1
|
Sandri A, Saitta GM, Veschetti L, Boschi F, Passarelli Mantovani R, Carelli M, Melotti P, Signoretto C, Boaretti M, Malerba G, Lleò MM. In Vivo Inflammation Caused by Achromobacter spp. Cystic Fibrosis Clinical Isolates Exhibiting Different Pathogenic Characteristics. Int J Mol Sci 2023; 24:ijms24087432. [PMID: 37108596 PMCID: PMC10139000 DOI: 10.3390/ijms24087432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Achromobacter spp. lung infection in cystic fibrosis has been associated with inflammation, increased frequency of exacerbations, and decline of respiratory function. We aimed to evaluate in vivo the inflammatory effects of clinical isolates exhibiting different pathogenic characteristics. Eight clinical isolates were selected based on different pathogenic characteristics previously assessed: virulence in Galleria mellonella larvae, cytotoxicity in human bronchial epithelial cells, and biofilm formation. Acute lung infection was established by intratracheal instillation with 10.5 × 108 bacterial cells in wild-type and CFTR-knockout (KO) mice expressing a luciferase gene under control of interleukin-8 promoter. Lung inflammation was monitored by in vivo bioluminescence imaging up to 48 h after infection, and mortality was recorded up to 96 h. Lung bacterial load was evaluated by CFU count. Virulent isolates caused higher lung inflammation and mice mortality, especially in KO animals. Isolates both virulent and cytotoxic showed higher persistence in mice lungs, while biofilm formation was not associated with lung inflammation, mice mortality, or bacterial persistence. A positive correlation between virulence and lung inflammation was observed. These results indicate that Achromobacter spp. pathogenic characteristics such as virulence and cytotoxicity may be associated with clinically relevant effects and highlight the importance of elucidating their mechanisms.
Collapse
Affiliation(s)
- Angela Sandri
- Department of Diagnostics and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy
| | - Giulia Maria Saitta
- Department of Diagnostics and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy
| | - Laura Veschetti
- GMLab, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | - Federico Boschi
- Department of Engineering for Innovation Medicine, University of Verona, 37134 Verona, Italy
| | - Rebeca Passarelli Mantovani
- Department of Diagnostics and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy
| | - Maria Carelli
- Department of Diagnostics and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy
| | - Paola Melotti
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata Verona, 37126 Verona, Italy
| | - Caterina Signoretto
- Department of Diagnostics and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy
| | - Marzia Boaretti
- Department of Diagnostics and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy
| | - Giovanni Malerba
- GMLab, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | - Maria M Lleò
- Department of Diagnostics and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy
| |
Collapse
|
2
|
ABCC7/CFTR Expression Is Associated with the Clinical Course of Ulcerative Colitis Patients. Gastroenterol Res Pract 2021; 2021:5536563. [PMID: 34512749 PMCID: PMC8426104 DOI: 10.1155/2021/5536563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 07/01/2021] [Accepted: 08/17/2021] [Indexed: 12/28/2022] Open
Abstract
Inflammatory bowel disease includes ulcerative colitis (UC) and Crohn's disease (CD) of unknown etiology. The expression of ATP-binding cassette (ABC) family proteins has been associated with drug resistance and development of UC. The cystic fibrosis transmembrane conductance regulator (CFTR) or also known as ABCC7 is involved in the inflammatory chronic response. The aim of this study was to evaluate the role of ABCC7/CFTR in UC patients and normal controls without inflammation. This is an exploratory, observational, and cross-sectional study that included a total of 62 patients with UC and normal controls. Gene expression of CFTR was measured by RT-PCR, and protein expression of CFTR was determined by western blot analysis. We found a significant downregulation of the CFTR gene expression in patients with active UC compared to normal controls without inflammation (P < 0.004); even the gene expression of CFTR was decreased in remission UC patients compared to normal controls without inflammation (P = 0.04). The CFTR gene expression was associated with the clinical course of UC and the protein expression of CFTR was decreased in active UC patients compared to normal controls without inflammation suggesting that this molecule might play a role in the inflammation in UC patients.
