1
|
Hamelink TL, Ogurlu B, Pamplona CC, Castelein J, Bennedsgaard SS, Qi H, Weiss T, Lantinga VA, Pool MBF, Laustsen C, Jespersen B, Leuvenink HGD, Ringgaard S, Borra RJH, Keller AK, Moers C. Magnetic resonance imaging as a noninvasive adjunct to conventional assessment of functional differences between kidneys in vivo and during ex vivo normothermic machine perfusion. Am J Transplant 2024; 24:1761-1771. [PMID: 38615901 DOI: 10.1016/j.ajt.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/26/2024] [Accepted: 04/07/2024] [Indexed: 04/16/2024]
Abstract
Normothermic machine perfusion (NMP) is increasingly considered for pretransplant kidney quality assessment. However, fundamental questions about differences between in vivo and ex vivo renal function, as well as the impact of ischemic injury on ex vivo physiology, remain unanswered. This study utilized magnetic resonance imaging (MRI), alongside conventional parameters to explore differences between in vivo and ex vivo renal function and the impact of warm ischemia on a kidney's behavior ex vivo. Renal MRI scans and samples were obtained from living pigs (n = 30) in vivo. Next, kidney pairs were procured and exposed to minimal, or 75 minutes of warm ischemia, followed by 6 hours of hypothermic machine perfusion. Both kidneys simultaneously underwent 6-hour ex vivo perfusion in MRI-compatible NMP circuits to obtain multiparametric MRI data. Ischemically injured ex vivo kidneys showed a significantly altered regional blood flow distribution compared to in vivo and minimally damaged organs. Both ex vivo groups showed diffusion restriction relative to in vivo. Our findings underscore the differences between in vivo and ex vivo MRI-based renal characteristics. Therefore, when assessing organ viability during NMP, it should be considered to incorporate parameters beyond the conventional functional markers that are common in vivo.
Collapse
Affiliation(s)
- Tim L Hamelink
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Baran Ogurlu
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Carolina C Pamplona
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Johannes Castelein
- Department of Radiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Haiyun Qi
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Weiss
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Veerle A Lantinga
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Merel B F Pool
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Christoffer Laustsen
- Department of Clinical Medicine, MR Research Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Bente Jespersen
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Henri G D Leuvenink
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Steffen Ringgaard
- Department of Clinical Medicine, MR Research Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Ronald J H Borra
- Department of Radiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Anna K Keller
- Department of Urology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Cyril Moers
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
2
|
Darius T, Vergauwen M, Maistriaux L, Evrard R, Schlegel A, Mueller M, O’Neil D, Southam A, Aydin S, Devresse A, De Meyer M, Gianello P, Ludwig C, Dutkowski P, Mourad M. Intermittent Surface Oxygenation Results in Similar Mitochondrial Protection and Maintenance of Aerobic Metabolism as Compared to Continuous Oxygenation during Hypothermic Machine Kidney Machine Perfusion. J Clin Med 2023; 12:3731. [PMID: 37297930 PMCID: PMC10253557 DOI: 10.3390/jcm12113731] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Short bubble and subsequent surface oxygenation is an innovative oxygenation technique and alternative for membrane oxygenation during hypothermic machine perfusion (HMP). The metabolic effect of the interruption of surface oxygenation for 4 h (mimicking organ transport) during HMP was compared to continuous surface and membrane oxygenation in a pig kidney ex situ preservation model. After 30 min of warm ischemia by vascular clamping, a kidney of a ±40 kg pig was procured and subsequently preserved according to one of the following groups: (1) 22-h HMP + intermittent surface oxygenation (n = 12); (2) 22-h HMP + continuous membrane oxygenation (n = 6); and (3) 22-h HMP + continuous surface oxygenation (n = 7). Brief perfusate O2 uploading before kidney perfusion was either obtained by direct bubble (groups 1, 3) or by membrane (group 2) oxygenation. Bubble oxygenation during minimum 15 min was as efficient as membrane oxygenation in achieving supraphysiological perfusate pO2 levels before kidney perfusion. Metabolic tissue analysis (i.e., lactate, succinate, ATP, NADH, and FMN) during and at the end of the preservation period demonstrated similar mitochondrial protection between all study groups. Short bubble and subsequent intermittent surface oxygenation of the perfusate of an HMP-kidney might be an effective and cheap preservation strategy to protect mitochondria, eliminating the need/costs of a membrane oxygenator and oxygen source during transport.
Collapse
Affiliation(s)
- Tom Darius
- Surgery and Abdominal Transplant Unit, University Clinics Saint Luc, Université Catholique de Louvain, 1200 Brussels, Belgium; (A.D.); (M.D.M.); (M.M.)
| | - Martial Vergauwen
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Chirurgie Expérimentale et Transplantation, Université Catholique de Louvain, 1200 Brussels, Belgium; (M.V.); (L.M.); (R.E.); (P.G.)
| | - Louis Maistriaux
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Chirurgie Expérimentale et Transplantation, Université Catholique de Louvain, 1200 Brussels, Belgium; (M.V.); (L.M.); (R.E.); (P.G.)
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Morphologie, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Robin Evrard
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Chirurgie Expérimentale et Transplantation, Université Catholique de Louvain, 1200 Brussels, Belgium; (M.V.); (L.M.); (R.E.); (P.G.)
- Institut de Recherche Expérimentale et Clinique (IREC), Neuro Musculo-Skeletal Laboratory (NMSK), Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Andrea Schlegel
- Department of Surgery and Transplantation, Swiss HPB Center, University Hospital Zurich, 8091 Zürich, Switzerland; (A.S.); (M.M.); (P.D.)
| | - Matteo Mueller
- Department of Surgery and Transplantation, Swiss HPB Center, University Hospital Zurich, 8091 Zürich, Switzerland; (A.S.); (M.M.); (P.D.)
| | - Donna O’Neil
- Phenome Centre Birmingham, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (D.O.); (A.S.)
| | - Andrew Southam
- Phenome Centre Birmingham, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (D.O.); (A.S.)
| | - Selda Aydin
- Department of Pathology, University Clinics Saint-Luc, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Arnaud Devresse
- Surgery and Abdominal Transplant Unit, University Clinics Saint Luc, Université Catholique de Louvain, 1200 Brussels, Belgium; (A.D.); (M.D.M.); (M.M.)
