1
|
Santos da Silva T, da Silva-Júnior LN, Horvath-Pereira BDO, Valbão MCM, Garcia MHH, Lopes JB, Reis CHB, Barreto RDSN, Buchaim DV, Buchaim RL, Miglino MA. The Role of the Pancreatic Extracellular Matrix as a Tissue Engineering Support for the Bioartificial Pancreas. Biomimetics (Basel) 2024; 9:598. [PMID: 39451804 PMCID: PMC11505355 DOI: 10.3390/biomimetics9100598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/22/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic condition primarily managed with insulin replacement, leading to significant treatment costs. Complications include vasculopathy, cardiovascular diseases, nephropathy, neuropathy, and reticulopathy. Pancreatic islet transplantation is an option but its success does not depend solely on adequate vascularization. The main limitations to clinical islet transplantation are the scarcity of human pancreas, the need for immunosuppression, and the inadequacy of the islet isolation process. Despite extensive research, T1DM remains a major global health issue. In 2015, diabetes affected approximately 415 million people, with projected expenditures of USD 1.7 trillion by 2030. Pancreas transplantation faces challenges due to limited organ availability and complex vascularization. T1DM is caused by the autoimmune destruction of insulin-producing pancreatic cells. Advances in biomaterials, particularly the extracellular matrix (ECM), show promise in tissue reconstruction and transplantation, offering structural and regulatory functions critical for cell migration, differentiation, and adhesion. Tissue engineering aims to create bioartificial pancreases integrating insulin-producing cells and suitable frameworks. This involves decellularization and recellularization techniques to develop biological scaffolds. The challenges include replicating the pancreas's intricate architecture and maintaining cell viability and functionality. Emerging technologies, such as 3D printing and advanced biomaterials, have shown potential in constructing bioartificial organs. ECM components, including collagens and glycoproteins, play essential roles in cell adhesion, migration, and differentiation. Clinical applications focus on developing functional scaffolds for transplantation, with ongoing research addressing immunological responses and long-term efficacy. Pancreatic bioengineering represents a promising avenue for T1DM treatment, requiring further research to ensure successful implementation.
Collapse
Affiliation(s)
- Thamires Santos da Silva
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
| | - Leandro Norberto da Silva-Júnior
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
- Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil; (M.C.M.V.); (M.H.H.G.); (J.B.L.)
| | - Bianca de Oliveira Horvath-Pereira
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
| | - Maria Carolina Miglino Valbão
- Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil; (M.C.M.V.); (M.H.H.G.); (J.B.L.)
| | | | - Juliana Barbosa Lopes
- Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil; (M.C.M.V.); (M.H.H.G.); (J.B.L.)
| | - Carlos Henrique Bertoni Reis
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil;
- UNIMAR Beneficent Hospital (HBU), Medical School, University of Marilia (UNIMAR), Marilia 17525-160, Brazil
| | - Rodrigo da Silva Nunes Barreto
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal 14884-900, Brazil
| | - Daniela Vieira Buchaim
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil;
- Medical School, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
| | - Rogerio Leone Buchaim
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of Sao Paulo, Bauru 17012-901, Brazil
| | - Maria Angelica Miglino
- Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil; (M.C.M.V.); (M.H.H.G.); (J.B.L.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil;
- Postgraduate Program in Animal Health, Production and Environment, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
| |
Collapse
|
2
|
Bahal M, Pande V, Dua J, Mane S. Advances in Type 1 Diabetes Mellitus Management in Children. Cureus 2024; 16:e67377. [PMID: 39310514 PMCID: PMC11416143 DOI: 10.7759/cureus.67377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Recent advancements in the management of type 1 diabetes mellitus (T1DM) have significantly improved outcomes and quality of life for patients, particularly children. Technological innovations, such as continuous glucose monitoring (CGM) systems and insulin pump therapy, including hybrid closed-loop systems, have enhanced glycemic control by providing real-time data and automated insulin delivery. Ultrarapid-acting insulins and adjunctive pharmacotherapies, like sodium-glucose transport protein 2 (SGLT2) inhibitors and glucagon-like peptide 1 (GLP-1) receptor agonists, offer improved postprandial glucose management and reduced insulin requirements. Immunotherapy and beta-cell replacement therapies, including stem cell research and encapsulation devices, aim to preserve or restore endogenous insulin production. Digital health platforms and telemedicine have expanded access to education and support, fostering better self-management. Future directions in precision medicine, artificial intelligence, and microbiome research hold promise for personalized and potentially curative treatments. Collectively, these advances are transforming T1DM management, reducing disease burden, and enhancing the prospects for children with T1DM.
