1
|
Franz K, Markó L, Mähler A, Chakaroun R, Heinitz S, Schlögl H, Sacher J, Steckhan N, Dechend R, Adams N, Andersen M, Glintborg D, Viehweger M, Bahr LS, Forslund-Startceva SK. Sex hormone-dependent host-microbiome interactions and cardiovascular risk (XCVD): design of a longitudinal multi-omics cohort study. BMJ Open 2025; 15:e087982. [PMID: 39788783 PMCID: PMC11751863 DOI: 10.1136/bmjopen-2024-087982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025] Open
Abstract
INTRODUCTION Cardiovascular diseases (CVDs) present differently in women and men, influenced by host-microbiome interactions. The roles of sex hormones in CVD outcomes and gut microbiome in modifying these effects are poorly understood. The XCVD study examines gut microbiome mediation of sex hormone effects on CVD risk markers by observing transgender participants undergoing gender-affirming hormone therapy (GAHT), with findings expected to extrapolate to cisgender populations. METHODS AND ANALYSES This observational, longitudinal cohort study includes baseline, 1- and 2-year follow-ups with transgender participants beginning GAHT. It involves comprehensive phenotyping and microbiome genotyping, integrating computational analyses of high-dimensional data. Microbial diversity will be assessed using gut, skin, and oral samples via 16S rRNA and shotgun metagenomic sequencing of gut samples. Blood measurements will include sex hormones, CVD risk markers, cardiometabolic parameters, cytokines, and immune cell counts. Hair samples will be analysed for cortisol. Participants will complete online questionnaires on physical activity, mental health, stress, quality of life, fatigue, sleep, pain, and gender dysphoria, tracking medication use and diet to control for confounders. Statistical analyses will integrate phenomic, lifestyle, and multi-omic data to model health effects, testing gut microbiome mediation of CVD risk as the endocrine environment shifts between that typical for cisgender men to women and vice versa. ETHICS AND DISSEMINATION The study adheres to Good Clinical Practice and the Declaration of Helsinki. The protocol was approved by the Charité Ethical Committee (EA1/339/21). Signed informed consent will be obtained. Results will be published in peer-reviewed journals and conferences and shared as accessible summaries for participants, community groups, and the public, with participants able to view their data securely after public and patient involvement review for accessibility. TRIAL REGISTRATION NUMBER The XCVD study was registered on ClinicalTrials.gov (NCT05334888) as 'Sex-differential host-microbiome CVD risk - a longitudinal cohort approach (XCVD)" on 4 April 2022. Data set link can be found at https://classic. CLINICALTRIALS gov/ct2/show/NCT05334888.
Collapse
Affiliation(s)
- Kristina Franz
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- German Centre for Cardiovascular Research (DZHK) partner site Berlin, DZHK, Berlin, Germany
- Deutsches Herzzentrum der Charité - Medical Heart Center of Charité and German Heart Institute Berlin, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lajos Markó
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- German Centre for Cardiovascular Research (DZHK) partner site Berlin, DZHK, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Anja Mähler
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Rima Chakaroun
- Medical Department III Endocrinology Nephrology Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg Wallenberg Laboratory for Cardiovascular and Metabolic Research, Goteborg, Sweden
| | - Sascha Heinitz
- Medical Department III Endocrinology Nephrology Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Haiko Schlögl
- Medical Department III Endocrinology Nephrology Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- HI-MAG, Helmholtz Institute for Metabolic Obesity and Vascular Research, Leipzig, Germany
| | - Julia Sacher
- Clinic for Cognitive Neurology, University of Leipzig Medical Center, and Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Max-Planck-Institut fur molekulare Physiologie, Dortmund, Germany
| | - Nico Steckhan
- Digital Health - Connected Healthcare, Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
| | - Ralf Dechend
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- German Centre for Cardiovascular Research (DZHK) partner site Berlin, DZHK, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Helios Clinic Berlin-Buch, Berlin, Germany
| | - Noah Adams
- University of Toronto, Toronto, Ontario, Canada
- Center for Applied Transgender Studies (CATS), Chicago, Illinois, USA