- Department of Nephrology, University Clinics Saint-Luc, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Martine De Meyer
- Surgery and Abdominal Transplant Unit, University Clinics Saint Luc, Université Catholique de Louvain, 1200 Brussels, Belgium; (A.D.); (M.D.M.); (M.M.)
| | - Pierre Gianello
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Chirurgie Expérimentale et Transplantation, Université Catholique de Louvain, 1200 Brussels, Belgium; (M.V.); (L.M.); (R.E.); (P.G.)
| | - Christian Ludwig
- Institute of Metabolism and Systems Research (IMSR), College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| | - Philipp Dutkowski
- Department of Surgery and Transplantation, Swiss HPB Center, University Hospital Zurich, 8091 Zürich, Switzerland; (A.S.); (M.M.); (P.D.)
| | - Michel Mourad
- Surgery and Abdominal Transplant Unit, University Clinics Saint Luc, Université Catholique de Louvain, 1200 Brussels, Belgium; (A.D.); (M.D.M.); (M.M.)
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Chirurgie Expérimentale et Transplantation, Université Catholique de Louvain, 1200 Brussels, Belgium; (M.V.); (L.M.); (R.E.); (P.G.)
| |
Collapse
|
3
|
Khan T, Kwarcinski J, Boughton P, Yoon P, Hameed A, Singla A, Pang T, Pleass H. Insulating jackets thermally protect kidneys in an ex vivo model of second warm ischemia. Artif Organs 2022. [PMID: 36534321 DOI: 10.1111/aor.14488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Kidney transplantation is the current optimal treatment for suitable patients with end-stage renal disease. The second warm ischemic time (SWIT) is known to negatively impact delayed graft function, and long-term graft survival, and methods are required to ameliorate the impacts of SWIT on transplantation outcomes. MATERIALS AND METHODS This study primarily focused on determining the effect of a novel thermally insulating jacket on the thermal profile of the human kidney and quantifying the reduction in thermal energy experienced using this device (KPJ™). An ex vivo simulated transplantation model was developed to determine the thermal profiles of non-utilized human kidneys with and without KPJ™ (n = 5). Control kidney temperature profiles were validated against the temperature profiles of n = 10 kidneys during clinical kidney transplantation. RESULTS Using the ex-vivo water bath model, the thermally insulated human kidney reached the 15°C metabolic threshold temperature at 44.5 ± 1.9 min (vs control: 17.3 ± 1.8 min (p = 0.00172)) and remained within the 18°C threshold until 53.3 ± 1.3 min (vs control: 20.9 ± 2.0 min (p = 0.002)). The specific heat capacity of KPJ™ protected kidney was four-fold compared to the control kidney. The clinical temperature audit, closely correlated with the water bath model, hence validating this ex-vivo human kidney transplant model. CONCLUSION Intraoperative thermal protection is a simple and viable method of reducing the thermal injury that occurs during the SWIT and increasing the specific heat capacity of the system. Such technology could easily be translated into clinical kidney transplant practice.
Collapse
Affiliation(s)
- Turaab Khan
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Jeremy Kwarcinski
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Philip Boughton
- Sydney Pharmacy School, University of Sydney, Sydney, New South Wales, Australia
| | - Peter Yoon
- Department of Surgery, Westmead Hospital, Westmead, New South Wales, Australia
| | - Ahmer Hameed
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Animesh Singla
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Tony Pang
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia.,Department of Surgery, Westmead Hospital, Westmead, New South Wales, Australia
| | - Henry Pleass
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia.,Department of Surgery, Westmead Hospital, Westmead, New South Wales, Australia
| |
Collapse
|
4
|
Wang W, Teng Y, Xue JJ, Cai HK, Pan YB, Ye XN, Mao XL, Li SW. Nanotechnology in Kidney and Islet Transplantation: An Ongoing, Promising Field. Front Immunol 2022; 13:846032. [PMID: 35464482 PMCID: PMC9024121 DOI: 10.3389/fimmu.2022.846032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/08/2022] [Indexed: 11/21/2022] Open
Abstract
Organ transplantation has evolved rapidly in recent years as a reliable option for patients with end-stage organ failure. However, organ shortage, surgical risks, acute and chronic rejection reactions and long-term immunosuppressive drug applications and their inevitable side effects remain extremely challenging problems. The application of nanotechnology in medicine has proven highly successful and has unique advantages for diagnosing and treating diseases compared to conventional methods. The combination of nanotechnology and transplantation brings a new direction of thinking to transplantation medicine. In this article, we provide an overview of the application and progress of nanotechnology in kidney and islet transplantation, including nanotechnology for renal pre-transplantation preservation, artificial biological islets, organ imaging and drug delivery.
Collapse
Affiliation(s)
- Wei Wang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Ya Teng
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Ji-Ji Xue
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Hong-Kai Cai
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Yu-Biao Pan
- Taizhou Hospital of Zhejiang Province, Zhejiang University, Linhai, China
| | - Xing-Nan Ye
- Taizhou Hospital of Zhejiang Province, Shaoxing University, Linhai, China
| | - Xin-Li Mao
- Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- *Correspondence: Xin-Li Mao, ; Shao-Wei Li,
| | - Shao-Wei Li
- Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- *Correspondence: Xin-Li Mao, ; Shao-Wei Li,
| |
Collapse
|
5
|
Thompson ER, Sewpaul A, Figuereido R, Bates L, Tingle SJ, Ferdinand JR, Situmorang GR, Ladak SS, Connelly CM, Hosgood SA, Nicholson ML, Clatworthy MR, Ali S, Wilson CH, Sheerin NS. MicroRNA antagonist therapy during normothermic machine perfusion of donor kidneys. Am J Transplant 2022; 22:1088-1100. [PMID: 34932895 DOI: 10.1111/ajt.16929] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 01/25/2023]
Abstract
Normothermic machine perfusion (NMP) is a novel clinical approach to overcome the limitations of traditional hypothermic organ preservation. NMP can be used to assess and recondition organs prior to transplant and is the subject of clinical trials in solid organ transplantation. In addition, NMP provides an opportunity to deliver therapeutic agents directly to the organ, thus avoiding many limitations associated with systemic treatment of the recipient. We report the delivery of oligonucleotide-based therapy to human kidneys during NMP, in this case to target microRNA function (antagomir). An antagomir targeting mir-24-3p localized to the endothelium and proximal tubular epithelium. Endosomal uptake during NMP conditions facilitated antagomir co-localization with proteins involved in the RNA-induced silencing complex (RISC) and demonstrated engagement of the miRNA target. This pattern of uptake was not seen during cold perfusion. Targeting mir-24-3p action increased expression of genes controlled by this microRNA, including heme oxygenase-1 and sphingosine-1-phosphate receptor 1. The expression of genes not under the control of mir-24-3p was unchanged, indicating specificity of the antagomir effect. In summary, this is the first report of ex vivo gymnotic delivery of oligonucleotide to the human kidney and demonstrates that NMP provides the platform to bind and block detrimental microRNAs in donor kidneys prior to transplantation.