Collapse
|
3
|
Uhl B, Braun C, Dominik J, Luft J, Canis M, Reichel CA. A Novel Experimental Approach for In Vivo Analyses of the Salivary Gland Microvasculature. Front Immunol 2021; 11:604470. [PMID: 33679695 PMCID: PMC7925411 DOI: 10.3389/fimmu.2020.604470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/21/2020] [Indexed: 12/28/2022] Open
Abstract
Microvascular dysfunction plays a fundamental role in the pathogenesis of salivary gland disorders. Restoring and preserving microvascular integrity might therefore represent a promising strategy for the treatment of these pathologies. The mechanisms underlying microvascular dysfunction in salivary glands, however, are still obscure, partly due to the unavailability of adequate in vivo models. Here, we present a novel experimental approach that allows comprehensive in vivo analyses of the salivary gland microvasculature in mice. For this purpose, we employed different microscopy techniques including multi-photon in vivo microscopy to quantitatively analyze interactions of distinct immune cell subsets in the submandibular gland microvasculature required for their infiltration into the surrounding parenchyma and their effects on microvascular function. Confocal microscopy and multi-channel flow cytometry in tissue sections/homogenates complemented these real-time analyses by determining the molecular phenotype of the participating cells. To this end, we identified key adhesion and signaling molecules that regulate the subset- and tissue-specific trafficking of leukocytes into inflamed glands and control the associated microvascular leakage. Hence, we established an experimental approach that allows in vivo analyses of microvascular processes in healthy and diseased salivary glands. This enables us to delineate distinct pathogenetic factors as novel therapeutic targets in salivary gland diseases.
Collapse
Affiliation(s)
- Bernd Uhl
- Department of Otorhinolaryngology—Head and Neck Surgery, Ludwig-Maximilians-Universität München, Munich, Germany
- Walter Brendel Centre for Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Constanze Braun
- Walter Brendel Centre for Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Julian Dominik
- Walter Brendel Centre for Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Joshua Luft
- Walter Brendel Centre for Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Martin Canis
- Department of Otorhinolaryngology—Head and Neck Surgery, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christoph A. Reichel
- Department of Otorhinolaryngology—Head and Neck Surgery, Ludwig-Maximilians-Universität München, Munich, Germany
- Walter Brendel Centre for Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
4
|
Airways glutathione S-transferase omega-1 and its A140D polymorphism are associated with severity of inflammation and respiratory dysfunction in cystic fibrosis. J Cyst Fibros 2021; 20:1053-1061. [PMID: 33583732 DOI: 10.1016/j.jcf.2021.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/10/2020] [Accepted: 01/26/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Glutathione S-transferase omega-1 (GSTO1-1) is a cytosolic enzyme that modulates the S-thiolation status of intracellular factors involved in cancer cell survival or in the inflammatory response. Studies focusing on chronic obstructive pulmonary disease (COPD) have demonstrated that GSTO1-1 is detectable in alveolar macrophages, airway epithelium and in the extracellular compartment, where its functions have not been completely understood. Moreover GSTO1-1 polymorphisms have been associated with an increased risk to develop COPD. Against this background, the aim of this study was to evaluate GSTO1-1 levels and its polymorphisms in cystic fibrosis (CF) patients. METHODS Clinical samples from a previous study published by our groups were analyzed for GSTO1-1 levels and polymorphisms. For comparison, a model of lung inflammation in CFTR-knock out mice was also used. RESULTS Our data document that soluble GSTO1-1 can be found in the airways of CF patients and correlates with inflammatory parameters such as neutrophilic elastase and the chemokine IL-8. A negative correlation was found between GSTO1-1 levels and the spirometric parameter FEV1 and the FEV1/FVC ratio. Additionally, the A140D polymorphism of GSTO1-1 was associated with lower levels of the antiinflammatory mediators PGE2 and 15(S)-HETE, and with lower values of the FEV1/FVC ratio in CF subjects with the homozygous CFTR ΔF508 mutation. CONCLUSIONS Our data suggest that extracellular GSTO1-1 and its polymorphysms could have a biological and clinical significance in CF. Pathophysiological functions of GSTOs are far from being completely understood, and more studies are required to understand the role(s) of extracellular GSTO1-1 in inflamed tissues.
