1
|
Zhao J, Zhao F, Yuan J, Liu H, Wang Y. Gut microbiota metabolites, redox status, and the related regulatory effects of probiotics. Heliyon 2023; 9:e21431. [PMID: 38027795 PMCID: PMC10643359 DOI: 10.1016/j.heliyon.2023.e21431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/29/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Oxidative stress is a state of imbalance between oxidation and antioxidation. It is caused by excess levels of free radicals and leads to the damage of DNA, proteins, and lipids. The crucial role of gut microbiota in regulating oxidative stress has been widely demonstrated. Studies have suggested that the redox regulatory effects of gut microbiota are related to gut microbiota metabolites, including fatty acids, lipopolysaccharides, tryptophan metabolites, trimethylamine-N-oxide and polyphenolic metabolites. In recent years, the potential benefits of probiotics have been gaining increasing scientific interest owing to their ability to modulate gut microbiota and oxidative stress. In this review, we summarise the adverse health effects of oxidative stress and discuss the role of the gut microbiota and its metabolites in redox regulation. Based on the influence of gut microbiota metabolites, the roles of probiotics in preventing oxidative stress are highlighted.
Collapse
Affiliation(s)
| | | | - Junmeng Yuan
- College of Animal Science and Technology, Qingdao Agricultural University, 266109, Qingdao, China
| | - Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, 266109, Qingdao, China
| | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, 266109, Qingdao, China
| |
Collapse
|
2
|
Nie L, Yan Q, Zhang S, Cao Y, Zhou X. Duodenal Mucosa: A New Target for the Treatment of Type 2 Diabetes. Endocr Pract 2023; 29:53-59. [PMID: 36309189 DOI: 10.1016/j.eprac.2022.10.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE After a high-fat and high-sugar diet, the duodenal mucosa of rodents proliferate and trigger the signal of insulin resistance, which may be the cause of type 2 diabetes (T2D). In response to this phenomenon, researchers have designed the duodenal mucosal resurfacing (DMR) procedure, mainly through the hydrothermal ablation procedure, to restore the normal mucosal surface, thereby correcting this abnormal metabolic signal. This article aims to understand the changes in duodenum before and after the onset or treatment of T2D, and the potential mechanisms of DMR procedure. METHODS A literature search of PubMed and Web of Science was conducted using appropriate keywords. RESULTS Both animal and clinical studies have shown that the villus thickness, intestinal cells, glucose transporters, enteric nerves, and gut microbiota and their metabolites in the duodenum undergo corresponding changes before and after the onset or treatment of T2D. These changes may be related to the pathogenesis of T2D. DMR procedure may produce beneficial glycemic and hepatic metabolic effects by regulating these changes. CONCLUSION The duodenum is an important metabolic signaling center, and limiting nutrient exposure to this critical region will have powerful metabolic benefits. The DMR procedure may regulate glycemic and hepatic parameters through various mechanisms, which needs to be further confirmed by a large number of animal and clinical studies.
Collapse
Affiliation(s)
- LiJuan Nie
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - QianHua Yan
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shu Zhang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - YuTian Cao
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - XiQiao Zhou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
Lu Y, Zhang Y, Zhao X, Shang C, Xiang M, Li L, Cui X. Microbiota-derived short-chain fatty acids: Implications for cardiovascular and metabolic disease. Front Cardiovasc Med 2022; 9:900381. [PMID: 36035928 PMCID: PMC9403138 DOI: 10.3389/fcvm.2022.900381] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular diseases (CVDs) have been on the rise around the globe in the past few decades despite the existing guidelines for prevention and treatment. Short-chain fatty acids (SCFAs) are the main metabolites of certain colonic anaerobic bacterial fermentation in the gastrointestinal tract and have been found to be the key metabolites in the host of CVDs. Accumulating evidence suggest that the end-products of SCFAs (including acetate, propionate, and butyrate) interact with CVDs through maintaining intestinal integrity, anti-inflammation, modulating glucolipid metabolism, blood pressure, and activating gut-brain axis. Recent advances suggest a promising way to prevent and treat CVDs by controlling SCFAs. Hence, this review tends to summarize the functional roles carried out by SCFAs that are reported in CVDs studies. This review also highlights several novel therapeutic interventions for SCFAs to prevent and treat CVDs.