Collapse
Affiliation(s)
- Emily R Thompson
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, UK.,NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Newcastle upon Tyne, UK
| | - Avinash Sewpaul
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, UK.,NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Newcastle upon Tyne, UK
| | - Rodrigo Figuereido
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, UK.,NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Newcastle upon Tyne, UK
| | - Lucy Bates
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Newcastle upon Tyne, UK
| | - Samuel J Tingle
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, UK.,NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Newcastle upon Tyne, UK
| | - John R Ferdinand
- NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Newcastle upon Tyne, UK.,Department of Medicine, University of Cambridge, Cambridge, UK
| | - Gerhard R Situmorang
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Shameem S Ladak
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Chloe M Connelly
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Sarah A Hosgood
- NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Newcastle upon Tyne, UK.,Department of Surgery, University of Cambridge, Cambridge, UK
| | - Michael L Nicholson
- NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Newcastle upon Tyne, UK.,Department of Surgery, University of Cambridge, Cambridge, UK
| | - Menna R Clatworthy
- NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Newcastle upon Tyne, UK.,Department of Medicine, University of Cambridge, Cambridge, UK
| | - Simi Ali
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Newcastle upon Tyne, UK
| | - Colin H Wilson
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, UK.,NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Newcastle upon Tyne, UK
| | - Neil S Sheerin
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, UK.,NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Newcastle upon Tyne, UK
| |
Collapse
|
6
|
Hamelink TL, Ogurlu B, De Beule J, Lantinga VA, Pool MBF, Venema LH, Leuvenink HGD, Jochmans I, Moers C. Renal Normothermic Machine Perfusion: The Road Toward Clinical Implementation of a Promising Pretransplant Organ Assessment Tool. Transplantation 2022; 106:268-279. [PMID: 33979315 DOI: 10.1097/tp.0000000000003817] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The increased utilization of high-risk renal grafts for transplantation requires optimization of pretransplant organ assessment strategies. Current decision-making methods to accept an organ for transplantation lack overall predictive power and always contain an element of subjectivity. Normothermic machine perfusion (NMP) creates near-physiological conditions, which might facilitate a more objective assessment of organ quality before transplantation. NMP is rapidly gaining popularity, with various transplant centers developing their own NMP protocols and renal viability criteria. However, to date, no validated sets of on-pump viability markers exist nor are there unified NMP protocols. This review provides a critical overview of the fundamentals of current renal NMP protocols and proposes a framework to approach further development of ex vivo organ evaluation. We also comment on the potential logistical implications of routine clinical use of NMP, which is a more complex procedure compared with static cold storage or even hypothermic machine perfusion.
Collapse
Affiliation(s)
- Tim L Hamelink
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Baran Ogurlu
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Julie De Beule
- Laboratory of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
| | - Veerle A Lantinga
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Merel B F Pool
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Leonie H Venema
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Henri G D Leuvenink
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ina Jochmans
- Laboratory of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
- Department of Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Cyril Moers
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
7
|
Urbanellis P, Mazilescu L, Kollmann D, Linares-Cervantes I, Kaths JM, Ganesh S, Oquendo F, Sharma M, Goto T, Noguchi Y, John R, Konvalinka A, Mucsi I, Ghanekar A, Bagli D, Robinson LA, Selzner M. Prolonged warm ischemia time leads to severe renal dysfunction of donation-after-cardiac death kidney grafts. Sci Rep 2021; 11:17930. [PMID: 34504136 PMCID: PMC8429572 DOI: 10.1038/s41598-021-97078-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/09/2021] [Indexed: 12/26/2022] Open
Abstract
Kidney transplantation with grafts procured after donation-after-cardiac death (DCD) has led to an increase in incidence of delayed graft function (DGF). It is thought that the warm ischemic (WI) insult encountered during DCD procurement is the cause of this finding, although few studies have been designed to definitely demonstrate this causation in a transplantation setting. Here, we use a large animal renal transplantation model to study the effects of prolonged WI during procurement on post-transplantation renal function. Kidneys from 30 kg-Yorkshire pigs were procured following increasing WI times of 0 min (Heart-Beating Donor), 30 min, 60 min, 90 min, and 120 min (n = 3-6 per group) to mimic DCD. Following 8 h of static cold storage and autotransplantation, animals were followed for 7-days. Significant renal dysfunction (SRD), resembling clinical DGF, was defined as the development of oliguria < 500 mL in 24 h from POD3-4 along with POD4 serum potassium > 6.0 mmol/L. Increasing WI times resulted in incremental elevation of post-operative serum creatinine that peaked later. DCD120min grafts had the highest and latest elevation of serum creatinine compared to all groups (POD5: 19.0 ± 1.1 mg/dL, p < 0.05). All surviving animals in this group had POD4 24 h urine output < 500 cc (mean 235 ± 172 mL) and elevated serum potassium (7.2 ± 1.1 mmol/L). Only animals in the DCD120min group fulfilled our criteria of SRD (p = 0.003), and their renal function improved by POD7 with 24 h urine output > 500 mL and POD7 serum potassium < 6.0 mmol/L distinguishing this state from primary non-function. In a transplantation survival model, this work demonstrates that prolonging WI time similar to that which occurs in DCD conditions contributes to the development of SRD that resembles clinical DGF.