- Transgender Professional Association for Transgender Health, TPATH, Toronto, Ontario, Canada
| | - Marianne Andersen
- Department of Endocrinology, Odense Universitetshospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Syddanmark, Denmark
| | - Dorte Glintborg
- Institute of Clinical Research, University of Southern Denmark, Odense, Syddanmark, Denmark
- Body Identity Clinic, Odense Universitetshospital Endokrinologisk Afdeling M, Odense, Denmark
| | | | - Lina Samira Bahr
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- German Centre for Cardiovascular Research (DZHK) partner site Berlin, DZHK, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sofia Kirke Forslund-Startceva
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- German Centre for Cardiovascular Research (DZHK) partner site Berlin, DZHK, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Transgender Professional Association for Transgender Health, TPATH, Toronto, Ontario, Canada
- European Molecular Biology Laboratory Structural and Computational Biology Unit, Heidelberg, Baden-Württemberg, Germany
| |
Collapse
|
2
|
Peng Y, Yao SY, Chen Q, Jin H, Du MQ, Xue YH, Liu S. True or false? Alzheimer's disease is type 3 diabetes: Evidences from bench to bedside. Ageing Res Rev 2024; 99:102383. [PMID: 38955264 DOI: 10.1016/j.arr.2024.102383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
Globally, Alzheimer's disease (AD) is the most widespread chronic neurodegenerative disorder, leading to cognitive impairment, such as aphasia and agnosia, as well as mental symptoms, like behavioral abnormalities, that place a heavy psychological and financial burden on the families of the afflicted. Unfortunately, no particular medications exist to treat AD, as the current treatments only impede its progression.The link between AD and type 2 diabetes (T2D) has been increasingly revealed by research; the danger of developing both AD and T2D rises exponentially with age, with T2D being especially prone to AD. This has propelled researchers to investigate the mechanism(s) underlying this connection. A critical review of the relationship between insulin resistance, Aβ, oxidative stress, mitochondrial hypothesis, abnormal phosphorylation of Tau protein, inflammatory response, high blood glucose levels, neurotransmitters and signaling pathways, vascular issues in AD and diabetes, and the similarities between the two diseases, is presented in this review. Grasping the essential mechanisms behind this detrimental interaction may offer chances to devise successful therapeutic strategies.
Collapse
Affiliation(s)
- Yong Peng
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China.
| | - Shun-Yu Yao
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Quan Chen
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Hong Jin
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Miao-Qiao Du
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Ya-Hui Xue
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Shu Liu
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| |
Collapse
|
3
|
Stamatiou R, Kararigas G. Participation of transgender and gender diverse persons in cardiovascular clinical trials. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2024; 44:100420. [PMID: 39070126 PMCID: PMC11282972 DOI: 10.1016/j.ahjo.2024.100420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/01/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024]
Abstract
Study objective Transgender persons face increased risk in developing cardiovascular diseases due to administration of hormonal therapy used for gender expression, or due to the presence of other risk factors, such as minority stress and difficulty to have full access to health care. Even though the need for gender diversity in research has been identified, the number of clinical trials including transgender persons remains low. The aim of this study was to highlight gaps in inclusion of transgender individuals in cardiovascular clinical research. Design setting A search in the pubmed.com database, as well as in the clinicaltrials.gov repository, was performed with search terms regarding transgender persons and cardiovascular diseases. Main outcome measures The inclusion of transgender persons in cardiovascular clinical trials was evaluated. Results and conclusions This study revealed that there is only a small number of cardiovascular clinical trials including or studying transgender persons. This finding demonstrates the overall lack of clinical trials regarding cardiovascular health in transgender individuals and is indicative of their under-representation in clinical research.
