1
|
Yu M, Pan Q, Li W, Du T, Huang F, Wu H, He Y, Wu X, Shi H. Isoliquiritigenin inhibits gastric cancer growth through suppressing GLUT4 mediated glucose uptake and inducing PDHK1/PGC-1α mediated energy metabolic collapse. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155045. [PMID: 37742526 DOI: 10.1016/j.phymed.2023.155045] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 08/12/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Isoliquiritigenin (ISL), a natural flavonoid, has anti-tumor activity. But, the understanding of the impact and molecular mechanism of ISL on the growth of gastric cancer (GC) remains limited. PURPOSE The study was to explore the tumor suppressive effect of ISL on GC growth both in vitro and in vivo, meanwhile, clarify its molecular mechanisms. METHODS Cell viability was detected by cell counting kit-8 (CCK-8) assay. Apoptotic cells in vitro were monitored by Hoechst 33,342 solution. Protein expression was assessed by Western blot. Reactive oxygen species (ROS) level was evaluated by utilizing 2',7'- dichlorofluorescin diacetate (DCFH-DA). Lactic acid level was detected with L-lactate assay kit. Glucose uptake was monitored with fluorescently tagged glucose 2-[N-(7-nitrobenz-2-oxa-1,3-diaxol-4-yl)amino]-2-deoxyglucose (2-NBDG). Glycolytic proton efflux rate (GlycoPER) was evaluated by glycolytic rate assay kit. Oxygen consumption rate (OCR) was conducted by mito stress test kit. A nude mouse model of gastric cancer cell xenograft was established by subcutaneous injection with MGC803 cells. Pathological changes were evaluated by using H&E staining. Cell apoptosis in vivo was evaluated by terminal deoxy-nucleotide transferase mediated dUTP nick end labeling (TUNEL) assay. RESULTS ISL remarkably suppressed GC growth and increased cell apoptosis. It regulated apoptosis-related and metabolism-related protein expression both in vitro and in vivo. ISL blocked glucose uptake and suppressed production and secretion of lactic acid, which was accompanied with suppressed mitochondrial oxidative phosphorylation (OXPHOS) and glycolysis but increased ROS accumulation. Overexpression of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α), cellular-myelocytomatosis viral oncogene (c-Myc), hypoxia inducible factor-1α (HIF-1α), glucose transporter 4 (GLUT4) or pyruvate dehydrogenase kinase 1 (PDHK1), could abolish ISL-induced inhibition of cell viability in GC cells. CONCLUSION These findings implicated that ISL inhibits GC growth by decreasing GLUT4 mediated glucose uptake and inducing PDHK1/PGC-1α-mediated energy metabolic collapse through depressing protein expression of c-Myc and HIF-1α in GC, suggesting its potential application for GC treatment.
Collapse
Affiliation(s)
- Mingzhu Yu
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qiaoling Pan
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenbiao Li
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tingting Du
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yixin He
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
Luo D, Wen YE, Chen H, Deng Z, Zheng J, Chen S, Peng J, Lian L. Implication of perineural invasion in patients with stage II gastric cancer. World J Surg Oncol 2023; 21:372. [PMID: 38031044 PMCID: PMC10685670 DOI: 10.1186/s12957-023-03236-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Perineural invasion (PNI) is regarded as a prognostic factor for patients with GC. However, the significance of PNI in patients with stage II GC remains unclear. This study aimed to investigate the clinical implication of PNI in patients with stage II GC undergoing curative resection. METHODS Patients with stage II GC who underwent curative resection were retrospectively evaluated from January 2010 to July 2019. According to PNI status, all patients were divided into two groups: with or without PNI. The prognostic value of PNI was analyzed by univariate and multivariate Cox proportional hazards regression models. RESULTS A total of 233 patients were included in this study. There were 100 patients with PNI (42.92%) and 133 patients without PNI (57.08%). The overall survival (OS) and disease-free survival (DFS) rates for patients with PNI were significantly lower than that for patients without PNI (p = 0.019 and p = 0.032, respectively). Multivariate analysis indicated that the presence of PNI was an independent risk factor for OS (hazard ratio (HR): 1.76, 95% confidence interval (CI) 1.02-3.06, p = 0.044) and DFS (HR: 1.70, 95% CI 1.04-2.80, p = 0.035), while adjuvant chemotherapy (AC) was an independent protective factor for OS (HR: 0.51, 95% CI 0.30-0.88, p = 0.016) and DFS (HR: 0.52, 95% CI 0.31-0.86, p = 0.011). Furthermore, among patients with PNI, those who received AC had better OS (p = 0.022) and DFS (p = 0.027) than their counterparts. When patients with PNI received AC, the OS (p = 0.603) and DFS (p = 0.745) appeared to be similar to those without PNI and no AC. CONCLUSION In patients with stage II GC undergoing curative resection, the presence of PNI was associated with worse survival, which appeared to improve with the treatment of AC, indicating a potential need for more intensive AC.