Collapse
Affiliation(s)
- Peter Urbanellis
- Soham and Shaila Ajmera Family Transplant Centre, University of Toronto General Surgery and Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, 585 University Avenue, 11 PMB-178, Toronto, ON, M5G 2N2, Canada.,Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Laura Mazilescu
- Soham and Shaila Ajmera Family Transplant Centre, University of Toronto General Surgery and Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, 585 University Avenue, 11 PMB-178, Toronto, ON, M5G 2N2, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,General, Visceral and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | - Dagmar Kollmann
- Soham and Shaila Ajmera Family Transplant Centre, University of Toronto General Surgery and Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, 585 University Avenue, 11 PMB-178, Toronto, ON, M5G 2N2, Canada.,Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Ivan Linares-Cervantes
- Soham and Shaila Ajmera Family Transplant Centre, University of Toronto General Surgery and Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, 585 University Avenue, 11 PMB-178, Toronto, ON, M5G 2N2, Canada.,Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - J Moritz Kaths
- Soham and Shaila Ajmera Family Transplant Centre, University of Toronto General Surgery and Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, 585 University Avenue, 11 PMB-178, Toronto, ON, M5G 2N2, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,General, Visceral and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | - Sujani Ganesh
- Soham and Shaila Ajmera Family Transplant Centre, University of Toronto General Surgery and Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, 585 University Avenue, 11 PMB-178, Toronto, ON, M5G 2N2, Canada
| | - Fabiola Oquendo
- Soham and Shaila Ajmera Family Transplant Centre, University of Toronto General Surgery and Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, 585 University Avenue, 11 PMB-178, Toronto, ON, M5G 2N2, Canada
| | - Manraj Sharma
- Soham and Shaila Ajmera Family Transplant Centre, University of Toronto General Surgery and Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, 585 University Avenue, 11 PMB-178, Toronto, ON, M5G 2N2, Canada
| | - Toru Goto
- Soham and Shaila Ajmera Family Transplant Centre, University of Toronto General Surgery and Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, 585 University Avenue, 11 PMB-178, Toronto, ON, M5G 2N2, Canada
| | - Yuki Noguchi
- Soham and Shaila Ajmera Family Transplant Centre, University of Toronto General Surgery and Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, 585 University Avenue, 11 PMB-178, Toronto, ON, M5G 2N2, Canada
| | - Rohan John
- Laboratory Medicine and Pathobiology, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
| | - Ana Konvalinka
- Soham and Shaila Ajmera Family Transplant Centre, University of Toronto General Surgery and Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, 585 University Avenue, 11 PMB-178, Toronto, ON, M5G 2N2, Canada.,Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Laboratory Medicine and Pathobiology, Toronto General Hospital, University of Toronto, Toronto, ON, Canada.,Department of Medicine, Division of Nephrology, University Health Network, Toronto, ON, Canada
| | - Istvan Mucsi
- Soham and Shaila Ajmera Family Transplant Centre, University of Toronto General Surgery and Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, 585 University Avenue, 11 PMB-178, Toronto, ON, M5G 2N2, Canada.,Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada.,Department of Medicine, Division of Nephrology, University Health Network, Toronto, ON, Canada
| | - Anand Ghanekar
- Soham and Shaila Ajmera Family Transplant Centre, University of Toronto General Surgery and Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, 585 University Avenue, 11 PMB-178, Toronto, ON, M5G 2N2, Canada
| | - Darius Bagli
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Departments of Surgery (Urology) and Physiology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.,Program in Developmental and Stem Cell Biology, The Hospital For Sick Children Research Institute, Toronto, ON, Canada
| | - Lisa A Robinson
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada. .,Division of Nephrology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada. .,Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada.
| | - Markus Selzner
- Soham and Shaila Ajmera Family Transplant Centre, University of Toronto General Surgery and Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, 585 University Avenue, 11 PMB-178, Toronto, ON, M5G 2N2, Canada. .,Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada.
| |
Collapse
|
8
|
Pool MBF, Hamelink TL, van Goor H, van den Heuvel MC, Leuvenink HGD, Moers C. Prolonged ex-vivo normothermic kidney perfusion: The impact of perfusate composition. PLoS One 2021; 16:e0251595. [PMID: 34003874 PMCID: PMC8130974 DOI: 10.1371/journal.pone.0251595] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/29/2021] [Indexed: 12/22/2022] Open
Abstract
Normothermic machine perfusion (NMP) of donor kidneys provides the opportunity for improved graft preservation and objective pre-transplant ex-vivo organ assessment. Currently, a multitude of perfusion solutions exist for renal NMP. This study aimed to evaluate four different perfusion solutions side-by-side and determine the influence of different perfusate compositions on measured renal perfusion parameters. Porcine kidneys and blood were obtained from a slaughterhouse. Kidneys underwent NMP at 37°C for 7 hours, with 4 different perfusion solutions (n = 5 per group). Group 1 consisted of red blood cells (RBCs) and a perfusion solution based on Williams’ Medium E. Group 2 consisted of RBCs, albumin and a balanced electrolyte composition. Group 3 contained RBCs and a medium based on a British clinical NMP solution. Group 4 contained RBCs and a medium used in 24-hour perfusion experiments. NMP flow patterns for solutions 1 and 2 were similar, solutions 3 and 4 showed lower but more stable flow rates. Thiobarbituric acid reactive substances were significantly higher in solution 1 and 4 compared to the other groups. Levels of injury marker N-acetyl-β-D glucosaminidase were significantly lower in solution 2 in comparison with solution 3 and 4. This study illustrates that the perfusate composition during NMP significantly impacts the measured perfusion and injury parameters and thus affects the interpretation of potential viability markers. Further research is required to investigate the individual influences of principal perfusate components to determine the most optimal conditions during NMP and eventually develop universal organ assessment criteria.