Collapse
|
5
|
Sandri A, Lleo MM, Signoretto C, Boaretti M, Boschi F. Protease inhibitors elicit anti-inflammatory effects in CF mice with Pseudomonas aeruginosa acute lung infection. Clin Exp Immunol 2020; 203:87-95. [PMID: 32946591 DOI: 10.1111/cei.13518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 08/03/2020] [Accepted: 09/09/2020] [Indexed: 01/30/2023] Open
Abstract
Pseudomonas aeruginosa is the major respiratory pathogen in patients with cystic fibrosis (CF). P. aeruginosa-secreted proteases, in addition to host proteases, degrade lung tissue and interfere with immune processes. In this study, we aimed at evaluating the possible anti-inflammatory effects of protease inhibitors Marimastat and Ilomastat in the treatment of P. aeruginosa infection. Lung infection with the P. aeruginosa PAO1 strain was established in wild-type and cystic fibrosis transmembrane conductance regulator (CFTR) knock-out C57BL/6 mice expressing a luciferase gene under control of bovine interleukin (IL)-8 promoter. After intratracheal instillation with 150 µM Marimastat and Ilomastat, lung inflammation was monitored by in-vivo bioluminescence imaging and bacterial load in the lungs was assessed. In vitro, the effects of protease inhibitors on PAO1 growth and viability were evaluated. Acute lung infection was established in both wild-type and CFTR knock-out mice. After 24 h, the infection induced IL-8-dependent bioluminescence emission, indicating lung inflammation. In infected mice with ongoing inflammation, intratracheal treatment with 150 µM Marimastat and Ilomastat reduced the bioluminescence signal in comparison to untreated, infected animals. Bacterial load in the lungs was not affected by the treatment, and in vitro the same dose of Marimastat and Ilomastat did not affect PAO1 growth and viability, confirming that these molecules have no additional anti-bacterial activity. Our results show that inhibition of protease activity elicits anti-inflammatory effects in cystic fibrosis (CF) mice with acute P. aeruginosa lung infection. Thus, Marimastat and Ilomastat represent candidate molecules for the treatment of CF patients, encouraging further studies on protease inhibitors and their application in inflammatory diseases.
Collapse
Affiliation(s)
- A Sandri
- Department of Diagnostics and Public Health, Section of Microbiology, University of Verona, Verona, Italy
| | - M M Lleo
- Department of Diagnostics and Public Health, Section of Microbiology, University of Verona, Verona, Italy
| | - C Signoretto
- Department of Diagnostics and Public Health, Section of Microbiology, University of Verona, Verona, Italy
| | - M Boaretti
- Department of Diagnostics and Public Health, Section of Microbiology, University of Verona, Verona, Italy
| | - F Boschi
- Department of Computer Science, University of Verona, Verona, Italy
| |
Collapse
|
6
|
Affiliation(s)
- Xinping Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University Nanjing China
| | - Xiaoyang Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University Nanjing China
| | - Yuxin Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University Nanjing China
| | - Fu‐Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University Nanjing China
| |
Collapse
|
7
|
Raha S, Kim SM, Lee HJ, Lee SJ, Heo JD, Saralamma VVG, Ha SE, Kim EH, Mun SP, Kim GS. Essential oil from Korean Chamaecyparis obtusa leaf ameliorates respiratory activity in Sprague‑Dawley rats and exhibits protection from NF-κB-induced inflammation in WI38 fibroblast cells. Int J Mol Med 2019; 43:393-403. [PMID: 30387810 PMCID: PMC6257863 DOI: 10.3892/ijmm.2018.3966] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 10/25/2018] [Indexed: 01/19/2023] Open
Abstract
To date, Korean hinoki cypress (Chamaecyparis obtusa), has been widely used for household and commercial purposes. Although the medicinal efficacy of hinoki cypress essential oil has been observed, that of the essential oil‑derived terpenes, which exhibit a mechanism that acts against lung inflammation, remains to be fully elucidated. The present study investigated the anti‑inflammatory effect of hinoki cypress leaf extracted essential oil on lipopolysaccharide (LPS)‑stimulated WI38 fibroblast cells by inhibiting the nuclear factor κ‑light‑chain‑enhancer of activated B cells (NF‑κB) pathway, which exhibited lung tissue protection through the olfactory administration of essential oil in Sprague‑Dawley rats. GC/MS analysis derived 24 terpenes from the essential oil. The morphological observations revealed that, upon LPS stimulation of WI38 fibroblast cells, inflammation was induced, whereas the condition of the cells reverted to normal in the essential oil extract pre‑treated group. The results of western blot analysis revealed the inhibition of inducible nitric oxide synthase, activation of cyclooxygnase‑2, and the degradation of cytosolic p65 and inhibitor of NF‑κB‑α in the LPS‑stimulated group. Additionally, confocal imaging of nuclei revealed the translocation of phosphorylated p65, which was recovered in the cytosol in the phytoncide essential oil pre‑treated group. Histopathological observation revealed that the alveolar capacity was enhanced in the essential oil olfactory administered rat group, compared with that in the normal rat group. These findings suggest that terpenes in essential oil from the Chamaecyparis obtusa leaf have therapeutic potential against respiratory inflammation‑related disease.
