhandari P, Novikova G, Goergen CJ, Irudayaraj J. Ultrasound beam steering of oxygen nanobubbles for enhanced bladder cancer therapy. Sci Rep 2018; 8:3112. [PMID: 29449656 PMCID: PMC5814559 DOI: 10.1038/s41598-018-20363-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/10/2018] [Indexed: 12/23/2022] Open
Abstract
New intravesical treatment approaches for bladder cancer are needed as currently approved treatments show several side effects and high tumor recurrence rate. Our study used MB49 murine urothelial carcinoma model to evaluate oxygen encapsulated cellulosic nanobubbles as a novel agent for imaging and ultrasound guided drug delivery. In this study, we show that oxygen nanobubbles (ONB) can be propelled (up to 40 mm/s) and precisely guided in vivo to the tumor by an ultrasound beam. Nanobubble velocity can be controlled by altering the power of the ultrasound Doppler beam, while nanobubble direction can be adjusted to different desired angles by altering the angle of the beam. Precise ultrasound beam steering of oxygen nanobubbles was shown to enhance the efficacy of mitomycin-C, resulting in significantly lower tumor progression rates while using a 50% lower concentration of chemotherapeutic drug. Further, dark field imaging was utilized to visualize and quantify the ONB ex vivo. ONBs were found to localize up to 500 µm inside the tumor using beam steering. These results demonstrate the potential of an oxygen nanobubble drug encapsulated system to become a promising strategy for targeted drug delivery because of its multimodal (imaging and oxygen delivery) and multifunctional (targeting and hypoxia programming) properties.
Collapse
Affiliation(s)
- Pushpak Bhandari
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, 47907, United States
- Purdue University Center for Cancer Research, West Lafayette, Indiana, 47907, United States
| | - Gloriia Novikova
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana, 47907, United States
- Purdue University Center for Cancer Research, West Lafayette, Indiana, 47907, United States
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, 47907, United States
- Purdue University Center for Cancer Research, West Lafayette, Indiana, 47907, United States
| | - Joseph Irudayaraj
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, 47907, United States.
- Purdue University Center for Cancer Research, West Lafayette, Indiana, 47907, United States.
- Department of Bioengineering, UIUC, Urbana, IL 61801, United States.
| |
Collapse
|
6
|
RNAi targeting STMN alleviates the resistance to taxol and collectively contributes to down regulate the malignancy of NSCLC cells in vitro and in vivo. Cell Biol Toxicol 2017; 34:7-21. [DOI: 10.1007/s10565-017-9398-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/04/2017] [Indexed: 02/07/2023]
|
7
|
Li Y, Guo H, Jin C, Qiu C, Gao M, Zhang L, Liu Z, Kong B. Spliceosome-associated factor CTNNBL1 promotes proliferation and invasion in ovarian cancer. Exp Cell Res 2017; 357:124-134. [PMID: 28501461 DOI: 10.1016/j.yexcr.2017.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/28/2017] [Accepted: 05/08/2017] [Indexed: 01/20/2023]
Abstract
Ovarian cancer is the most lethal gynecologic malignancy and the molecular pathogenesis of high-grade serous ovarian carcinoma has not been completely characterized. Numerous studies have shown that altered splicing patterns and splicing factors were found to contribute to tumor development and progression. In this study, we demonstrated that spliceosome-associated factor CTNNBL1 was significantly upregulated in high-grade serous ovarian carcinoma, the elevated level of CTNNBL1 indicates poor prognosis in patients with high-grade serous ovarian carcinoma. Functional characterization revealed that CTNNBL1 promoted the proliferation and invasion of ovarian cancer cells in vitro. Furthermore, through transcriptome analysis, we found CTNNBL1 regulates multiple splicing events and gene expression in ovarian cancer cells. Importantly, we identified IFI16 and FOXM1 splicing was regulated by CTNNBL1. To our knowledge, this is the first study exploring the expression, functional roles and regulated splicing events of CTNNBL1 in ovarian cancer.
Collapse
Affiliation(s)
- Yingwei Li
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Haiyang Guo
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Chengjuan Jin
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Chunping Qiu
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Min Gao
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Lei Zhang
- School of Biological and Chemical Engineering, Zhejiang University of Science & Technology Hangzhou 310023, China
| | - Zhaojian Liu
- Department of Cell Biology, Shandong University School of Medicine, Jinan 250012, China.