Collapse
Affiliation(s)
- Rodopi Stamatiou
- Department of Physiology, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Kararigas
- Department of Physiology, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
4
|
Spinetti G, Mutoli M, Greco S, Riccio F, Ben-Aicha S, Kenneweg F, Jusic A, de Gonzalo-Calvo D, Nossent AY, Novella S, Kararigas G, Thum T, Emanueli C, Devaux Y, Martelli F. Cardiovascular complications of diabetes: role of non-coding RNAs in the crosstalk between immune and cardiovascular systems. Cardiovasc Diabetol 2023; 22:122. [PMID: 37226245 PMCID: PMC10206598 DOI: 10.1186/s12933-023-01842-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/25/2023] [Indexed: 05/26/2023] Open
Abstract
Diabetes mellitus, a group of metabolic disorders characterized by high levels of blood glucose caused by insulin defect or impairment, is a major risk factor for cardiovascular diseases and related mortality. Patients with diabetes experience a state of chronic or intermittent hyperglycemia resulting in damage to the vasculature, leading to micro- and macro-vascular diseases. These conditions are associated with low-grade chronic inflammation and accelerated atherosclerosis. Several classes of leukocytes have been implicated in diabetic cardiovascular impairment. Although the molecular pathways through which diabetes elicits an inflammatory response have attracted significant attention, how they contribute to altering cardiovascular homeostasis is still incompletely understood. In this respect, non-coding RNAs (ncRNAs) are a still largely under-investigated class of transcripts that may play a fundamental role. This review article gathers the current knowledge on the function of ncRNAs in the crosstalk between immune and cardiovascular cells in the context of diabetic complications, highlighting the influence of biological sex in such mechanisms and exploring the potential role of ncRNAs as biomarkers and targets for treatments. The discussion closes by offering an overview of the ncRNAs involved in the increased cardiovascular risk suffered by patients with diabetes facing Sars-CoV-2 infection.
Collapse
Affiliation(s)
- Gaia Spinetti
- Laboratory of Cardiovascular Pathophysiology and Regenerative Medicine, IRCCS MultiMedica, Milan, Italy.
| | - Martina Mutoli
- Laboratory of Cardiovascular Pathophysiology and Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| | - Simona Greco
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Milan, Italy
| | - Federica Riccio
- Laboratory of Cardiovascular Pathophysiology and Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| | - Soumaya Ben-Aicha
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Franziska Kenneweg
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | | | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Anne Yaël Nossent
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Susana Novella
- Department of Physiology, University of Valencia - INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Georgios Kararigas
- Department of Physiology, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Costanza Emanueli
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Milan, Italy.
| |
Collapse
|
5
|
Sex-biased and sex hormone-dependent regulation of apolipoprotein A1. CURRENT OPINION IN PHYSIOLOGY 2023. [DOI: 10.1016/j.cophys.2023.100654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
6
|
García-Llorca A, Kararigas G. Sex-Related Effects of Gut Microbiota in Metabolic Syndrome-Related Diabetic Retinopathy. Microorganisms 2023; 11:microorganisms11020447. [PMID: 36838411 PMCID: PMC9967826 DOI: 10.3390/microorganisms11020447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
The metabolic syndrome (MetS) is a complex disease of metabolic abnormalities, including obesity, insulin resistance, hypertension and dyslipidaemia, and it is associated with an increased risk of cardiovascular disease (CVD). Diabetic retinopathy (DR) is the leading cause of vision loss among working-aged adults around the world and is the most frequent complication in type 2 diabetic (T2D) patients. The gut microbiota are a complex ecosystem made up of more than 100 trillion of microbial cells and their composition and diversity have been identified as potential risk factors for the development of several metabolic disorders, including MetS, T2D, DR and CVD. Biomarkers are used to monitor or analyse biological processes, therapeutic responses, as well as for the early detection of pathogenic disorders. Here, we discuss molecular mechanisms underlying MetS, the effects of biological sex in MetS-related DR and gut microbiota, as well as the latest advances in biomarker research in the field. We conclude that sex may play an important role in gut microbiota influencing MetS-related DR.
Collapse
|
7
|
Horvath C, Kararigas G. Sex-Dependent Mechanisms of Cell Death Modalities in Cardiovascular Disease. Can J Cardiol 2022; 38:1844-1853. [PMID: 36152770 DOI: 10.1016/j.cjca.2022.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 12/14/2022] Open
Abstract
Despite currently available therapies, cardiovascular diseases (CVD) are among the leading causes of death globally. Biological sex is a critical determinant of the occurrence, progression and overall outcome of CVD. However, the underlying mechanisms are incompletely understood. A hallmark of CVD is cell death. Based on the inability of the human heart to regenerate, loss of functional cardiac tissue can lead to irreversible detrimental effects. Here, we summarize current knowledge on how biological sex affects cell death-related mechanisms in CVD. Initially, we discuss apoptosis and necrosis, but we specifically focus on the relatively newly recognized programmed necrosis-like processes: pyroptosis and necroptosis. We also discuss the role of 17β-estradiol (E2) in these processes, particularly in terms of inhibiting pyroptotic and necroptotic signaling. We put forward that a better understanding of the effects of biological sex and E2 might lead to the identification of novel targets with therapeutic potential.