Collapse
Affiliation(s)
- Mridu Bahal
- Pediatrics, Dr. D. Y. Patil Medical College, Hospital and Research Center, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Pune, IND
| | - Vineeta Pande
- Pediatrics, Dr. D. Y. Patil Medical College, Hospital and Research Center, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Pune, IND
| | - Jasleen Dua
- Pediatrics, Dr. D. Y. Patil Medical College, Hospital and Research Center, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Pune, IND
| | - Shailaja Mane
- Pediatrics, Dr. D. Y. Patil Medical College, Hospital and Research Center, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Pune, IND
| |
Collapse
|
3
|
Ferguson AM, Lin AC. Themes, Rates, and Risk of Adverse Events of the Artificial Pancreas in the United States Using MAUDE. Ann Biomed Eng 2024; 52:2282-2286. [PMID: 38740730 PMCID: PMC11247049 DOI: 10.1007/s10439-024-03529-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
Three manufacturers sell artificial pancreas systems in the United States for management of Type 1 Diabetes. Given the life-saving task required of an artificial pancreas there needs to be a high level of trust and safety in the devices. This evaluation sought to find the adjusted safety event reporting rate and themes along with device-associated risk in events reported utilizing the MAUDE database. We searched device names in the MAUDE database over the period from 2016 until August 2023 (the date of retrieval). Thematic analysis was performed using dual-reviewer examination with a 96% concurrence. Relative risk (RR) was calculated for injury, malfunction, and overall, for each manufacturer, as well as adjusted event rate per manufacturer. Most events reported related to defects in the manufacturing of the casing materials which resulted in non-delivery of therapy. Tandem Diabetes Care, Inc. had an adjusted event rate of 50 per 100,000 units and RR of 0.0225. Insulet had an adjusted event rate of 300 per 100,000 units and RR of 0.1684. Medtronic has an adjusted event rate of 2771.43 per 100,000 units and RR of 20.7857. The newer Medtronic devices show improvements in likely event rate. While the artificial pancreas is still in its infancy, these event rates are not at an acceptable level for a device which can precipitate death from malfunctions. Further exploration into safety events and much more research and development is needed for devices to reduce the event rates. Improved manufacturing practices, especially the casing materials, are highly recommended. The artificial pancreas holds promise for millions but must be improved before it becomes a true life-saving device that it has the potential to become.
Collapse
Affiliation(s)
- Andrew M Ferguson
- University of Cincinnati College of Medicine, Cincinnati, USA.
- University of Cincinnati College of Pharmacy, Cincinnati, USA.
| | - Alex C Lin
- University of Cincinnati College of Pharmacy, Cincinnati, USA
| |
Collapse
|
4
|
Michou P, Gkiourtzis N, Christoforidis A, Kotanidou EP, Galli-Tsinopoulou A. The efficacy of automated insulin delivery systems in children and adolescents with Type 1 Diabetes Mellitus: a systematic review and meta-analysis of randomized controlled trials. Diabetes Res Clin Pract 2023; 199:110678. [PMID: 37094750 DOI: 10.1016/j.diabres.2023.110678] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/28/2023] [Accepted: 04/18/2023] [Indexed: 04/26/2023]
Abstract
AIMS Insulin administration is the treatment of choice for people with type 1 diabetes mellitus (T1D). Technological advances have led to the development of automated insulin delivery (AID) systems, aiming to optimize the quality of life of patients with T1D. We present a systematic review and meta-analysis of the current literature about the efficacy of AID systems in children and adolescents with T1D. METHODS We conducted a systematic literature search for randomized controlled trials (RCTs) until August 8th, 2022, investigating the efficacy of AID systems in the management of patients <21 years of age with T1D. A priori subgroup and sensitivity analyses based on different settings (free-living settings, type of AID system, parallel group or crossover design) were also conducted. RESULTS In total, 26 RCTs reporting a total of 915 children and adolescents with T1D were included in the meta-analysis. AID systems revealed statistically significant differences in the main outcomes, such as the proportion of time in the target glucose range (3.9-10 mmol/L) (p<0.00001), in hypoglycemia (<3.9 mmol/L) (p=0.003) and mean proportion of HbA1C (p=0.0007) compared to control group. CONCLUSIONS According to the present meta-analysis, AID systems are superior to insulin pump therapy, sensor-augmented pumps and multiple daily insulin injections. Most of the included studies have a high risk of bias because of allocation, blinding of patients and blinding of assessment. Our sensitivity analyses showed that patients <21 years of age with T1D can use AID systems, after proper education, following their daily activities. Further RCTs examining the effect of AID systems on nocturnal hypoglycemia, under free-living settings and studies examining the effect of dual-hormone AID systems are pending.