Collapse
Affiliation(s)
- Suchismita Raha
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University
| | - Seong Min Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University
| | - Ho Jeong Lee
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University
| | - Sang Joon Lee
- Gyeongnam Department of Environment Toxicology and Chemistry, Toxicology Screening Research Center, Korea Institute of Toxicology, Jinju, Gyeongsang 52828
| | - Jeong Doo Heo
- Gyeongnam Department of Environment Toxicology and Chemistry, Toxicology Screening Research Center, Korea Institute of Toxicology, Jinju, Gyeongsang 52828
| | | | - Sang Eun Ha
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University
| | - Eun Hee Kim
- Department of Nursing Science, International University of Korea, Jinju, Gyeongsang 52833
| | - Sung Phil Mun
- Department of Wood Science and Technology, Chonbuk National University, Jeonju, Jeollabuk 54896, Republic of Korea
| | - Gon Sup Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University
| |
Collapse
|
8
|
Sandri A, Ortombina A, Boschi F, Cremonini E, Boaretti M, Sorio C, Melotti P, Bergamini G, Lleo M. Inhibition of Pseudomonas aeruginosa secreted virulence factors reduces lung inflammation in CF mice. Virulence 2018; 9:1008-1018. [PMID: 29938577 PMCID: PMC6086295 DOI: 10.1080/21505594.2018.1489198] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background: Cystic fibrosis (CF) lung infection is a complex condition where opportunistic pathogens and defective immune system cooperate in developing a constant cycle of infection and inflammation. The major pathogen, Pseudomonas aeruginosa, secretes a multitude of virulence factors involved in host immune response and lung tissue damage. In this study, we examined the possible anti-inflammatory effects of molecules inhibiting P. aeruginosa virulence factors. Methods: Pyocyanin, pyoverdine and proteases were measured in bacterial culture supernatant from different P. aeruginosa strains. Inhibition of virulence factors by sub-inhibitory concentrations of clarithromycin and by protease inhibitors was evaluated. Lung inflammatory response was monitored by in vivo bioluminescence imaging in wild-type and CFTR-knockout mice expressing a luciferase gene under the control of a bovine IL-8 promoter. Results: The amount of proteases, pyocyanin and pyoverdine secreted by P. aeruginosa strains was reduced after growth in the presence of a sub-inhibitory dose of clarithromycin. Intratracheal challenge with culture supernatant containing bacteria-released products induced a strong IL-8-mediated response in mouse lungs while lack of virulence factors corresponded to a reduction in bioluminescence emission. Particularly, sole inactivation of proteases by inhibitors Ilomastat and Marimastat also resulted in decreased lung inflammation. Conclusions: Our data support the assumption that virulence factors are involved in P. aeruginosa pro-inflammatory action in CF lungs; particularly, proteases seem to play an important role. Inhibition of virulence factors production and activity resulted in decreased lung inflammation; thus, clarithromycin and protease inhibitors potentially represent additional therapeutic therapies for P. aeruginosa-infected patients.