Collapse
Affiliation(s)
- Csaba Horvath
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic
| | - Georgios Kararigas
- Department of Physiology, Faculty of Medicine, University of Iceland, Reykjavík, Iceland.
| |
Collapse
|
8
|
Fisher JL, Jones EF, Flanary VL, Williams AS, Ramsey EJ, Lasseigne BN. Considerations and challenges for sex-aware drug repurposing. Biol Sex Differ 2022; 13:13. [PMID: 35337371 PMCID: PMC8949654 DOI: 10.1186/s13293-022-00420-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/06/2022] [Indexed: 01/09/2023] Open
Abstract
Sex differences are essential factors in disease etiology and manifestation in many diseases such as cardiovascular disease, cancer, and neurodegeneration [33]. The biological influence of sex differences (including genomic, epigenetic, hormonal, immunological, and metabolic differences between males and females) and the lack of biomedical studies considering sex differences in their study design has led to several policies. For example, the National Institute of Health's (NIH) sex as a biological variable (SABV) and Sex and Gender Equity in Research (SAGER) policies to motivate researchers to consider sex differences [204]. However, drug repurposing, a promising alternative to traditional drug discovery by identifying novel uses for FDA-approved drugs, lacks sex-aware methods that can improve the identification of drugs that have sex-specific responses [7, 11, 14, 33]. Sex-aware drug repurposing methods either select drug candidates that are more efficacious in one sex or deprioritize drug candidates based on if they are predicted to cause a sex-bias adverse event (SBAE), unintended therapeutic effects that are more likely to occur in one sex. Computational drug repurposing methods are encouraging approaches to develop for sex-aware drug repurposing because they can prioritize sex-specific drug candidates or SBAEs at lower cost and time than traditional drug discovery. Sex-aware methods currently exist for clinical, genomic, and transcriptomic information [1, 7, 155]. They have not expanded to other data types, such as DNA variation, which has been beneficial in other drug repurposing methods that do not consider sex [114]. Additionally, some sex-aware methods suffer from poorer performance because a disproportionate number of male and female samples are available to train computational methods [7]. However, there is development potential for several different categories (i.e., data mining, ligand binding predictions, molecular associations, and networks). Low-dimensional representations of molecular association and network approaches are also especially promising candidates for future sex-aware drug repurposing methodologies because they reduce the multiple hypothesis testing burden and capture sex-specific variation better than the other methods [151, 159]. Here we review how sex influences drug response, the current state of drug repurposing including with respect to sex-bias drug response, and how model organism study design choices influence drug repurposing validation.
Collapse
Affiliation(s)
- Jennifer L. Fisher
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Emma F. Jones
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Victoria L. Flanary
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Avery S. Williams
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Elizabeth J. Ramsey
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Brittany N. Lasseigne
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| |
Collapse
|
9
|
Sex-Related Effects on Cardiac Development and Disease. J Cardiovasc Dev Dis 2022; 9:jcdd9030090. [PMID: 35323638 PMCID: PMC8949052 DOI: 10.3390/jcdd9030090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVD) are the leading cause of morbidity and mortality. Interestingly, male and female patients with CVD exhibit distinct epidemiological and pathophysiological characteristics, implying a potentially important role for primary and secondary sex determination factors in heart development, aging, disease and therapeutic responses. Here, we provide a concise review of the field and discuss current gaps in knowledge as a step towards elucidating the “sex determination–heart axis”. We specifically focus on cardiovascular manifestations of abnormal sex determination in humans, such as in Turner and Klinefelter syndromes, as well as on the differences in cardiac regenerative potential between species with plastic and non-plastic sexual phenotypes. Sex-biased cardiac repair mechanisms are also discussed with a focus on the role of the steroid hormone 17β-estradiol. Understanding the “sex determination–heart axis” may offer new therapeutic possibilities for enhanced cardiac regeneration and/or repair post-injury.