Collapse
Affiliation(s)
- Merel B. F. Pool
- Department of Surgery–Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- * E-mail:
| | - Tim L. Hamelink
- Department of Surgery–Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marius C. van den Heuvel
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Henri G. D. Leuvenink
- Department of Surgery–Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Cyril Moers
- Department of Surgery–Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
9
|
Khan T, Kwarcinski J, Pang T, Hameed A, Boughton P, O'Grady G, Hawthorne WJ, Rogers NM, Wong G, Pleass HC. Protection From the Second Warm Ischemic Injury in Kidney Transplantation Using an Ex Vivo Porcine Model and Thermally Insulating Jackets. Transplant Proc 2021; 53:750-754. [PMID: 33581848 DOI: 10.1016/j.transproceed.2021.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/08/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Kidney transplantation is the optimum treatment for kidney failure in carefully selected patients. Technical surgical complications and second warm ischemic time (SWIT) increase the risk of delayed graft function (DGF) and subsequent short- and long-term graft outcomes including the need for post-transplant dialysis and graft failure. Intraoperative organ thermal regulation could reduce SWIT, minimizing surgical complications due to time pressure, and limiting graft ischemia-reperfusion injury. METHODS A novel ischemic-injury thermal protection jacket (iiPJ) was designed and fabricated in silicone composite and polyurethane (PU) elastomer prototypes. Both were compared with no thermal insulation as controls. Time to reach ischemic threshold (15°C) and thermal energy transfer were compared. A water bath model was used to examine the thermal protective properties of porcine kidneys, as a feasibility study prior to in vivo translation. RESULTS In both iterations of the iiPJ, the time taken to reach the warm ischemia threshold was 35.2 ± 1.4 minutes (silicone) and 38.4 ± 3.1 minutes (PU), compared with 17.2 ± 1.5 minutes for controls (n = 5, P < .001 for both comparisons). Thermal energy transfer was also found to be significantly less for both iiPJ variants compared with controls. There was no significant difference between the thermal performance of the 2 iiPJ variants. CONCLUSION Protection from SWIT by using a protective insulation jacket is feasible. With clinical translation, this novel strategy could facilitate more optimal surgical performance and reduce transplanted organ ischemia-reperfusion injury, in particular the SWIT, potentially affecting delayed graft function and long-term outcomes.
Collapse
Affiliation(s)
- Turaab Khan
- Sydney Medical School, University of Sydney, Sydney, Australia.
| | | | - Tony Pang
- Sydney Medical School, University of Sydney, Sydney, Australia
| | - Ahmer Hameed
- Sydney Medical School, University of Sydney, Sydney, Australia
| | - Philip Boughton
- Sydney Medical School, University of Sydney, Sydney, Australia; Sydney Pharmacy School, University of Sydney, Sydney, Australia; Charles Perkins Centre, University of Sydney, Sydney, Australia; Global Surgical Innovations, Sydney Spine Institute, Burwood, Australia
| | - Greg O'Grady
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Wayne J Hawthorne
- Sydney Medical School, University of Sydney, Sydney, Australia; Department of Surgery, Westmead Hospital, Westmead, Australia; Westmead Institute for Medical Research, Westmead, Australia
| | - Natasha M Rogers
- Department of Transplant/Renal Medicine, Westmead Hospital, Westmead, Australia
| | - Germaine Wong
- Department of Transplant/Renal Medicine, Westmead Hospital, Westmead, Australia
| | - Henry C Pleass
- Sydney Medical School, University of Sydney, Sydney, Australia; Department of Surgery, Westmead Hospital, Westmead, Australia
| |
Collapse
|
10
|
Improved Normothermic Machine Perfusion After Short Oxygenated Hypothermic Machine Perfusion of Ischemically Injured Porcine Kidneys. Transplant Direct 2021; 7:e653. [PMID: 33490378 PMCID: PMC7817286 DOI: 10.1097/txd.0000000000001108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 10/17/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022] Open
Abstract
Supplemental Digital Content is available in the text. Background. In an era where global kidney shortage has pushed the field of transplantation towards using more marginal donors, modified kidney preservation techniques are currently being reviewed. Some techniques require further optimization before implementation in full scale transplantation studies. Using a porcine donation after circulatory death kidney model, we investigated whether initial kidney hemodynamics improved during normothermic machine perfusion if this was preceded by a short period of oxygenated hypothermic machine perfusion (oxHMP) rather than static cold storage (SCS). Methods. Kidneys subjected to 75 minutes of warm ischemia were randomly assigned to either SCS (n = 4) or SCS + oxHMP (n = 4), with a total cold storage time of 240 minutes. Cold preservation was followed by 120 minutes of normothermic machine perfusion with continuous measurement of hemodynamic parameters and renal function. Results. oxHMP preserved kidneys maintained significantly lower renal resistance throughout the normothermic machine perfusion period compared to SCS kidneys (P < 0.001), reaching lowest levels at 60 minutes with means of 0.71 ± 0.35 mm Hg/mL/min/100 g (SCS) and 0.45 ± 0.15 mm Hg/mL/min/100 g (oxHMP). Accordingly, the oxHMP group had a higher mean renal blood flow versus SCS kidneys (P < 0.001). oxHMP kidneys had higher oxygen consumption during normothermic machine perfusion compared to SCS preserved kidneys (P < 0.001). Creatinine clearance remained similar between groups (P = 0.665). Conclusions. Preceding oxHMP significantly improved initial normothermic machine perfusion hemodynamics and increased total oxygen consumption. With the long period of warm ischemia, immediate kidney function was not observed, reflected by the findings of low creatinine clearance in both groups.