Collapse
Affiliation(s)
- Angela Sandri
- a Department of Diagnostics and Public Health , University of Verona , Verona , Italy
| | - Alessia Ortombina
- a Department of Diagnostics and Public Health , University of Verona , Verona , Italy
| | - Federico Boschi
- b Department of Computer Science , University of Verona , Verona , Italy
| | - Eleonora Cremonini
- a Department of Diagnostics and Public Health , University of Verona , Verona , Italy
| | - Marzia Boaretti
- a Department of Diagnostics and Public Health , University of Verona , Verona , Italy
| | - Claudio Sorio
- c Department of Medicine , University of Verona , Verona , Italy
| | - Paola Melotti
- d Cystic Fibrosis Center , Azienda Ospedaliera Universitaria Integrata di Verona , Verona , Italy
| | | | - Maria Lleo
- a Department of Diagnostics and Public Health , University of Verona , Verona , Italy
| |
Collapse
|
9
|
Ruscitti F, Ravanetti F, Donofrio G, Ridwan Y, van Heijningen P, Essers J, Villetti G, Cacchioli A, Vos W, Stellari FF. A Multimodal Imaging Approach Based on Micro-CT and Fluorescence Molecular Tomography for Longitudinal Assessment of Bleomycin-Induced Lung Fibrosis in Mice. J Vis Exp 2018. [PMID: 29708527 DOI: 10.3791/56443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease characterized by the progressive and irreversible destruction of lung architecture, which causes significant deterioration in lung function and subsequent death from respiratory failure. The pathogenesis of IPF in experimental animal models has been induced by bleomycin administration. In this study, we investigate an IPF-like mouse model induced by a double intratracheal bleomycin instillation. Standard histological assessments used for studying lung fibrosis are invasive terminal procedures. The goal of this work is to monitor lung fibrosis through noninvasive imaging techniques such as Fluorescent Molecular Tomography (FMT) and Micro-CT. These two technologies validated with histology findings could represent a revolutionary functional approach for real time non-invasive monitoring of IPF disease severity and progression. The fusion of different approaches represents a step further for understanding the IPF disease, where the molecular events occurring in a pathological condition can be observed with FMT and the subsequent anatomical changes can be monitored by Micro-CT.
Collapse
Affiliation(s)
| | | | | | | | | | - Jeroen Essers
- Department of Molecular Genetics, Vascular Surgery, Radiation Oncology, Erasmus MC
| | - Gino Villetti
- Corporate Preclinical R&D, Chiesi Farmaceutici S.p.A
| | | | | | | |
Collapse
|
10
|
Bodas M, Mazur S, Min T, Vij N. Inhibition of histone-deacetylase activity rescues inflammatory cystic fibrosis lung disease by modulating innate and adaptive immune responses. Respir Res 2018; 19:2. [PMID: 29301535 PMCID: PMC5755330 DOI: 10.1186/s12931-017-0705-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 12/15/2017] [Indexed: 12/25/2022] Open
Abstract
Background Chronic lung disease resulting from dysfunctional cystic fibrosis transmembrane conductance regulator (CFTR) and NFκB-mediated neutrophilic-inflammation forms the basis of CF-related mortality. Here we aimed to evaluate if HDAC inhibition controls Pseudomonas-aeruginosa-lipopolysaccharide (Pa-LPS) induced airway inflammation and CF-lung disease. Methods For in vitro experiments, HEK293-cells were transfected with IL-8 or NFκB-firefly luciferase, and SV40-renilla- luciferase reporter constructs or ΔF508-CFTR-pCEP, followed by treatment with suberoylanilide hydroxamic acid (SAHA), Trichostatin-A (TSA) and/or TNFα. For murine studies, Cftr+/+ or Cftr−/− mice (n = 3) were injected/instilled with Pa-LPS and/or treated with SAHA or vehicle control. The progression of lung disease was monitored by quantifying changes in inflammatory markers (NFκB), cytokines (IL-6/IL-10), neutrophil activity (MPO, myeloperoxidase and/or NIMP-R14) and T-reg numbers. Results SAHA treatment significantly (p < 0.05) suppresses TNFα-induced NFκB and IL-8 reporter activities in HEK293-cells. Moreover, SAHA, Tubacin (selective HDAC6-inhibitor) or HDAC6-shRNAs controls CSE-induced ER-stress activities (p < 0.05). In addition, SAHA restores trafficking of misfolded-ΔF508-CFTR, by inducing protein levels of both B and C forms of CFTR. Murine studies using Cftr+/+ or Cftr−/− mice verified that SAHA controls Pa-LPS induced IL-6 levels, and neutrophil (MPO levels and/or NIMP-R14), NFκB-(inflammation) and Nrf2 (oxidative-stress marker) activities, while promoting FoxP3+ T-reg activity. Conclusion In summary, SAHA-mediated HDAC inhibition modulates innate and adaptive immune responses involved in pathogenesis and progression of inflammatory CF-lung disease. Electronic supplementary material The online version of this article (10.1186/s12931-017-0705-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manish Bodas
- College of Medicine, Central Michigan University, 2630 Denison Drive, Room# 120 (Office) & 126-127 (Lab), Mt Pleasant, MI, USA.,Department of Pediatrics and Pulmonary Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steven Mazur
- Department of Pediatrics and Pulmonary Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,National Institute of Allergy and Infectious Diseases, National Institutes of Health, Integrated Research Facility at Fort Detrick, Fort Detrick, Frederick, MD, USA
| | - Taehong Min
- Department of Pediatrics and Pulmonary Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Genentech, 1 DNA Way, San Francisco, CA, USA
| | - Neeraj Vij
- College of Medicine, Central Michigan University, 2630 Denison Drive, Room# 120 (Office) & 126-127 (Lab), Mt Pleasant, MI, USA. .,Department of Pediatrics and Pulmonary Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,VIJ Biotech LLC, Baltimore, Maryland, USA.