Collapse
|
10
|
Li S, Kararigas G. Role of Biological Sex in the Cardiovascular-Gut Microbiome Axis. Front Cardiovasc Med 2022; 8:759735. [PMID: 35083297 PMCID: PMC8785253 DOI: 10.3389/fcvm.2021.759735] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/16/2021] [Indexed: 12/28/2022] Open
Abstract
There has been a recent, unprecedented interest in the role of gut microbiota in host health and disease. Technological advances have dramatically expanded our knowledge of the gut microbiome. Increasing evidence has indicated a strong link between gut microbiota and the development of cardiovascular diseases (CVD). In the present article, we discuss the contribution of gut microbiota in the development and progression of CVD. We further discuss how the gut microbiome may differ between the sexes and how it may be influenced by sex hormones. We put forward that regulation of microbial composition and function by sex might lead to sex-biased disease susceptibility, thereby offering a mechanistic insight into sex differences in CVD. A better understanding of this could identify novel targets, ultimately contributing to the development of innovative preventive, diagnostic and therapeutic strategies for men and women.
Collapse
Affiliation(s)
- Shuangyue Li
- State Key Laboratory of Cardiovascular Diseases, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Georgios Kararigas
- Department of Physiology, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| |
Collapse
|
11
|
Beikoghli Kalkhoran S, Kararigas G. Oestrogenic Regulation of Mitochondrial Dynamics. Int J Mol Sci 2022; 23:ijms23031118. [PMID: 35163044 PMCID: PMC8834780 DOI: 10.3390/ijms23031118] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 02/04/2023] Open
Abstract
Biological sex influences disease development and progression. The steroid hormone 17β-oestradiol (E2), along with its receptors, is expected to play a major role in the manifestation of sex differences. E2 exerts pleiotropic effects in a system-specific manner. Mitochondria are one of the central targets of E2, and their biogenesis and respiration are known to be modulated by E2. More recently, it has become apparent that E2 also regulates mitochondrial fusion–fission dynamics, thereby affecting cellular metabolism. The aim of this article is to discuss the regulatory pathways by which E2 orchestrates the activity of several components of mitochondrial dynamics in the cardiovascular and nervous systems in health and disease. We conclude that E2 regulates mitochondrial dynamics to maintain the mitochondrial network promoting mitochondrial fusion and attenuating mitochondrial fission in both the cardiovascular and nervous systems.
Collapse
|
12
|
Hu C, Shi J, Chi Y, Yang J, Cui Q. Y/X-Chromosome-Bearing Sperm Shows Elevated Ratio in the Left but Not the Right Testes in Healthy Mice. Life (Basel) 2021; 11:life11111219. [PMID: 34833095 PMCID: PMC8621333 DOI: 10.3390/life11111219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/30/2021] [Accepted: 10/31/2021] [Indexed: 11/16/2022] Open
Abstract
The sex chromosomes play central roles in determining the sex of almost all of the multicellular organisms. It is well known that meiosis in mammalian spermatogenesis produces ~50% Y- and ~50% X-chromosome-bearing sperm, a 1:1 ratio. Here we first reveal that the X-chromosome-encoded miRNAs show lower expression levels in the left testis than in the right testis in healthy mice using bioinformatics modeling of miRNA-sequencing data, suggesting that the Y:X ratio could be unbalanced between the left testis and the right testis. We further reveal that the Y:X ratio is significantly elevated in the left testis but balanced in the right testis using flow cytometry. This study represents the first time the biased Y:X ratio in the left testis but not in the right testis is revealed.
