1
|
Toni E, Ayatollahi H, Abbaszadeh R, Fotuhi Siahpirani A. Machine Learning Techniques for Predicting Drug-Related Side Effects: A Scoping Review. Pharmaceuticals (Basel) 2024; 17:795. [PMID: 38931462 PMCID: PMC11206653 DOI: 10.3390/ph17060795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Drug safety relies on advanced methods for timely and accurate prediction of side effects. To tackle this requirement, this scoping review examines machine-learning approaches for predicting drug-related side effects with a particular focus on chemical, biological, and phenotypical features. METHODS This was a scoping review in which a comprehensive search was conducted in various databases from 1 January 2013 to 31 December 2023. RESULTS The results showed the widespread use of Random Forest, k-nearest neighbor, and support vector machine algorithms. Ensemble methods, particularly random forest, emphasized the significance of integrating chemical and biological features in predicting drug-related side effects. CONCLUSIONS This review article emphasized the significance of considering a variety of features, datasets, and machine learning algorithms for predicting drug-related side effects. Ensemble methods and Random Forest showed the best performance and combining chemical and biological features improved prediction. The results suggested that machine learning techniques have some potential to improve drug development and trials. Future work should focus on specific feature types, selection techniques, and graph-based methods for even better prediction.
Collapse
Affiliation(s)
- Esmaeel Toni
- Medical Informatics, Student Research Committee, Iran University of Medical Sciences, Tehran, Iran 14496-14535;
| | - Haleh Ayatollahi
- Medical Informatics, Health Management and Economics Research Center, Health Management Research Institute, Iran University of Medical Sciences, Tehran, Iran 1996-713883
| | - Reza Abbaszadeh
- Pediatric Cardiology, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran 19956-14331;
| | - Alireza Fotuhi Siahpirani
- Systems Biology and Bioinformatics, Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran 14176-14411;
| |
Collapse
|
2
|
Lin J, He Y, Ru C, Long W, Li M, Wen Z. Advancing Adverse Drug Reaction Prediction with Deep Chemical Language Model for Drug Safety Evaluation. Int J Mol Sci 2024; 25:4516. [PMID: 38674100 PMCID: PMC11050562 DOI: 10.3390/ijms25084516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The accurate prediction of adverse drug reactions (ADRs) is essential for comprehensive drug safety evaluation. Pre-trained deep chemical language models have emerged as powerful tools capable of automatically learning molecular structural features from large-scale datasets, showing promising capabilities for the downstream prediction of molecular properties. However, the performance of pre-trained chemical language models in predicting ADRs, especially idiosyncratic ADRs induced by marketed drugs, remains largely unexplored. In this study, we propose MoLFormer-XL, a pre-trained model for encoding molecular features from canonical SMILES, in conjunction with a CNN-based model to predict drug-induced QT interval prolongation (DIQT), drug-induced teratogenicity (DIT), and drug-induced rhabdomyolysis (DIR). Our results demonstrate that the proposed model outperforms conventional models applied in previous studies for predicting DIQT, DIT, and DIR. Notably, an analysis of the learned linear attention maps highlights amines, alcohol, ethers, and aromatic halogen compounds as strongly associated with the three types of ADRs. These findings hold promise for enhancing drug discovery pipelines and reducing the drug attrition rate due to safety concerns.
Collapse
Affiliation(s)
- Jinzhu Lin
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yujie He
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Chengxiang Ru
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Wulin Long
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Menglong Li
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhining Wen
- College of Chemistry, Sichuan University, Chengdu 610064, China
- Medical Big Data Center, Sichuan University, Chengdu 610064, China
| |
Collapse
|
3
|
Seal S, Spjuth O, Hosseini-Gerami L, García-Ortegón M, Singh S, Bender A, Carpenter AE. Insights into Drug Cardiotoxicity from Biological and Chemical Data: The First Public Classifiers for FDA Drug-Induced Cardiotoxicity Rank. J Chem Inf Model 2024; 64:1172-1186. [PMID: 38300851 PMCID: PMC10900289 DOI: 10.1021/acs.jcim.3c01834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
Drug-induced cardiotoxicity (DICT) is a major concern in drug development, accounting for 10-14% of postmarket withdrawals. In this study, we explored the capabilities of chemical and biological data to predict cardiotoxicity, using the recently released DICTrank data set from the United States FDA. We found that such data, including protein targets, especially those related to ion channels (e.g., hERG), physicochemical properties (e.g., electrotopological state), and peak concentration in plasma offer strong predictive ability for DICT. Compounds annotated with mechanisms of action such as cyclooxygenase inhibition could distinguish between most-concern and no-concern DICT. Cell Painting features for ER stress discerned most-concern cardiotoxic from nontoxic compounds. Models based on physicochemical properties provided substantial predictive accuracy (AUCPR = 0.93). With the availability of omics data in the future, using biological data promises enhanced predictability and deeper mechanistic insights, paving the way for safer drug development. All models from this study are available at https://broad.io/DICTrank_Predictor.