Collapse
Affiliation(s)
- Dandong Luo
- Department of General Surgery (Department of Gastric Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuancun Er Heng Rd. Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Pathology, The First People's Hospital of Kashi Prefecture, Kashi, China
| | - Yue-E Wen
- Department of General Surgery (Department of Gastric Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuancun Er Heng Rd. Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Huaxian Chen
- Department of General Surgery (Department of Gastric Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuancun Er Heng Rd. Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zijian Deng
- Department of General Surgery (Department of Gastric Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuancun Er Heng Rd. Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiabo Zheng
- Department of General Surgery (Department of Gastric Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuancun Er Heng Rd. Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shi Chen
- Department of General Surgery (Department of Gastric Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuancun Er Heng Rd. Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Junsheng Peng
- Department of General Surgery (Department of Gastric Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuancun Er Heng Rd. Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Lei Lian
- Department of General Surgery (Department of Gastric Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuancun Er Heng Rd. Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
3
|
Li Y, Zhao D, Zhang W, Yang M, Wu Z, Shi W, Lan S, Guo Z, Yu H, Wu D. A novel camptothecin derivative, ZBH-01, exhibits superior antitumor efficacy than irinotecan by regulating the cell cycle. J Transl Med 2023; 21:422. [PMID: 37386467 PMCID: PMC10308760 DOI: 10.1186/s12967-023-04196-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 05/14/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Irinotecan (CPT-11) is a classic chemotherapeutic agent that plays an important role in the clinical treatment of metastatic colon cancer and other malignant tumors. We previously designed a series of novel irinotecan derivatives. In this study, we select one representative, ZBH-01, to investigate its sophisticated antitumor mechanism in colon tumor cells. METHODS The cytotoxic activity of ZBH-01 on colon cancer cells was evaluate by MTT or Cell Counting Kit-8 (CCK8) assay, 3D and xenograft model. The inhibitory effect of ZBH-01 on TOP1 was detected by DNA relaxation assay and Immuno Complex of Ezyme (ICE) bioassay. The molecular mechanism of ZBH-01 was explored by Next-Generation Sequencing (NGS), bioinformatics analyses, flow cytometry, qRT-PCR, and western blot etc. RESULTS: ZBH-01 can induce obvious DNA damage and has superior antitumor activity against colon cancer cells compared to CPT-11 and SN38 (7-Ethyl-10-hydroxy camptothecin, the in vivo active form of CPT-11) both in vivo and in vitro. Its inhibitory effect on topoisomerase I (TOP1) was also comparable with these two control drugs. There are a much larger number of 842 downregulated and 927 upregulated mRNAs in ZBH-01 treatment group than that in the controls. The most significantly enriched KEGG pathways for these dysregulated mRNAs were DNA replication, the p53 signaling pathway, and the cell cycle. After constructing a protein-protein interaction (PPI) network and screening out a prominent cluster, 14 involved in the cell cycle process was identified. Consistently, ZBH-01 induced G0/G1 phase arrest in colon cancer cells, while CPT-11/SN38 caused S phase arrest. The initiation of apoptosis by ZBH-01 was also superior to CPT-11/SN38, followed by the increased expression of Bax, active caspase 3, and cleaved-PARP, and decreased expression of Bcl-2. Additionally, CCNA2 (cyclin A2), CDK2 (cyclin-dependent kinase 2), and MYBL2 (MYB proto-oncogene like 2) might be involved in the G0/G1 cell cycle arrest induced by ZBH-01. CONCLUSIONS ZBH-01 can be an antitumor candidate drug for preclinical study in the future.