Collapse
Affiliation(s)
- Chengqing Hu
- Center for Noncoding RNA Medicine, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, MOE Key Laboratory of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, 38 Xueyuan Rd, Beijing 100191, China; (C.H.); (J.S.)
| | - Jiangcheng Shi
- Center for Noncoding RNA Medicine, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, MOE Key Laboratory of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, 38 Xueyuan Rd, Beijing 100191, China; (C.H.); (J.S.)
| | - Yujing Chi
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People’s Hospital, Beijing 100044, China;
| | - Jichun Yang
- Center for Noncoding RNA Medicine, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, MOE Key Laboratory of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, 38 Xueyuan Rd, Beijing 100191, China; (C.H.); (J.S.)
- Correspondence: (J.Y.); (Q.C.); Tel.: +86-010-82801403 (J.Y.); +86-010-82801001 (Q.C.)
| | - Qinghua Cui
- Center for Noncoding RNA Medicine, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, MOE Key Laboratory of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, 38 Xueyuan Rd, Beijing 100191, China; (C.H.); (J.S.)
- Correspondence: (J.Y.); (Q.C.); Tel.: +86-010-82801403 (J.Y.); +86-010-82801001 (Q.C.)
| |
Collapse
|
13
|
Sabbatini AR, Kararigas G. Estrogen-related mechanisms in sex differences of hypertension and target organ damage. Biol Sex Differ 2020; 11:31. [PMID: 32487164 PMCID: PMC7268741 DOI: 10.1186/s13293-020-00306-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
Hypertension (HTN) is a primary risk factor for cardiovascular (CV) events, target organ damage (TOD), premature death and disability worldwide. The pathophysiology of HTN is complex and influenced by many factors including biological sex. Studies show that the prevalence of HTN is higher among adults aged 60 and over, highlighting the increase of HTN after menopause in women. Estrogen (E2) plays an important role in the development of systemic HTN and TOD, exerting several modulatory effects. The influence of E2 leads to alterations in mechanisms regulating the sympathetic nervous system, renin-angiotensin-aldosterone system, body mass, oxidative stress, endothelial function and salt sensitivity; all associated with a crucial inflammatory state and influenced by genetic factors, ultimately resulting in cardiac, vascular and renal damage in HTN. In the present article, we discuss the role of E2 in mechanisms accounting for the development of HTN and TOD in a sex-specific manner. The identification of targets with therapeutic potential would contribute to the development of more efficient treatments according to individual needs.
Collapse
Affiliation(s)
| | - Georgios Kararigas
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.
| |
Collapse
|
14
|
Menopause-Related Estrogen Decrease and the Pathogenesis of HFpEF. J Am Coll Cardiol 2020; 75:1074-1082. [DOI: 10.1016/j.jacc.2019.12.049] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 01/27/2023]
|
15
|
Ruiz-Meana M, Boengler K, Garcia-Dorado D, Hausenloy DJ, Kaambre T, Kararigas G, Perrino C, Schulz R, Ytrehus K. Ageing, sex, and cardioprotection. Br J Pharmacol 2020; 177:5270-5286. [PMID: 31863453 DOI: 10.1111/bph.14951] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Translation of cardioprotective interventions aimed at reducing myocardial injury during ischaemia-reperfusion from experimental studies to clinical practice is an important yet unmet need in cardiovascular medicine. One particular challenge facing translation is the existence of demographic and clinical factors that influence the pathophysiology of ischaemia-reperfusion injury of the heart and the effects of treatments aimed at preventing it. Among these factors, age and sex are prominent and have a recognised role in the susceptibility and outcome of ischaemic heart disease. Remarkably, some of the most powerful cardioprotective strategies proven to be effective in young animals become ineffective during ageing. This article reviews the mechanisms and implications of the modulatory effects of ageing and sex on myocardial ischaemia-reperfusion injury and their potential effects on cardioprotective interventions. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.23/issuetoc.