Collapse
Affiliation(s)
- Srijit Seal
- Imaging
Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Ola Spjuth
- Department
of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Box
591, SE-75124 Uppsala, Sweden
| | - Layla Hosseini-Gerami
- Ignota
Labs, The Bradfield Centre, Cambridge Science Park, County Hall, Westminster Bridge Road, Cambridge CB4 0GA, U.K.
| | - Miguel García-Ortegón
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Shantanu Singh
- Imaging
Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Andreas Bender
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Anne E. Carpenter
- Imaging
Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
4
|
Bhat AA, Afzal O, Agrawal N, Thapa R, Almalki WH, Kazmi I, Alzarea SI, Altamimi ASA, Kukreti N, Chakraborty A, Singh SK, Dua K, Gupta G. A comprehensive review on the emerging role of long non-coding RNAs in the regulation of NF-κB signaling in inflammatory lung diseases. Int J Biol Macromol 2023; 253:126951. [PMID: 37734525 DOI: 10.1016/j.ijbiomac.2023.126951] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/30/2023] [Accepted: 09/09/2023] [Indexed: 09/23/2023]
Abstract
Public health globally faces significant risks from conditions like acute respiratory distress syndrome (ARDS), chronic obstructive pulmonary disease (COPD), and various inflammatory lung disorders. The NF-κB signaling system partially controls lung inflammation, immunological responses, and remodeling. Non-coding RNAs (lncRNAs) are crucial in regulating gene expression. They are increasingly recognized for their involvement in NF-κB signaling and the development of inflammatory lung diseases. Disruption of lncRNA-NF-κB interactions is a potential cause and resolution factor for inflammatory respiratory conditions. This study explores the therapeutic potential of targeting lncRNAs and NF-κB signaling to alleviate inflammation and restore lung function. Understanding the intricate relationship between lncRNAs and NF-κB signaling could offer novel insights into disease mechanisms and identify therapeutic targets. Regulation of lncRNAs and NF-κB signaling holds promise as an effective approach for managing inflammatory lung disorders. This review aims to comprehensively analyze the interaction between lncRNAs and the NF-κB signaling pathway in the context of inflammatory lung diseases. It investigates the functional roles of lncRNAs in modulating NF-κB activity and the resulting inflammatory responses in lung cells, focusing on molecular mechanisms involving upstream regulators, inhibitory proteins, and downstream effectors.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Neetu Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, India
| | - Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | | | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Amlan Chakraborty
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PL, UK; Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia.
| | - Gaurav Gupta
- Center for Global Health research (CGHR), Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| |
Collapse
|
5
|
Seal S, Spjuth O, Hosseini-Gerami L, García-Ortegón M, Singh S, Bender A, Carpenter AE. Insights into Drug Cardiotoxicity from Biological and Chemical Data: The First Public Classifiers for FDA DICTrank. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.15.562398. [PMID: 37905146 PMCID: PMC10614794 DOI: 10.1101/2023.10.15.562398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Drug-induced cardiotoxicity (DICT) is a major concern in drug development, accounting for 10-14% of postmarket withdrawals. In this study, we explored the capabilities of various chemical and biological data to predict cardiotoxicity, using the recently released Drug-Induced Cardiotoxicity Rank (DICTrank) dataset from the United States FDA. We analyzed a diverse set of data sources, including physicochemical properties, annotated mechanisms of action (MOA), Cell Painting, Gene Expression, and more, to identify indications of cardiotoxicity. We found that such data, including protein targets, especially those related to ion channels (such as hERG), physicochemical properties (such as electrotopological state) as well as peak concentration in plasma offer strong predictive ability as well as valuable insights into DICT. We also found compounds annotated with particular mechanisms of action, such as cyclooxygenase inhibition, could distinguish between most-concern and no-concern DICT compounds. Cell Painting features related to ER stress discern the most-concern cardiotoxic compounds from non-toxic compounds. While models based on physicochemical properties currently provide substantial predictive accuracy (AUCPR = 0.93), this study also underscores the potential benefits of incorporating more comprehensive biological data in future DICT predictive models. With the availability of - omics data in the future, using biological data promises enhanced predictability and delivers deeper mechanistic insights, paving the way for safer therapeutic drug development. All models and data used in this study are publicly released at https://broad.io/DICTrank_Predictor.