| |
Collapse
|
11
|
Royal Jelly Inhibits Pseudomonas aeruginosa Adherence and Reduces Excessive Inflammatory Responses in Human Epithelial Cells. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3191752. [PMID: 29075644 PMCID: PMC5623779 DOI: 10.1155/2017/3191752] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/05/2017] [Accepted: 07/02/2017] [Indexed: 12/12/2022]
Abstract
Pseudomonas aeruginosa is a Gram-negative bacterium and causes respiratory infection especially in elderly patients. Royal jelly has been used worldwide as a traditional remedy and as a nutrient; however, the effect against P. aeruginosa is unclear. The aim of this study was to analyze antibacterial, antiadherent, and anti-inflammatory effects of royal jelly against P. aeruginosa. Wild-type strain PAO1 and clinical isolates of P. aeruginosa were used for antibacterial assay and antiadherent assay to abiotic surface and epithelial cells, which are pharynx (Detroit 562) and lung (NCI-H292) epithelial cells. In anti-inflammatory assay, epithelial cells were pretreated with royal jelly before bacterial exposure to investigate its inhibitory effect on interleukin (IL-8) and macrophage inflammatory protein-3α/CCL20 overproduction. Although royal jelly did not have antibacterial activity at concentration of 50% w/v, antiadherent activity was confirmed on the abiotic surface and epithelial cells under concentration of 25%. Pretreatment with royal jelly significantly inhibited overproduction of IL-8 and CCL20 from both cells. These results demonstrated that royal jelly inhibits P. aeruginosa adherence and protects epithelial cells from excessive inflammatory responses against P. aeruginosa infection. Our findings suggested that royal jelly may be a useful supplement as complementary and alternative medicine for preventing respiratory infection caused by P. aeruginosa.
Collapse
|
12
|
Boschi F, De Sanctis F. Overview of the optical properties of fluorescent nanoparticles for optical imaging. Eur J Histochem 2017; 61:2830. [PMID: 29046056 PMCID: PMC5579469 DOI: 10.4081/ejh.2017.2830] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 07/22/2017] [Accepted: 07/26/2017] [Indexed: 02/08/2023] Open
Abstract
Nanoparticles (NPs) include a wide group of small structures composed by very different materials and characterized by peculiar properties that make them suitable for many applications, especially imaging and drug delivery. In this overview, we focus on the optical properties of fluorescent NPs available for in vivo, in vitro and ex vivo preclinical studies and detectable with the optical imaging technique alone or in combination with microscopic confocal imaging. We summarize here the basic principles of the optical detection of fluorescent NPs, elucidating which are the current issues to be resolved and possible solutions to achieve the highest sensitivity and specificity for an unbiased analysis. So far NPs application in clinic is in evaluation due to safety questions still unaddressed but in the future they could dramatically improve both preclinical research and patient clinical care.
Collapse
|
13
|
Bergamini G, Stellari F, Sandri A, M Lleo M, Donofrio G, Ruscitti F, Boschi F, Sbarbati A, Villetti G, Melotti P, Sorio C. An IL-8 Transiently Transgenized Mouse Model for the In Vivo Long-term Monitoring of Inflammatory Responses. J Vis Exp 2017. [PMID: 28715404 DOI: 10.3791/55499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Airway inflammation is often associated with bacterial infections and represents a major determinant of lung disease. The in vivo determination of the pro-inflammatory capabilities of various factors is challenging and requires terminal procedures, such as bronchoalveolar lavage and the removal of lungs for in situ analysis, precluding longitudinal visualization in the same mouse. Here, lung inflammation is induced through the intratracheal instillation of Pseudomonas aeruginosa culture supernatant (SN) in transiently transgenized mice expressing the luciferase reporter gene under the control of a heterologous IL-8 bovine promoter. Luciferase expression in the lung is monitored by in vivo bioluminescent image (BLI) analysis over a 2.5- to 48-h timeframe following the instillation. The procedure can be repeated multiple times within 2 - 3 months, thus permitting the evaluation of the inflammatory response in the same mice without the need to terminate the animals. This approach permits the monitoring of pro- and anti-inflammatory factors acting in the lung in real time and appears suitable for functional and pharmacological studies.