Collapse
Affiliation(s)
- Marisol Ruiz-Meana
- Hospital Universitari Vall d'Hebron, Department of Cardiology, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red-CV (CIBER-CV), Madrid, Spain
| | - Kerstin Boengler
- Institute of Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - David Garcia-Dorado
- Hospital Universitari Vall d'Hebron, Department of Cardiology, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red-CV (CIBER-CV), Madrid, Spain
| | - Derek J Hausenloy
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore.,National Heart Research Institute Singapore, National Heart Centre, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, Singapore.,The Hatter Cardiovascular Institute, University College London, London, UK.,The National Institute of Health Research, University College London Hospitals Biomedical Research Centre, Research & Development, London, UK.,Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Nuevo Leon, Mexico
| | - Tuuli Kaambre
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Georgios Kararigas
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlinand Berlin Institute of Health, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Kirsti Ytrehus
- Cardiovascular Research Group, Institute of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
16
|
Altinbas L, Bormann N, Lehmann D, Jeuthe S, Wulsten D, Kornak U, Robinson PN, Wildemann B, Kararigas G. Assessment of Bones Deficient in Fibrillin-1 Microfibrils Reveals Pronounced Sex Differences. Int J Mol Sci 2019; 20:ijms20236059. [PMID: 31805661 PMCID: PMC6928642 DOI: 10.3390/ijms20236059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/13/2022] Open
Abstract
Defects in the extracellular matrix protein fibrillin-1 that perturb transforming growth factor beta (TGFβ) bioavailability lead to Marfan syndrome (MFS). MFS is an autosomal-dominant disorder, which is associated with connective tissue and skeletal defects, among others. To date, it is unclear how biological sex impacts the structural and functional properties of bone in MFS. The aim of this study was to investigate the effects of sex on bone microarchitecture and mechanical properties in mice with deficient fibrillin-1, a model of human MFS. Bones of 11-week-old male and female Fbn1mgR/mgR mice were investigated. Three-dimensional micro-computed tomography of femora and vertebrae revealed a lower ratio of trabecular bone volume to tissue volume, reduced trabecular number and thickness, and greater trabecular separation in females vs. males. Three-point bending of femora revealed significantly lower post-yield displacement and work-to-fracture in females vs. males. Mechanistically, we found higher Smad2 and ERK1/2 phosphorylation in females vs. males, demonstrating a greater activation of TGFβ signaling in females. In summary, the present findings show pronounced sex differences in the matrix and function of bones deficient in fibrillin-1 microfibrils. Consequently, sex-specific analysis of bone characteristics in patients with MFS may prove useful in improving the clinical management and life quality of these patients, through the development of sex-specific therapeutic approaches.
Collapse
Affiliation(s)
- Lukas Altinbas
- BIH Center for Regenerative Therapies, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany
| | - Nicole Bormann
- BIH Center for Regenerative Therapies, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany
| | - Daniel Lehmann
- BIH Center for Regenerative Therapies, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany
| | - Sarah Jeuthe
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Dag Wulsten
- BIH Center for Regenerative Therapies, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany
| | - Uwe Kornak
- BIH Center for Regenerative Therapies, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany
- Institute for Medical Genetics and Human Genetics, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany
| | - Peter N. Robinson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Britt Wildemann
- BIH Center for Regenerative Therapies, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany
- Experimental Trauma Surgery, University Hospital Jena, 07743 Jena, Germany
| | - Georgios Kararigas
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-525355
| |
Collapse
|
17
|
Ramirez LA, Sullivan JC. Sex Differences in Hypertension: Where We Have Been and Where We Are Going. Am J Hypertens 2018; 31:1247-1254. [PMID: 30299518 DOI: 10.1093/ajh/hpy148] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 10/04/2018] [Indexed: 12/25/2022] Open
Abstract
While it has been known since the 1940s that men have greater increases in blood pressure (BP) compared with women, there have been intense efforts more recently to increase awareness that women are also at risk for developing hypertension and that cardiovascular diseases (CVDs) are the leading causes of death among both men and women in the United States. With the release of the 2017 Hypertension Clinical Guidelines, 46% of adults in the United States are now classified as hypertensive, and hypertension is the primary modifiable risk factor for the development of CVD. This increase in the prevalence of hypertension is reflected in an increase in prevalence among both men and women across all demographics, although there were greater increases in the prevalence of hypertension among men compared with women. As a result, the well-established gender difference in the prevalence of hypertension is even more pronounced and now extends into the sixth decade of life. The goals of this review are to (i) review the historical clinical trial data and hypertension guidelines from the perspective of both genders and then (ii) review the role of the renin-angiotensin system and T-cell activation in contributing to sex differences in BP control.
Collapse
|