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan 250012, China.
| |
Collapse
|
8
|
Mthembu NN, Mbita Z, Hull R, Dlamini Z. Abnormalities in alternative splicing of angiogenesis-related genes and their role in HIV-related cancers. HIV AIDS-RESEARCH AND PALLIATIVE CARE 2017; 9:77-93. [PMID: 28694706 PMCID: PMC5490432 DOI: 10.2147/hiv.s124911] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alternative splicing of mRNA leads to an increase in proteome biodiversity by allowing the generation of multiple mRNAs, coding for multiple protein isoforms of various structural and functional properties from a single primary pre-mRNA transcript. The protein isoforms produced are tightly regulated in normal development but are mostly deregulated in various cancers. In HIV-infected individuals with AIDS, there is an increase in aberrant alternative splicing, resulting in an increase in HIV/AIDS-related cancers, such as Kaposi’s sarcoma, non-Hodgkin’s lymphoma, and cervical cancer. This aberrant splicing leads to abnormal production of protein and is caused by mutations in cis-acting elements or trans-acting factors in angiogenesis-related genes. Restoring the normal regulation of alternative splicing of angiogenic genes would alter the expression of protein isoforms and may confer normal cell physiology in patients with these cancers. This review highlights the abnormalities in alternative splicing of angiogenesis-related genes and their implication in HIV/AIDS-related cancers. This allows us to gain an insight into the pathogenesis of HIV/AIDS-related cancer and in turn elucidate the therapeutic potential of alternatively spliced genes in HIV/AIDS-related malignancies.
Collapse
Affiliation(s)
| | - Zukile Mbita
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Sovenga, South Africa
| | - Rodney Hull
- Research, Innovation and Engagements, Mangosuthu University of Technology, Durban
| | - Zodwa Dlamini
- Research, Innovation and Engagements, Mangosuthu University of Technology, Durban
| |
Collapse
|
9
|
Trombetta-Lima M, Winnischofer SMB, Demasi MAA, Astorino Filho R, Carreira ACO, Wei B, de Assis-Ribas T, Konig MS, Bowman-Colin C, Oba-Shinjo SM, Marie SKN, Stetler-Stevenson W, Sogayar MC. Isolation and characterization of novel RECK tumor suppressor gene splice variants. Oncotarget 2016; 6:33120-33. [PMID: 26431549 PMCID: PMC4741753 DOI: 10.18632/oncotarget.5305] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 09/15/2015] [Indexed: 01/09/2023] Open
Abstract
Glioblastoma multiforme is the most common and lethal of the central nervous system glial-derived tumors. RECK suppresses tumor invasion by negatively regulating at least three members of the matrix metalloproteinase family: MMP-9, MMP-2, and MT1-MMP. A positive correlation has been observed between the abundance of RECK expression in tumor samples and a more favorable prognosis for patients with several types of tumors. In the present study, novel alternatively spliced variants of the RECK gene: RECK-B and RECK-I were isolated by RT-PCR and sequenced. The expression levels and profiles of these alternative RECK transcripts, as well as canonical RECK were determined in tissue samples of malignant astrocytomas of different grades and in a normal tissue RNA panel by qRT-PCR. Our results show that higher canonical RECK expression, accompanied by a higher canonical to alternative transcript expression ratio, positively correlates with higher overall survival rate after chemotherapeutic treatment of GBM patients. U87MG and T98G cells over-expressing the RECK-B alternative variant display higher anchorage-independent clonal growth and do not display modulation of, respectively, MMP-2 and MMP-9 expression. Our findings suggest that RECK transcript variants might have opposite roles in GBM biology and the ratio of their expression levels may be informative for the prognostic outcome of GBM patients.