Collapse
|
11
|
Influence of Different Partial Pressures of Oxygen During Continuous Hypothermic Machine Perfusion in a Pig Kidney Ischemia-reperfusion Autotransplant Model. Transplantation 2020; 104:731-743. [PMID: 31764761 DOI: 10.1097/tp.0000000000003051] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND The optimal perfusate partial pressure of oxygen (PO2) during hypothermic machine perfusion (HMP) is unknown. The aims of the study were to determine the functional, metabolic, structural, and flow dynamic effects of low and high perfusate PO2 during continuous HMP in a pig kidney ischemia-reperfusion autotransplant model. METHODS The left kidneys of a ±40 kg pigs were exposed to 30 minutes of warm ischemia and randomized to receive 22-hour HMP with either low perfusate PO2 (30% oxygen, low oxygenated HMP [HMPO2]) (n = 8) or high perfusate PO2 (90% oxygen, HMPO2high) (n = 8), before autotransplantation. Kidneys stored in 22-hour standard HMP (n = 6) and 22-hour static cold storage (n = 6) conditions served as controls. The follow-up after autotransplantation was 13 days. RESULTS High PO2 resulted in a 3- and 10-fold increase in perfusate PO2 compared with low HMPO2 and standard HMP, respectively. Both HMPO2 groups were associated with superior graft recovery compared with the control groups. Oxygenation was associated with a more rapid and sustained decrease in renal resistance. While there was no difference in functional outcomes between both HMPO2 groups, there were clear metabolic differences with an inverse correlation between oxygen provision and the concentration of major central metabolites in the perfusion fluid but no differences were observed by oxidative stress and metabolic evaluation on preimplantation biopsies. CONCLUSIONS While this animal study does not demonstrate any advantages for early graft function for high perfusate PO2, compared with low perfusate PO2, perfusate metabolic profile analysis suggests that aerobic mechanism is better supported under high perfusate PO2 conditions.
Collapse
|
12
|
Darius T, Vergauwen M, Smith T, Gerin I, Joris V, Mueller M, Aydin S, Muller X, Schlegel A, Nath J, Ludwig C, Dessy C, Many MC, Bommer G, Dutkowski P, Gianello P, Mourad M. Brief O 2 uploading during continuous hypothermic machine perfusion is simple yet effective oxygenation method to improve initial kidney function in a porcine autotransplant model. Am J Transplant 2020; 20:2030-2043. [PMID: 32012434 DOI: 10.1111/ajt.15800] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 01/25/2023]
Abstract
With oxygenation proposed as a resuscitative measure during hypothermic models of preservation, the aim of this study was to evaluate the optimal start time of oxygenation during continuous hypothermic machine perfusion (HMP). In this porcine ischemia-reperfusion autotransplant model, the left kidney of a ±40 kg pig was exposed to 30 minutes of warm ischemia prior to 22 hours of HMP and autotransplantation. Kidneys were randomized to receive 2 hours of oxygenation during HMP either at the start (n = 6), or end of the perfusion (n = 5) and outcomes were compared to standard, nonoxygenated HMP (n = 6) and continuous oxygenated HMP (n = 8). The brief initial and continuous oxygenated HMP groups were associated with superior graft recovery compared to either standard, nonoxygenated HMP or kidneys oxygenated at the end of HMP. This correlated with significant metabolic differences in perfusate (eg, lactate, succinate, flavin mononucleotide) and tissues (eg, succinate, adenosine triphosphate, hypoxia-inducible factor-1α, nuclear factor erythroid 2-related factor 2) suggesting superior mitochondrial preservation with initial oxygenation. Brief initial O2 uploading during HMP at procurement site might be an easy and effective preservation strategy to maintain aerobic metabolism, protect mitochondria, and achieve an improved early renal graft function compared with standard HMP or oxygen supply shortly at the end of HMP preservation.
Collapse
Affiliation(s)
- Tom Darius
- Surgery and Abdominal Transplant Unit, University Clinics Saint Luc, Université Catholique de Louvain, Brussels, Belgium.,Pole de Chirurgie Expérimentale et Transplantation, Université Catholique de Louvain, Brussels, Belgium
| | - Martial Vergauwen
- Pole de Chirurgie Expérimentale et Transplantation, Université Catholique de Louvain, Brussels, Belgium
| | - Thomas Smith
- The Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
| | - Isabelle Gerin
- Walloon Excellence in Lifesciences and Biotechnology (WELBIO), Laboratory of Physiological Chemistry, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Virginie Joris
- Pole of Pharmacology and Therapeutics, Experimental and Clinical Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Matteo Mueller
- Department of Surgery and Transplantation, Swiss HPB Center, University Hospital Zurich, Zurich, Switzerland
| | - Selda Aydin
- Department of Pathology, University Clinics Saint Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Xavier Muller
- Department of Surgery and Transplantation, Swiss HPB Center, University Hospital Zurich, Zurich, Switzerland
| | - Andrea Schlegel
- Liver Unit, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham, Birmingham, UK
| | - Jay Nath
- Department of Renal Transplantation, Southmead Hospital Bristol, Bristol, UK
| | - Christian Ludwig
- The Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
| | - Chantal Dessy
- Pole of Pharmacology and Therapeutics, Experimental and Clinical Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Marie-Christine Many
- Department of Morphology, Experimental and Clinical Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Guido Bommer
- Walloon Excellence in Lifesciences and Biotechnology (WELBIO), Laboratory of Physiological Chemistry, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Philipp Dutkowski
- Department of Surgery and Transplantation, Swiss HPB Center, University Hospital Zurich, Zurich, Switzerland
| | - Pierre Gianello
- Pole de Chirurgie Expérimentale et Transplantation, Université Catholique de Louvain, Brussels, Belgium
| | - Michel Mourad
- Surgery and Abdominal Transplant Unit, University Clinics Saint Luc, Université Catholique de Louvain, Brussels, Belgium.,Pole de Chirurgie Expérimentale et Transplantation, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
13
|
Jin Z, Hana Z, Alam A, Rajalingam S, Abayalingam M, Wang Z, Ma D. Review 1: Lung transplant-from donor selection to graft preparation. J Anesth 2020; 34:561-574. [PMID: 32476043 PMCID: PMC7261511 DOI: 10.1007/s00540-020-02800-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 05/17/2020] [Indexed: 12/16/2022]
Abstract
For various end-stage lung diseases, lung transplantation remains one of the only viable treatment options. While the demand for lung transplantation has steadily risen over the last few decades, the availability of donor grafts is limited, which have resulted in progressively longer waiting lists. In the early years of lung transplantation, only the 'ideal' donor grafts are considered for transplantation. Due to the donor shortages, there is ongoing discussion about the safe use of 'suboptimal' grafts to expand the donor pool. In this review, we will discuss the considerations around donor selection, donor-recipient matching, graft preparation and graft optimisation.