Collapse
Affiliation(s)
- Yingdong Lu
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Zhang
- First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xin Zhao
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chang Shang
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mi Xiang
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Li Li,
| | - Xiangning Cui
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Xiangning Cui,
| |
Collapse
|
4
|
Abdi M, Esmaeili Gouvarchin Ghaleh H, Ranjbar R. Lactobacilli and Bifidobacterium as anti-atherosclerotic agents. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:934-946. [PMID: 36159325 PMCID: PMC9464336 DOI: 10.22038/ijbms.2022.63860.14073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 07/04/2022] [Indexed: 11/06/2022]
Abstract
Atherosclerosis is the thickening or hardening of the arteries which is caused by a buildup of atheromatous plaque in the inner lining of an artery. Hypercholesterolemia, inflammation, oxidative stress, and trimethylamine N-oxide (TMAO) are important risk factors for atherosclerosis. Therefore, this study aimed to review the anti-atherosclerotic effects of Lactobacilli and Bifidobacterium via improving lipid profile and reducing the effects of oxidative stress, inflammation, and TMAO. To prepare the present review, several databases such as Scopus, PubMed, and Google Scholar were searched, and relevant articles from 1990 until 2022 were selected and reviewed. The present review showed that Lactobacilli and Bifidobacterium reduce the risk of atherosclerosis in both in vitro and in vivo studies by breaking down or altering cholesterol metabolism with the help of their by-products and by reducing inflammation and oxidative stress and TMAO. Consumption of Lactobacilli and Bifidobacterium can be useful in prevention of atherosclerosis.
Collapse
Affiliation(s)
- Milad Abdi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran,Corresponding author: Reza Ranjbar. Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Evaluation of different bacterial honey isolates as probiotics and their efficient roles in cholesterol reduction. World J Microbiol Biotechnol 2022; 38:106. [PMID: 35507200 PMCID: PMC9068672 DOI: 10.1007/s11274-022-03259-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 02/28/2022] [Indexed: 11/03/2022]
Abstract
Continue to hypothesize that honey is a storehouse of beneficial bacteria, and the majority of these isolates are levansucrase producers. Accordingly, ten bacterial strains were isolated from different honey sources. Four honey isolates that had the highest levansucrase production and levan yield were identified by the partial sequencing of the 16S rRNA gene as Achromobacter sp. (10A), Bacillus paralicheniformis (2M), Bacillus subtilis (9A), and Bacillus paranthracis (13M). The cytotoxicity of the selected isolates showed negative blood hemolysis. Also, they are sensitive to the tested antibiotics (Amoxicillin + Flucloxacillin, Ampicillin, Gentamicin, Benzathine benzylpenicillin, Epicephin, Vancomycin, Amikacin, and Zinol). The isolates had strong alkaline stability (pHs 9, 11) and were resistant to severe acidic conditions (29-100 percent). The tested isolates recorded complete tolerance to both H2O2 and the bile salt (0.3% Oxgall powder) after 24 h incubation. The cell-free supernatant of the examined strains had antifungal activities against C. Albicans with varying degrees. Also, isolates 2M and 13M showed strong activities against S. aureus. The isolates showed strong adhesion and auto-aggregation capacity. Isolate 10A showed the highest antioxidant activity (91.45%) followed by 2M (47.37%). The isolates recorded different catalase and protease activity. All isolates produced cholesterol oxidase and lipase with different levels. Besides, the four isolates reduced LDL (low-density lipoprotein) to different significant values. The cholesterol-reducing ability varied not only for strains but also for the time of incubation. The previous results recommended these isolates be used safely in solving the LDL problem.