Collapse
Affiliation(s)
- Marina Trombetta-Lima
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil.,NUCEL-NETCEM-Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, 05360-120, Brazil
| | | | - Marcos Angelo Almeida Demasi
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil.,NUCEL-NETCEM-Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, 05360-120, Brazil
| | - Renato Astorino Filho
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil.,NUCEL-NETCEM-Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, 05360-120, Brazil
| | - Ana Claudia Oliveira Carreira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil.,NUCEL-NETCEM-Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, 05360-120, Brazil
| | - Beiyang Wei
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892-4605, USA
| | - Thais de Assis-Ribas
- NUCEL-NETCEM-Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, 05360-120, Brazil
| | | | - Christian Bowman-Colin
- NUCEL-NETCEM-Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, 05360-120, Brazil.,Dana Farber Cancer Institute, Harvard Medical School, Cambridge, MA, 02138, USA
| | - Sueli Mieko Oba-Shinjo
- NUCEL-NETCEM-Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, 05360-120, Brazil.,Departmento de Neurologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, 01246-000, Brazil
| | - Suely Kazue Nagahashi Marie
- NUCEL-NETCEM-Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, 05360-120, Brazil.,Departmento de Neurologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, 01246-000, Brazil
| | - William Stetler-Stevenson
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892-4605, USA
| | - Mari Cleide Sogayar
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000 SP, Brazil.,NUCEL-NETCEM-Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, 05360-120, Brazil
| |
Collapse
|
10
|
Wang J, Wang J, Wang X, Liu L, Hu J, Yu X, Xu Y, Niu X, Lin Z, Zhang Y, Zhang X, Zhang Q. Molecular mechanism of inhibition of the abnormal proliferation of human umbilical vein endothelial cells by hydroxysafflor-yellow A. PHARMACEUTICAL BIOLOGY 2016; 54:1800-1807. [PMID: 26730646 DOI: 10.3109/13880209.2015.1129541] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/22/2015] [Accepted: 12/03/2015] [Indexed: 06/05/2023]
Abstract
Context It has been found that hydroxysafflor-yellow A (HSYA) inhibits angiogenesis and the proliferation of abnormal human umbilical vein endothelial cells (HUVECs) in our previous study; however, the mechanism is still unclear. Objective This study investigates the mechanisms of HSYA inhibiting abnormal proliferation of HUVECs through detecting the expression of vascular endothelial growth factor (VEGF) and its receptor (KDR), and the protein expression in the Ras-Raf-MEK-ERK-signalling pathway. Materials and methods HepG2 cell cultural supernatant was used to culture HUVECs to make promote abnormal proliferation, and HSYA was added into the medium. The expression of VEGF, KDR, c-myc, N-ras and NF-κB1 in abnormal HUVEC was detected by RT-qPCR and ELISA at the mRNA and protein levels. Protein expression of ERK signal pathway was measured by Western blot. Results Compared with the abnormal proliferation of HUVECs without any treatment, HSYA inhibited the expression of VEGF and KDR in vitro. Similarly, the protein expression of Ras, p-raf, p-ERK and p-p38MARK in the abnormal HUVECs was reduced when they were treated by HSYA, especially in p-ERK, yet the total raf, ERK, p38MAPK and Akt were not changed whether HSYA existed or not. HSYA could also inhibit the expression of c-myc, N-ras, and NF-κB1. Conclusion When the abnormal HUVECs were treated with HSYA, the low expression of VEGF and KDR reduced the expression of oncogene and transcription factor through the Ras-Raf-MEK-ERK1/2 pathway of the MAPK family. This resulted in inhibiting the abnormal proliferation of HUVECs and angiogenesis.
Collapse
Affiliation(s)
- Ji Wang
- a School of Basic Medicine, Beijing University of Chinese Medicine , Beijing , China
| | - Jingjing Wang
- a School of Basic Medicine, Beijing University of Chinese Medicine , Beijing , China
| | - Xixi Wang
- a School of Basic Medicine, Beijing University of Chinese Medicine , Beijing , China
| | - Li Liu
- a School of Basic Medicine, Beijing University of Chinese Medicine , Beijing , China
| | - Jinghong Hu
- a School of Basic Medicine, Beijing University of Chinese Medicine , Beijing , China
| | - Xue Yu
- a School of Basic Medicine, Beijing University of Chinese Medicine , Beijing , China
| | - Yingying Xu
- a School of Basic Medicine, Beijing University of Chinese Medicine , Beijing , China
| | - Xuyan Niu
- b Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences , Beijing , China
| | - Zong Lin
- c Zhejiang Provincial Key Laboratory of Applied Enzymology , Yangtze Delta Region Institute of Tsinghua University , Jiaxing , China
| | - Yan Zhang
- a School of Basic Medicine, Beijing University of Chinese Medicine , Beijing , China
| | - Xin Zhang
- a School of Basic Medicine, Beijing University of Chinese Medicine , Beijing , China
| | - Qian Zhang
- a School of Basic Medicine, Beijing University of Chinese Medicine , Beijing , China
| |
Collapse
|