Collapse
Affiliation(s)
- Yongqi Li
- Department of Cancer Centre, The First Hospital of Jilin University, Changchun, 130021, China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, 130061, China
| | - Dawei Zhao
- Department of Breast Tumor, Jilin Cancer Hospital, Changchun, 130012, China
| | - Wenqiu Zhang
- Department of Cancer Centre, The First Hospital of Jilin University, Changchun, 130021, China
| | - Miaomiao Yang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, 130061, China
| | - Zhihui Wu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, 130061, China
| | - Weiguo Shi
- Institute of Pharmacology and Toxicology Academy of Military Medical Sciences, Beijing, 100850, China
| | - Shijie Lan
- Department of Cancer Centre, The First Hospital of Jilin University, Changchun, 130021, China
| | - Zhen Guo
- Department of Cancer Centre, The First Hospital of Jilin University, Changchun, 130021, China
| | - Hong Yu
- Cell Biology Laboratory, Jilin Province Institute of Cancer Prevention and Treatment, Jilin Cancer Hospital, Changchun, 130012, China.
| | - Di Wu
- Department of Cancer Centre, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
4
|
ShengPeng Y, Hong W. RSCMDA: Prediction of Potential miRNA-Disease Associations Based on a Robust Similarity Constraint Learning Method. Interdiscip Sci 2021; 13:559-571. [PMID: 34247324 DOI: 10.1007/s12539-021-00459-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 11/25/2022]
Abstract
With the rapid development of biotechnology and computer technology, increasing studies have shown that the occurrence of many diseases in the human body is closely related to the dysfunction of miRNA, and the relationship between them has become a new research hotspot. Exploring disease-related miRNAs information provides a new perspective for understanding the etiology and pathogenesis of diseases. In this study, we proposed a new method based on similarity constrained learning (RSCMDA) to infer disease-associated miRNAs. Considering the problems of noise and incomplete information in current biological datasets, we designed a new framework RSCMDA, which can learn a new disease similarity network and miRNA similarity network based on the existing biological information, and then update the predicted miRNA-disease associations using robust similarity constraint learning method. Consequently, the AUC scores obtained in the global and local cross-validation of RSCMDA are 0.9465 and 0.8494, respectively, which are superior to the other methods. Besides, the prediction performance of RSCMDA is further confirmed by the case study on lung Neoplasms, because 94% of the top 50 miRNAs predicted by the RSCMDA method are confirmed from the existing biological databases or research results. All the results show that RSCMDA is a reliable and effective framework, which can be used as new technology to explore the relationship between miRNA and disease.
Collapse
Affiliation(s)
- Yu ShengPeng
- School of Information Science and Engineering, Shandong Normal University, Jinan, 250358, China
| | - Wang Hong
- School of Information Science and Engineering, Shandong Normal University, Jinan, 250358, China.