Collapse
|
6
|
Sun Y, Kang K, Li YL, Sang LX, Chang B. Tea polyphenols protect mice from acute ethanol-Induced liver injury by modulating the gut microbiota and short-chain fatty acids. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104865] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
7
|
Abdi M, Lohrasbi V, Asadi A, Esghaei M, Jazi FM, Rohani M, Talebi M. Interesting probiotic traits of mother's milk Lactobacillus isolates; from bacteriocin to inflammatory bowel disease improvement. Microb Pathog 2021; 158:104998. [PMID: 34044041 DOI: 10.1016/j.micpath.2021.104998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/26/2022]
Abstract
AIMS AND BACKGROUND Lactobacillus spp. are an important element in breast milk. This component has a beneficial effect on the composition of the intestinal microflora and the intestinal immune system. The aim of this study was to isolate and identify Lactobacillus strains in breast milk and evaluate some of their probiotic properties, such as presence of bacteriocin genes, adhesion to HT-29 cell line, competition with enteropathogens in cell culture, and effect on serum level of lipids and digestive enzymes, and mice model of inflammatory bowel disease (IBD). MATERIALS AND METHODS A total of 323 lactic acid bacteria (LAB) were isolated from breast milk samples of healthy mothers with the age ranges from 21 to 45 years old. These isolates were subjected to phenotypic and molecular experiments. The frequency of bacteriocin genes was determined by polymerase chain reaction (PCR). Adhesion of Lactobacillus isolates to HT-29 cells was measured based on the number of attached bacterial cells in 20 fields of the light microscopy. Competition test was done by colony count and real-time PCR procedures. Five strongly adhesive Lactobacillus strains were selected and administered orally to the treatment groups. After 8 days, the serum level of digestive enzymes and improvement in induced IBD, and after 14 days, the serum level of lipids (triglycerides, total cholesterol, HDL, and LDL) in treated mice were surveyed compared to the control groups. RESULTS Based on the phenotypic and molecular experiments, L. casei, L. plantarum, L. rhamnosus, and L. acidophilus strains were isolated and identified in the breast milk samples. The highest frequency of bacteriocin genes belonged to Plantaricin B (100%), followed by Plantaricin D (84.7%), Plantaricin G (84.7%), and Plantaricin EF (54.3%). Also, 71.8% of the isolates were strongly adhesive, 21.8% were non-adhesive, and 6.4% were adhesive. Lactobacillus strains had a significant effect on the displacement of enteropathogens. The in vitro cholesterol-removing ability of L. casei (L1), L. casei (L2), L. casei (L3), L. plantarum (L4), and L. rhamnosus (L5) was 3.5, 31.5, 21.3, 18.7, and 27.3%, respectively. The serum level of total cholesterol in the L. plantarum (L4) group as well as LDL in the L. casei (L3) (p = .0108) and L. rhamnosus (L5) (p = .0206) groups decreased significantly compared to the control group. The serum level of lipase increased in all the treatment groups compared to the control group, which was significant in the L. plantarum (L4) group (p = .0390). Disease activity index (DAI) scores were improved significantly in L. casei (L3) group compared to the IBD control group (p < .0001). CONCLUSION It could be concluded that lactobacilli strains isolated from the breast milk samples had good probiotic properties, such as presence of bacteriocin genes, attaching to enterocyte-like HT-29 cells, competing with intestinal pathogens, lowering cholesterol, and improving IBD. Thus, after further studies, they could be considered as probiotic strains.
Collapse
Affiliation(s)
- Milad Abdi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Vahid Lohrasbi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arezoo Asadi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Esghaei
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Faramarz Masjedian Jazi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Rohani
- Department of Microbiology, Pasteur Institute of Iran, Tehran, Iran
| | - Malihe Talebi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Lohrasbi V, Abdi M, Asadi A, Rohani M, Esghaei M, Talebi M, Amirmozafari N. The effect of improved formulation of chitosan-alginate microcapsules of Bifidobacteria on serum lipid profiles in mice. Microb Pathog 2020; 149:104585. [PMID: 33075520 DOI: 10.1016/j.micpath.2020.104585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/17/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Probiotics have been associated with many beneficial effects in human digestive physiology. The aim of this study was to evaluate the effect of improved formulation of chitosan-alginate microcapsules of Bifidobacterium strains on serum triglycerides, cholesterol, HDL, and LDL in mice. METHODS Five approved probiotic strains of Bifidobacterium were tested for anti-proliferative effect and interleukin-8 induction on HT-29 cell lines. Bifidobacterium strains plus five approved Lactobacillus were encapsulated in chitosan-alginate microcapsules and tested for its survival in simulated gastrointestinal conditions. These microcapsules were administered to 4 groups of mice (including 1. Bif (Bifidobacterium strains), 2. Lac (Lactobacillus strains), 3. Bif-Lac (Bifidobacterium plus Lactobacillus strains) and 4. Control) for 8 days. At eighth day, the blood of mice were taken and serum levels of triglycerides, cholesterol, HDL, and LDL of them were determined. RESULTS All of the Bifidobacterium strains significantly (P < 0.001) reduced secretion of IL-8 in HT-29 cells as well as maximum antiproliferative effects (P < 0.001). In addition, all microcapsules showed impressive survival rate in bile (>%94.1) and gastrointestinal (>%78.28) conditions (P < 0.05). Only Bif-Lac group displayed significantly lower serum cholesterol and LDL levels than control group (P < 0.05). Besides, all groups indicate statistically significant weight loss of mice during the 8 days in comparison with the control group (P < 0.05). CONCLUSION The results of this study showed that the microencapsulated probiotics with alginate and chitosan had an effective mean of delivery of viable bacterial cells and non-pharmacological interventions use to reduce serum cholesterol and LDL levels in in-vivo condition.