Collapse
Affiliation(s)
- Gabriella Bergamini
- Department of Medicine, General Pathology Division, Cystic Fibrosis Translational Research Laboratory "D. Lissandrini", University of Verona
| | | | - Angela Sandri
- Department of Diagnostic and Public Health, Microbiology Division, University of Verona
| | - Maria M Lleo
- Department of Diagnostic and Public Health, Microbiology Division, University of Verona
| | | | - Francesca Ruscitti
- Department of Biomedical Biotechnological and Translational Sciences, University of Parma; Corporate Preclinical R&D, Chiesi Farmaceutici S.p.A
| | | | - Andrea Sbarbati
- Department of Neurological, Biomedical and Movement Sciences, University of Verona
| | - Gino Villetti
- Corporate Preclinical R&D, Chiesi Farmaceutici S.p.A
| | | | - Claudio Sorio
- Department of Medicine, General Pathology Division, Cystic Fibrosis Translational Research Laboratory "D. Lissandrini", University of Verona;
| |
Collapse
|
14
|
Stellari FF, Ruscitti F, Pompilio D, Ravanetti F, Tebaldi G, Macchi F, Verna AE, Villetti G, Donofrio G. Heterologous Matrix Metalloproteinase Gene Promoter Activity Allows In Vivo Real-time Imaging of Bleomycin-Induced Lung Fibrosis in Transiently Transgenized Mice. Front Immunol 2017; 8:199. [PMID: 28298912 PMCID: PMC5331072 DOI: 10.3389/fimmu.2017.00199] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/10/2017] [Indexed: 12/14/2022] Open
Abstract
Idiopathic pulmonary fibrosis is a very common interstitial lung disease derived from chronic inflammatory insults, characterized by massive scar tissue deposition that causes the progressive loss of lung function and subsequent death for respiratory failure. Bleomycin is used as the standard agent to induce experimental pulmonary fibrosis in animal models for the study of its pathogenesis. However, to visualize the establishment of lung fibrosis after treatment, the animal sacrifice is necessary. Thus, the aim of this study was to avoid this limitation by using an innovative approach based on a double bleomycin treatment protocol, along with the in vivo images analysis of bleomycin-treated mice. A reporter gene construct, containing the luciferase open reading frame under the matrix metalloproteinase-1 promoter control region, was tested on double bleomycin-treated mice to investigate, in real time, the correlation between bleomycin treatment, inflammation, tissue remodeling and fibrosis. Bioluminescence emitted by the lungs of bleomycin-treated mice, corroborated by fluorescent molecular tomography, successfully allowed real time monitoring of fibrosis establishment. The reporter gene technology experienced in this work could represent an advanced functional approach for real time non-invasive assessment of disease evolution during therapy, in a reliable and translational living animal model.
Collapse
Affiliation(s)
| | | | - Daniela Pompilio
- Chiesi Farmaceutici S.p.A., Corporate Pre-Clinical R&D, Parma, Italy; Dipartimento di Scienze Medico Veterinarie, Università di Parma, Parma, Italy
| | - Francesca Ravanetti
- Dipartimento di Scienze Medico Veterinarie, Università di Parma , Parma , Italy
| | - Giulia Tebaldi
- Dipartimento di Scienze Medico Veterinarie, Università di Parma , Parma , Italy
| | - Francesca Macchi
- Dipartimento di Scienze Medico Veterinarie, Università di Parma , Parma , Italy
| | | | - Gino Villetti
- Chiesi Farmaceutici S.p.A., Corporate Pre-Clinical R&D , Parma , Italy
| | - Gaetano Donofrio
- Dipartimento di Scienze Medico Veterinarie, Università di Parma , Parma , Italy
| |
Collapse
|