| |
Collapse
|
5
|
Bu X, Zhang A, Chen Z, Zhang X, Zhang R, Yin C, Zhang J, Zhang Y, Yan Y. Migration of gastric cancer is suppressed by recombinant Newcastle disease virus (rL-RVG) via regulating α7-nicotinic acetylcholine receptors/ERK- EMT. BMC Cancer 2019; 19:976. [PMID: 31640627 PMCID: PMC6805660 DOI: 10.1186/s12885-019-6225-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 10/09/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Nicotinic acetylcholine receptors (nAChRs) have been reported to be overexpressed in malignancies in humans and is associated with tumorigenesis and cell migration. In previous studies of gastric cancer, alpha7 nicotinic acetylcholine receptor (α7-nAChR) overexpression leads to epithelial-mesenchymal transition (EMT) and promotes the migration of gastric cancer cells. Recombinant avirulent LaSota strain of Newcastle disease virus (NDV) expressing the rabies virus glycoprotein (rL-RVG) may promote apoptosis of gastric cancer cells and reduces the migration of lung cancer metastasis. However, whether rL-RVG inhibits migration of gastric cancer cells and what the underlying functional mechanism is remains unknown. METHODS The gastric cancer cell lines BGC and SGC were randomly divided into 3 groups: rL-RVG, NDV and Phosphate Buffered Solution (PBS) control groups. Furthermore,we adopted ACB and MLA,α7nAChR-siRNA for the overexpression and silencing of α7-nAChR.Corynoxenine was used for inhibiting the MEK-ERK pathway. Western blot, Immunofluoresce,cell proliferation assays,cell migration analyses through wound-healing assays and Transwell assays were used to explore the underlying mechanisms. A mouse xenograft model was used to investigate the effects of rL-RVG,NDV on tumor growth. RESULTS In this study, our findings demonstrate that rL-RVG suppressed the migration of gastric cancer cells and reduced EMT via α7-nAChR in vitro. Furthermore rL-RVG decreased the phosphorylation levels of the MEK/ERK signaling pathway such as down-regulating the expression of P-MEK and P-ERK. Additionally, rL-RVG also reduced the expression level of mesenchymal markers N-cadherin and Vimentin and enhanced the expression of the epithelial marker E-cadherin. Lastly, rL-RVG inhibited nicotinic acetylcholine receptors (nAChRs) to suppress cell migration and epithelial to mesenchymal transition (EMT) in gastric cell. We also found that rL-RVG suppresses the growth of gastric cancer subcutaneous tumor cells in vivo. CONCLUSION rL-RVG inhibits α7-nAChR-MEK/ERK-EMT to suppress migration of gastric cancer cells.
Collapse
Affiliation(s)
- Xuefeng Bu
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, DianLi Road No.8, Zhenjiang, 212002, JiangSu, China
| | - Anwei Zhang
- Department of Liver and gallbladder surgery, First People's Hospital of Kunshan, QianJin West Road No.91, Kunshan, 215300, JiangSu, China
- Clinical Medicine College of Jiangsu University, XueFu Road No.301, Zhenjiang, 212013, JiangSu, China
| | - Zhengwei Chen
- Clinical Medicine College of Jiangsu University, XueFu Road No.301, Zhenjiang, 212013, JiangSu, China
| | - Xuanfeng Zhang
- Clinical Medicine College of Jiangsu University, XueFu Road No.301, Zhenjiang, 212013, JiangSu, China
| | - Riting Zhang
- Clinical Medicine College of Jiangsu University, XueFu Road No.301, Zhenjiang, 212013, JiangSu, China
| | - Chaoyun Yin
- Department of General Surgery, Affiliated Hospital of Jiangsu University, JieFang Road No.438, Zhenjiang, 212001, JiangSu, China
| | - Jie Zhang
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, DianLi Road No.8, Zhenjiang, 212002, JiangSu, China
| | - Yao Zhang
- Clinical Medicine College of Jiangsu University, XueFu Road No.301, Zhenjiang, 212013, JiangSu, China
| | - Yulan Yan
- Department of Respiratory Medicine, Affiliated People's Hospital of Jiangsu University, DianLi Road No.8, Zhenjiang, 212002, JiangSu, China.