Collapse
Affiliation(s)
- Vahid Lohrasbi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Milad Abdi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arezoo Asadi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Rohani
- Department of Microbiology, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Esghaei
- Department of Virology, Iran University of Medical Sciences. Tehran, Iran
| | - Malihe Talebi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Nour Amirmozafari
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
He YJ, You CG. The Potential Role of Gut Microbiota in the Prevention and Treatment of Lipid Metabolism Disorders. Int J Endocrinol 2020; 2020:8601796. [PMID: 33005189 PMCID: PMC7509545 DOI: 10.1155/2020/8601796] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/24/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022] Open
Abstract
Due to changes in lifestyle, diet structure, and aging worldwide, the incidence of metabolic syndromes such as hyperlipidemia, hypertension, diabetes, and obesity is increasing. Metabolic syndrome is considered to be closely related to cardiovascular disease and severely affects human health. In recent years, researchers have revealed that the gut microbiota, through its own or interacting metabolites, has a positive role in regulating metabolic syndrome. Therefore, the gut microbiota has been a new "organ" for the treatment of metabolic syndrome. The role has not been clarified, and more research is necessary to prove the specific role of specific strains. Probiotics are also believed to regulate metabolic syndromes by regulating the gut microbiota and are expected to become a new preparation for treating metabolic syndromes. This review focuses on the regulation of lipid metabolism disorders by the gut microbiota through the effects of bile acids (BA), short-chain fatty acids (SCFAs), bile salt hydrolase (BSH), and genes such as ABCG5 and ABCG8, FXR, NPC1L, and LDL-R.
Collapse
Affiliation(s)
- Yan-Jun He
- Laboratory Medicine Center, Lanzhou University Second Hospital, No. 82 Cuiyingmen Lanzhou, Lanzhou 730030, Gansu, China
| | - Chong-Ge You
- Laboratory Medicine Center, Lanzhou University Second Hospital, No. 82 Cuiyingmen Lanzhou, Lanzhou 730030, Gansu, China
| |
Collapse
|
10
|
Halotolerant Bacillus sp. for Mannan Degradation Isolated from Mangrove Ecosystem at Hanura Beach Lampung. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.2.18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
11
|
Markowiak-Kopeć P, Śliżewska K. The Effect of Probiotics on the Production of Short-Chain Fatty Acids by Human Intestinal Microbiome. Nutrients 2020; 12:nu12041107. [PMID: 32316181 PMCID: PMC7230973 DOI: 10.3390/nu12041107] [Citation(s) in RCA: 529] [Impact Index Per Article: 105.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 12/12/2022] Open
Abstract
The relationship between diet and the diversity and function of the intestinal microbiome and its importance for human health is currently the subject of many studies. The type and proportion of microorganisms found in the intestines can determine the energy balance of the host. Intestinal microorganisms perform many important functions, one of which is participation in metabolic processes, e.g., in the production of short-chain fatty acids—SCFAs (also called volatile fatty acids). These acids represent the main carbon flow from the diet to the host microbiome. Maintaining intestinal balance is necessary to maintain the host’s normal health and prevent many diseases. The results of many studies confirm the beneficial effect of probiotic microorganisms on the balance of the intestinal microbiome and produced metabolites, including SCFAs. The aim of this review is to summarize what is known on the effects of probiotics on the production of short-chain fatty acids by gut microbes. In addition, the mechanism of formation and properties of these metabolites is discussed and verified test results confirming the effectiveness of probiotics in human nutrition by modulating SCFAs production by intestinal microbiome is presented.