Collapse
Affiliation(s)
- Zhaosheng Jin
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK
| | - Zac Hana
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK
| | - Azeem Alam
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK
| | - Shamala Rajalingam
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK
| | - Mayavan Abayalingam
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK
| | - Zhiping Wang
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK.
| |
Collapse
|
14
|
Uehara M, Bahmani B, Jiang L, Jung S, Banouni N, Kasinath V, Solhjou Z, Jing Z, Ordikhani F, Bae M, Clardy J, Annabi N, McGrath MM, Abdi R. Nanodelivery of Mycophenolate Mofetil to the Organ Improves Transplant Vasculopathy. ACS NANO 2019; 13:12393-12407. [PMID: 31518498 PMCID: PMC7247279 DOI: 10.1021/acsnano.9b05115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Inflammation occurring within the transplanted organ from the time of harvest is an important stimulus of early alloimmune reactivity and promotes chronic allograft rejection. Chronic immune-mediated injury remains the primary obstacle to the long-term success of organ transplantation. However, organ transplantation represents a rare clinical setting in which the organ is accessible ex vivo, providing an opportunity to use nanotechnology to deliver therapeutics directly to the graft. This approach facilitates the directed delivery of immunosuppressive agents (ISA) to target local pathogenic immune responses prior to the transplantation. Here, we have developed a system of direct delivery and sustained release of mycophenolate mofetil (MMF) to treat the donor organ prior to transplantation. Perfusion of a donor mouse heart with MMF-loaded PEG-PLGA nanoparticles (MMF-NPs) prior to transplantation abrogated cardiac transplant vasculopathy by suppressing intragraft pro-inflammatory cytokines and chemokines. Our findings demonstrate that ex vivo delivery of an ISA to donor organs using a nanocarrier can serve as a clinically feasible approach to reduce transplant immunity.
Collapse
Affiliation(s)
- Mayuko Uehara
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Baharak Bahmani
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Liwei Jiang
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Sungwook Jung
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Naima Banouni
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Vivek Kasinath
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhabiz Solhjou
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhao Jing
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Farideh Ordikhani
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Munhyung Bae
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Martina M. McGrath
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Address correspondence to: Reza Abdi, MD, Transplantation Research Center, Brigham and Women’s Hospital, 221 Longwood Ave, Boston MA 02115, USA, Tel: 617-732-5259, Fax: 617-732-5254, ; Martina M. McGrath, Transplantation Research Center, Brigham and Women’s Hospital, 221 Longwood Ave, Boston MA 02115, USA, Tel: 617-732-5259, Fax: 617-732-5254,
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Address correspondence to: Reza Abdi, MD, Transplantation Research Center, Brigham and Women’s Hospital, 221 Longwood Ave, Boston MA 02115, USA, Tel: 617-732-5259, Fax: 617-732-5254, ; Martina M. McGrath, Transplantation Research Center, Brigham and Women’s Hospital, 221 Longwood Ave, Boston MA 02115, USA, Tel: 617-732-5259, Fax: 617-732-5254,
| |
Collapse
|
15
|
Kaminski J, Delpech PO, Kaaki-Hosni S, Promeyrat X, Hauet T, Hannaert P. Oxygen Consumption by Warm Ischemia-Injured Porcine Kidneys in Hypothermic Static and Machine Preservation. J Surg Res 2019; 242:78-86. [PMID: 31071608 DOI: 10.1016/j.jss.2019.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 03/26/2019] [Accepted: 04/04/2019] [Indexed: 01/20/2023]
Abstract
Static cold storage (SCS) and hypothermic machine perfusion (HMP) are currently standard methods for renal grafts clinical preservation. Both methods are predominantly implemented without the active delivery of oxygen, even for donation after circulatory death-like kidneys. However, even under severe hypothermia (4°C-6°C), kidneys can consume oxygen and produce ATP. What is not established, though, is to what extent and how SCS and HMP compare in terms of oxygen. Using a porcine preclinical model of renal warm ischemia (WI) to compare SCS and HMP methods, we continuously monitored and quantified oxygen level and consumption along preservation; we also determined prepreservation and postpreservation cortical ATP level; values were given as median and [min; max] range. One-hour WI reduced ATP by ∼90% (from 3.3 [1.7; 4.5] mmol/L tissue in Controls). Oxygen consumption (QO2, μmol/min per 100 g) was determined from initial solution PO2 decrease (SCS and HMP) and from arterio-venous difference (HMP). In SCS and HMP, PO2 decreased rapidly (t1/2 ∼1 h) from atmospheric levels to 52.9 [38.0; 65.9] and 8.2 [3.0, 16.0] mmHg, respectively. In HMP, QO2 was 2.7 [0.4; 3.9] versus 0.5 [0.0; 1.3] in SCS (P < 0.05); postpreservation ATP amounted to 5.8 [3.2; 6.5] in HMP versus 0.1 [0.0; 0.2] in SCS. Despite hypothermic conditions in SCS or HMP, donation after circulatory death-like renal grafts require oxygen. Increased oxygen consumption, restored ATP level, and improved histological profile in HMP might explain the established HMP superiority over SCS. These results establish a rational basis for the use of oxygen in hypothermic preservation. Optimal levels required for preservation and graft-type variants remain to be determined.