| |
Collapse
|
6
|
Song ZL, Yang GZ, Li JC, Liu YQ, Yang CJ, Goto M, Zhang ZJ, Morris-Natschke SL, Liu H, Lee KH. Design and synthesis of novel 7-[( N-substituted-thioureidopiperazinyl)-methyl]-camptothecin derivatives as potential cytotoxic agents. Nat Prod Res 2019; 34:2022-2029. [PMID: 30784310 DOI: 10.1080/14786419.2019.1573231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
As part of continuing our research on diverse C-7 derivatives of camptothecin (CPT), 16 CPT derivatives bearing piperazinyl-thiourea chemical scaffold and different substituent groups have been designed, synthesized and evaluated in vitro for cytotoxicity against five tumor cell lines (A-549, MDA-MB-231, MCF-7, KB and KBvin). As a result, all the synthesized compounds showed promising in vitro cytotoxic activity against the five tumor cell lines tested, and were more potent than irinotecan. Importantly, compounds 13 g (IC50 = 0.514 μM) and 13o (IC50 = 0.275 μM) possessed similar or better antiproliferative activity against the multidrug-resistant (MDR) KBvin subline than that of topotecan (IC50 = 0.511 μM) and merit further development as anticancer candidates for clinical trail. With these results in hand, we have a reason to conclude that incorporating piperazinyl-thiourea motifs into position-7 of camptothecin confers well cytotoxic activity against cancer cell lines, probably resulting in new anticancer drugs.
Collapse
Affiliation(s)
- Zi-Long Song
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Guan-Zhou Yang
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Jun-Cai Li
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Chen-Jie Yang
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Masuo Goto
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Susan L Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Hua Liu
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA.,Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan
| |
Collapse
|
7
|
Cinelli MA. Topoisomerase 1B poisons: Over a half-century of drug leads, clinical candidates, and serendipitous discoveries. Med Res Rev 2018; 39:1294-1337. [PMID: 30456874 DOI: 10.1002/med.21546] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/17/2022]
Abstract
Topoisomerases are DNA processing enzymes that relieve supercoiling (torsional strain) in DNA, are necessary for normal cellular division, and act by nicking (and then religating) DNA strands. Type 1B topoisomerase (Top1) is overexpressed in certain tumors, and the enzyme has been extensively investigated as a target for cancer chemotherapy. Various chemical agents can act as "poisons" of the enzyme's religation step, leading to Top1-DNA lesions, DNA breakage, and eventual cellular death. In this review, agents that poison Top1 (and have thus been investigated for their anticancer properties) are surveyed, including natural products (such as camptothecins and indolocarbazoles), semisynthetic camptothecin and luotonin derivatives, and synthetic compounds (such as benzonaphthyridines, aromathecins, and indenoisoquinolines), as well as targeted therapies and conjugates. Top1 has also been investigated as a therapeutic target in certain viral and parasitic infections, as well as autoimmune, inflammatory, and neurological disorders, and a summary of literature describing alternative indications is also provided. This review should provide both a reference for the medicinal chemist and potentially offer clues to aid in the development of new Top1 poisons.