Collapse
Affiliation(s)
- Panagiota Michou
- Program of Postgraduate Studies Adolescent Medicine and Adolescent Health Care, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece, 54124; Department of Pediatrics, Gennimatas General Hospital of Thessaloniki, Thessaloniki, Greece, 54635.
| | - Nikolaos Gkiourtzis
- 4th Department of Pediatrics, Papageorgiou General Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece, 56429.
| | - Athanasios Christoforidis
- 1st Department of Pediatrics, Ippokrateio General Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece, 54643.
| | - Eleni P Kotanidou
- Program of Postgraduate Studies Adolescent Medicine and Adolescent Health Care, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece, 54124; 2nd Department of Pediatrics, AHEPA University General Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece, 54636.
| | - Asimina Galli-Tsinopoulou
- Program of Postgraduate Studies Adolescent Medicine and Adolescent Health Care, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece, 54124; 2nd Department of Pediatrics, AHEPA University General Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece, 54636.
| |
Collapse
|
5
|
Kang SL, Hwang YN, Kwon JY, Kim SM. Effectiveness and safety of a model predictive control (MPC) algorithm for an artificial pancreas system in outpatients with type 1 diabetes (T1D): systematic review and meta-analysis. Diabetol Metab Syndr 2022; 14:187. [PMID: 36494830 PMCID: PMC9733359 DOI: 10.1186/s13098-022-00962-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The purpose of this study was to assess the effectiveness and safety of a model predictive control (MPC) algorithm for an artificial pancreas system in outpatients with type 1 diabetes. METHODS We searched PubMed, EMBASE, Cochrane Central, and the Web of Science to December 2021. The eligibility criteria for study selection were randomized controlled trials comparing artificial pancreas systems (MPC, PID, and fuzzy algorithms) with conventional insulin therapy in type 1 diabetes patients. The heterogeneity of the overall results was identified by subgroup analysis of two factors including the intervention duration (overnight and 24 h) and the follow-up periods (< 1 week, 1 week to 1 month, and > 1 month). RESULTS The meta-analysis included a total of 41 studies. Considering the effect on the percentage of time maintained in the target range between the MPC-based artificial pancreas and conventional insulin therapy, the results showed a statistically significantly higher percentage of time maintained in the target range in overnight use (10.03%, 95% CI [7.50, 12.56] p < 0.00001). When the follow-up period was considered, in overnight use, the MPC-based algorithm showed a statistically significantly lower percentage of time maintained in the hypoglycemic range (-1.34%, 95% CI [-1.87, -0.81] p < 0.00001) over a long period of use (> 1 month). CONCLUSIONS Overnight use of the MPC-based artificial pancreas system statistically significantly improved glucose control while increasing time maintained in the target range for outpatients with type 1 diabetes. Results of subgroup analysis revealed that MPC algorithm-based artificial pancreas system was safe while reducing the time maintained in the hypoglycemic range after an overnight intervention with a long follow-up period (more than 1 month).
Collapse
Affiliation(s)
- Su Lim Kang
- Department of Medical Device and Healthcare, Dongguk University-Seoul, 26, Pil-Dong 3-Ga, Seoul, Jung-Gu 04620 Republic of Korea
| | - Yoo Na Hwang
- Department of Medical Device and Healthcare, Dongguk University-Seoul, 26, Pil-Dong 3-Ga, Seoul, Jung-Gu 04620 Republic of Korea
| | - Ji Yean Kwon
- Department of Medical Device and Healthcare, Dongguk University-Seoul, 26, Pil-Dong 3-Ga, Seoul, Jung-Gu 04620 Republic of Korea
| | - Sung Min Kim
- Department of Medical Device and Healthcare, Dongguk University-Seoul, 26, Pil-Dong 3-Ga, Seoul, Jung-Gu 04620 Republic of Korea
- Department of Medical Device Regulatory Science, Dongguk University-Seoul, 26, Pil-dong 3-Ga, Seoul, Jung-Gu 04620 Republic of Korea
| |
Collapse
|
6
|
Francescato MP, Ajčević M, Accardo A. Carbohydrate Requirement for Exercise in Type 1 Diabetes: Effects of Insulin Concentration. J Diabetes Sci Technol 2020; 14:1116-1121. [PMID: 30767503 PMCID: PMC7645145 DOI: 10.1177/1932296819826962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Physical activity is a keystone of a healthy lifestyle as well as of management of patients with type 1 diabetes. The risk of exercise-induced hypoglycemia, however, is a great challenge for these patients. The glycemic response to exercise depends upon several factors concerning the patient him/herself (eg, therapy, glycemic control, training level) and the characteristics of the exercise performed. Only in-depth knowledge of these factors will allow to develop individualized strategies minimizing the risk of hypoglycemia. The main factors affecting the exercise-induced hypoglycemia in patients with T1D have been analyzed, including the effects of insulin concentration. A model is discussed, which has the potential to become the basis for providing patients with individualized suggestions to keep constant glucose levels on each exercise occasion.
Collapse
Affiliation(s)
- Maria Pia Francescato
- Department of Medicine, University of Udine, Udine, Italy
- Maria Pia Francescato, MD, Department of Medicine, University of Udine, p. le M. Kolbe 4, 33100 Udine, Italy.
| | - Miloš Ajčević
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Agostino Accardo
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| |
Collapse
|