Collapse
|
12
|
Metagenomic Analysis of Duodenal Microbiota Reveals a Potential Biomarker of Dysbiosis in the Course of Obesity and Type 2 Diabetes: A Pilot Study. J Clin Med 2020; 9:jcm9020369. [PMID: 32013181 PMCID: PMC7074165 DOI: 10.3390/jcm9020369] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/19/2020] [Accepted: 01/27/2020] [Indexed: 12/20/2022] Open
Abstract
Numerous scientific studies confirm that, apart from environmental and genetic factors, a significant role is played by gastrointestinal microbiota in the aetiology of type 2 diabetes and obesity. Currently, scientists mainly focus on the distal intestinal microbiota, while the equally important proximal parts of the intestine are overlooked. The aim of the study was a qualitative analysis of the structure of the duodenal mucosa microbiota in groups of patients with obesity and with type 2 diabetes and where obesity qualified for bariatric surgery: sleeve gastrectomy. The microbiological results obtained were compared with some clinical parameters. As a result, it was possible to determine the microbiological core that the treatment and control groups had in common, including phyla: Firmicutes, Proteobacteria, and Actinobacteria. The patients with obesity and with type 2 diabetes and obesity presented a significantly lower number of genus Bifidobacterium compared to healthy subjects. Furthermore, the numbers of Bifidobacterium were positively correlated with the high density lipoprotein (HDL) concentration in the groups under study. The obtained results indicate that bacteria of the genus Bifidobacterium should be considered in the future in the context of a potential biomarker in the progress of type 2 diabetes and obesity.
Collapse
|
13
|
Updates in understanding the hypocholesterolemia effect of probiotics on atherosclerosis. Appl Microbiol Biotechnol 2019; 103:5993-6006. [DOI: 10.1007/s00253-019-09927-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/16/2019] [Accepted: 05/18/2019] [Indexed: 12/16/2022]
|
14
|
Yin DT, Fu Y, Zhao XH. In vitro activities of inulin fermentation products to HCT-116 cells enhanced by the cooperation between exogenous strains and adult faecal microbiota. Int J Food Sci Nutr 2018; 69:814-823. [PMID: 29318896 DOI: 10.1080/09637486.2017.1418844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inulin was fermented by adult faecal microbiota and 10 exogenous strains for 24 or 48 h. The contents of acetate, propionate, butyrate and lactate were quantified in the fermented products, and the growth-inhibitory and apoptosis-inducing effects on a human colon cell line (HCT-116 cells) were assessed. Most of these strains increased contents of acetate, propionate and butyrate, and promoted lactate conversion. Correlation analysis suggested that butyrate and lactate in the fermentation products were positively and negatively correlated with the measured inhibition ratios (p < .05). The results were mostly consistent with the verification trial results using standard acid solutions. The fermentation products could cause apoptosis via inducing DNA fragmentation and increasing total apoptotic populations in the treated cells. Moreover, the fermentation products with higher growth-inhibitory activities demonstrated the increased apoptosis-inducing properties. In conclusion, these strains could cooperate with adult faecal microbiota to confer inulin fermentation products with higher anti-colon cancer activity.
Collapse
Affiliation(s)
- Dan-Ting Yin
- a Key Laboratory of Dairy Science, Ministry of Education , Northeast Agricultural University , Harbin , People's Republic of China
| | - Yu Fu
- b Department of Food Science, Faculty of Science , University of Copenhagen , Frederiksberg C , Denmark
| | - Xin-Huai Zhao
- a Key Laboratory of Dairy Science, Ministry of Education , Northeast Agricultural University , Harbin , People's Republic of China.,c Department of Food Science , Northeast Agricultural University , Harbin , People's Republic of China
| |
Collapse
|
15
|
Yin DT, Zhao XH. Impact of exogenous strains on in vitro fermentation and anti-colon cancer activities of maize resistant starch and xylo-oligosaccharides. STARCH-STARKE 2017. [DOI: 10.1002/star.201700064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dan-Ting Yin
- Key Laboratory of Dairy Science, Ministry of Education; Northeast Agricultural University; Harbin P.R. China
| | - Xin-Huai Zhao
- Key Laboratory of Dairy Science, Ministry of Education; Northeast Agricultural University; Harbin P.R. China
- Department of Food Science; Northeast Agricultural University; Harbin P.R. China
| |
Collapse
|