Collapse
Affiliation(s)
- Maris A Cinelli
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
8
|
Mi XJ, Hou JG, Wang Z, Han Y, Ren S, Hu JN, Chen C, Li W. The protective effects of maltol on cisplatin-induced nephrotoxicity through the AMPK-mediated PI3K/Akt and p53 signaling pathways. Sci Rep 2018; 8:15922. [PMID: 30374107 PMCID: PMC6206039 DOI: 10.1038/s41598-018-34156-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 10/01/2018] [Indexed: 01/18/2023] Open
Abstract
Cisplatin, a potent anticancer drug, is usually causing nephrotoxicity; limiting its therapeutic application and efficiency. Maltol may be used to prevent such toxic effect. The aim of this study was to investigate the underlying protective mechanisms of maltol on nephrotoxicity by cisplatin using a cisplatin-treated mouse model and a cellular toxicity model of HEK293 cells. The blood urea nitrogen (BUN), creatinine (CRE) and neutrophil gelatinase-associated lipocalin (NGAL) levels in mice were increased by cisplatin but decreased to normal ranges by maltol pretreatment (50 and 100 mg/kg) for ten days. Besides, maltol pretreatment decreased oxidative stress, lipid peroxidation and apoptosis in cisplatin-treated mice. The inhibitory action of maltol on inflammatory responses was achieved by reducing the expressions in NF-κB, IL-1β, iNOS, and TNF-α in the mice in vivo. Additionally, maltol restored the reduction of PI3K/Akt and mTOR levels by cisplatin through increasing AMPK expression in cisplatin-treated HEK293 cells. Maltol also suppressed the expression of Bax and caspase 3 by inhibiting the p53 activity in HEK293 cells. Overall, maltol may serve as a valuable potential drug to prevent cisplatin-induced nephrotoxicity, and the underlying molecular mechanisms of maltol action may involve intracellular AMPK/PI3K/Akt and p53 signaling pathways.
Collapse
Affiliation(s)
- Xiao-Jie Mi
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Jin-Gang Hou
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
- Intelligent Synthetic Biology Center, Daejeon, 34141, Republic of Korea
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Ye Han
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Shen Ren
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Jun-Nan Hu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Chen Chen
- School of Biomedical Sciences, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
9
|
Liu Z, Chen Z, Wang J, Zhang M, Li Z, Wang S, Dong B, Zhang C, Gao J, Shen L. Mouse avatar models of esophageal squamous cell carcinoma proved the potential for EGFR-TKI afatinib and uncovered Src family kinases involved in acquired resistance. J Hematol Oncol 2018; 11:109. [PMID: 30157900 PMCID: PMC6114252 DOI: 10.1186/s13045-018-0651-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/13/2018] [Indexed: 12/14/2022] Open
Abstract
Background No approved targeted agents are available for esophageal squamous cell carcinoma (ESCC). Informative genomic analysis and mouse patient-derived xenografts (PDX) also called mouse avatar can greatly expedite drug discovery. Methods Six ESCC cell lines and 7 out of 25 PDX models derived from 188 biopsies with clear molecular features were employed to evaluate the sensitivity of several EGFR blockers in vitro and in vivo, as well as the underlying antitumor mechanisms of the most promising EGFR-TKI afatinib. Mechanisms involved in acquired resistance of afatinib were explored based on established resistant cell lines and PDX models followed by an attempt to reverse resistance. Results Compared with other EGFR blockers, the second-generation EGFR-TKI afatinib exerted superior antitumor effects in ESCC, and EGFR copy number gain (CNG) or overexpression was proposed to be predictive biomarkers. Afatinib played its antitumor effects by inhibiting EGFR downstream pathways, as well as inducing apoptosis and cell cycle arrest at G1. It was increased phosphorylation of Src family kinases (SFKs), rather than MET upregulation, that conferred to acquired resistance of afatinib. Dual blockade of EGFR and SFKs could overcome afatinib resistance and warrants validation in clinical practice. Conclusion Both ESCC cell lines and PDXs with EGFR CNG or overexpression are potential candidates for afatinib, and concomitant EGFR/SFKs inhibition could reverse afatinib-acquired resistance caused by SFKs activation in ESCC. Electronic supplementary material The online version of this article (10.1186/s13045-018-0651-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhentao Liu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Zuhua Chen
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Jingyuan Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Mengqi Zhang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Zhongwu Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Shubin Wang
- Department of Oncology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, 518036, Guangdong, China
| | - Bin Dong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Cheng Zhang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Jing Gao
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China. .,Department of Oncology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, 518036, Guangdong, China.
| | - Lin Shen
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China. .,Department of Oncology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, 518036, Guangdong, China.
| |
Collapse
|