Collapse
Affiliation(s)
| | - Pierre-Olivier Delpech
- INSERM U1082-IRTOMIT, CHU de Poitiers, Poitiers, France; Service d'Urologie, CHU de Poitiers, Poitiers, France
| | | | - Xavier Promeyrat
- Service d'Urologie et de Chirurgie de la Transplantation, Hôpital Édouard-Herriot, Université Claude-Bernard Lyon 1, Lyon, France
| | - Thierry Hauet
- INSERM U1082-IRTOMIT, CHU de Poitiers, Poitiers, France; Service de Biochimie, CHU de Poitiers, Poitiers, France
| | | |
Collapse
|
16
|
Bath MF, Hosgood SA, Nicholson ML. Vasoreactivity to Acetylcholine During Porcine Kidney Perfusion for the Assessment of Ischemic Injury. J Surg Res 2019; 238:96-101. [PMID: 30769250 DOI: 10.1016/j.jss.2019.01.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/07/2018] [Accepted: 01/08/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND The effects of renal allograft ischemic injury on vascular endothelial function have not been clearly established. The aim of this study was to examine vascular reactivity to acetylcholine (ACh) in kidneys subjected to ischemic injury and reperfusion. METHODS Porcine kidneys were exposed to different combinations of warm ischemic time (WIT) and cold ischemic time (CIT) as follows: 15 min (n = 7), 60 min (n = 6), 90 min (n = 6), or 120 min (n = 4) WIT + 2 h CIT or 15 min WIT + 16 h CIT (n = 8). Kidneys were reperfused at 38°C for 3 h. After reperfusion, ACh was infused into the circuit to assess endothelium-dependent vascular reactivity. RESULTS The dose-response relationships between renal blood flow and ACh demonstrated that ACh doses of 10-10 to 10-7 mmol/L caused vasodilatation, whereas doses in the range 10-6 to 10-4 mmol/L led to vasoconstriction. For kidneys exposed to 15-90 min WIT, there was a clear relationship between increasing ischemic injury and reduced vasodilatation to ACh. In contrast, kidneys subjected to 120 min WIT completely lost vasoreactivity. The vasodilatory response to ACh was diminished, but not lost, when CIT was increased from 2 h to 16 h. Peak renal blood flow after ACh infusion correlated with the functional parameters in kidneys with 2 h CIT (P < 0.05). CONCLUSIONS The loss of renal vascular reactivity after 120 min WIT suggests endothelial dysfunction leading to loss of nitric oxide synthesis/release. Measurement of vasoreactivity to ACh in an isolated organ perfusion system has the potential to be developed as a marker of ischemic renal injury before transplantation.
Collapse
Affiliation(s)
- Michael F Bath
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Sarah A Hosgood
- Department of Surgery, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
17
|
Ravaioli M, De Pace V, Comai G, Capelli I, Baraldi O, D'Errico A, Bertuzzo VR, Del Gaudio M, Zanfi C, D'Arcangelo GL, Cuna V, Siniscalchi A, Sangiorgi G, La Manna G. Preliminary experience of sequential use of normothermic and hypothermic oxygenated perfusion for donation after circulatory death kidney with warm ischemia time over the conventional criteria - a retrospective and observational study. Transpl Int 2018; 31:1233-1244. [DOI: 10.1111/tri.13311] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Matteo Ravaioli
- Unit of General and Transplant Surgery; Department of Medical and Surgical Sciences; University of Bologna Sant'Orsola Malpighi Hospital; Bologna Italy
| | - Vanessa De Pace
- Unit of General and Transplant Surgery; Department of Medical and Surgical Sciences; University of Bologna Sant'Orsola Malpighi Hospital; Bologna Italy
| | - Giorgia Comai
- Unit of Nephrology; Dialysis and Transplantation; Department of Experimental Diagnostic and Specialty Medicine; University of Bologna Sant'Orsola Malpighi Hospital; Bologna Italy
| | - Irene Capelli
- Unit of Nephrology; Dialysis and Transplantation; Department of Experimental Diagnostic and Specialty Medicine; University of Bologna Sant'Orsola Malpighi Hospital; Bologna Italy
| | - Olga Baraldi
- Unit of Nephrology; Dialysis and Transplantation; Department of Experimental Diagnostic and Specialty Medicine; University of Bologna Sant'Orsola Malpighi Hospital; Bologna Italy
| | - Antonietta D'Errico
- Unit of Oncology and Transplant Pathology; Department of Experimental Diagnostic and Specialty Medicine; University of Bologna Sant'Orsola Malpighi Hospital; Bologna Italy
| | - Valentina Rosa Bertuzzo
- Unit of General and Transplant Surgery; Department of Medical and Surgical Sciences; University of Bologna Sant'Orsola Malpighi Hospital; Bologna Italy
| | - Massimo Del Gaudio
- Unit of General and Transplant Surgery; Department of Medical and Surgical Sciences; University of Bologna Sant'Orsola Malpighi Hospital; Bologna Italy
| | - Chiara Zanfi
- Unit of General and Transplant Surgery; Department of Medical and Surgical Sciences; University of Bologna Sant'Orsola Malpighi Hospital; Bologna Italy
| | - Giovanni Liviano D'Arcangelo
- Unit of Nephrology; Dialysis and Transplantation; Department of Experimental Diagnostic and Specialty Medicine; University of Bologna Sant'Orsola Malpighi Hospital; Bologna Italy
| | - Vania Cuna
- Unit of Nephrology; Dialysis and Transplantation; Department of Experimental Diagnostic and Specialty Medicine; University of Bologna Sant'Orsola Malpighi Hospital; Bologna Italy
| | - Antonio Siniscalchi
- Unit of Anesthesiology; Department of Medical and Surgical Sciences; University of Bologna Sant'Orsola Malpighi Hospital; Bologna Italy
| | - Gabriela Sangiorgi
- Emilia Romagna Transplant Reference Center; Department of Medical and Surgical Sciences; University of Bologna Sant'Orsola Malpighi Hospital; Bologna Italy
| | - Gaetano La Manna
- Unit of Nephrology; Dialysis and Transplantation; Department of Experimental Diagnostic and Specialty Medicine; University of Bologna Sant'Orsola Malpighi Hospital; Bologna Italy
| |
Collapse
|
18
|
Gokalp O, Yesilkaya NK, Besir Y, Iner H, Yilik L, Gokalp G, Gurbuz A. Importance of Cardiopulmonary Bypass Period on Systemic Inflammatory Response. Ann Thorac Cardiovasc Surg 2016; 22:322. [PMID: 26935261 DOI: 10.5761/atcs.lte.15-00325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Orhan Gokalp
- Faculty and Medicine, Department of Cardiovascular Surgery, Izmir Katip Celebi University, Izmir, Turkey
| | | | | | | | | | | | | |
Collapse
|