Collapse
Affiliation(s)
- Srijit Seal
- Imaging Platform, Broad Institute of MIT and Harvard, US
| | - Ola Spjuth
- Department of Pharmaceutical Biosciences, Uppsala University, Sweden
| | | | | | - Shantanu Singh
- Imaging Platform, Broad Institute of MIT and Harvard, US
| | | | | |
Collapse
|
6
|
Das P, Mazumder DH. An extensive survey on the use of supervised machine learning techniques in the past two decades for prediction of drug side effects. Artif Intell Rev 2023; 56:1-28. [PMID: 36819660 PMCID: PMC9930028 DOI: 10.1007/s10462-023-10413-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2023] [Indexed: 02/19/2023]
Abstract
Approved drugs for sale must be effective and safe, implying that the drug's advantages outweigh its known harmful side effects. Side effects (SE) of drugs are one of the common reasons for drug failure that may halt the whole drug discovery pipeline. The side effects might vary from minor concerns like a runny nose to potentially life-threatening issues like liver damage, heart attack, and death. Therefore, predicting the side effects of the drug is vital in drug development, discovery, and design. Supervised machine learning-based side effects prediction task has recently received much attention since it reduces time, chemical waste, design complexity, risk of failure, and cost. The advancement of supervised learning approaches for predicting side effects have emerged as essential computational tools. Supervised machine learning technique provides early information on drug side effects to develop an effective drug based on drug properties. Still, there are several challenges to predicting drug side effects. Thus, a near-exhaustive survey is carried out in this paper on the use of supervised machine learning approaches employed in drug side effects prediction tasks in the past two decades. In addition, this paper also summarized the drug descriptor required for the side effects prediction task, commonly utilized drug properties sources, computational models, and their performances. Finally, the research gap, open problems, and challenges for the further supervised learning-based side effects prediction task have been discussed.
Collapse
Affiliation(s)
- Pranab Das
- Department of Computer Science and Engineering, National Institute of Technology Nagaland, Chumukedima, Dimapur, Nagaland 797103 India
| | - Dilwar Hussain Mazumder
- Department of Computer Science and Engineering, National Institute of Technology Nagaland, Chumukedima, Dimapur, Nagaland 797103 India
| |
Collapse
|
7
|
Das P, Pal V. Integrative analysis of chemical properties and functions of drugs for adverse drug reaction prediction based on multi-label deep neural network. J Integr Bioinform 2022; 19:jib-2022-0007. [PMID: 35585715 DOI: 10.1515/jib-2022-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/16/2022] [Indexed: 11/15/2022] Open
Abstract
The prediction of adverse drug reactions (ADR) is an important step of drug discovery and design process. Different drug properties have been employed for ADR prediction but the prediction capability of drug properties and drug functions in integrated manner is yet to be explored. In the present work, a multi-label deep neural network and MLSMOTE based methodology has been proposed for ADR prediction. The proposed methodology has been applied on SMILES Strings data of drugs, 17 molecular descriptors data of drugs and drug functions data individually and in integrated manner for ADR prediction. The experimental results shows that the SMILES Strings + drug functions has outperformed other types of data with regards to ADR prediction capability.
Collapse
Affiliation(s)
- Pranab Das
- National Institute of Technology Meghalaya, Shillong, India
| | - Vipin Pal
- National Institute of Technology Meghalaya, Shillong, India
| |
Collapse
|
8
|
Luo L, Ma Y, Zheng Y, Su J, Huang G. Application Progress of Organoids in Colorectal Cancer. Front Cell Dev Biol 2022; 10:815067. [PMID: 35273961 PMCID: PMC8902504 DOI: 10.3389/fcell.2022.815067] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/31/2022] [Indexed: 12/24/2022] Open
Abstract
Currently, colorectal cancer is still the third leading cause of cancer-related mortality, and the incidence is rising. It is a long time since the researchers used cancer cell lines and animals as the study subject. However, these models possess various limitations to reflect the cancer progression in the human body. Organoids have more clinical significance than cell lines, and they also bridge the gap between animal models and humans. Patient-derived organoids are three-dimensional cultures that simulate the tumor characteristics in vivo and recapitulate tumor cell heterogeneity. Therefore, the emergence of colorectal cancer organoids provides an unprecedented opportunity for colorectal cancer research. It retains the molecular and cellular composition of the original tumor and has a high degree of homology and complexity with patient tissues. Patient-derived colorectal cancer organoids, as personalized tumor organoids, can more accurately simulate colorectal cancer patients’ occurrence, development, metastasis, and predict drug response in colorectal cancer patients. Colorectal cancer organoids show great potential for application, especially preclinical drug screening and prediction of patient response to selected treatment options. Here, we reviewed the application of colorectal cancer organoids in disease model construction, basic biological research, organoid biobank construction, drug screening and personalized medicine, drug development, drug toxicity and safety, and regenerative medicine. In addition, we also displayed the current limitations and challenges of organoids and discussed the future development direction of organoids in combination with other technologies. Finally, we summarized and analyzed the current clinical trial research of organoids, especially the clinical trials of colorectal cancer organoids. We hoped to lay a solid foundation for organoids used in colorectal cancer research.
Collapse
Affiliation(s)
- Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.,The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Yucui Ma
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Yilin Zheng
- Clinical Research Center, Shantou Central Hospital, Shantou, China
| | - Jiating Su
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
| | - Guoxin Huang
- Clinical Research Center, Shantou Central Hospital, Shantou, China
| |
Collapse
|
9
|
Ji X, Cui G, Xu C, Hou J, Zhang Y, Ren Y. Combining a Pharmacological Network Model with a Bayesian Signal Detection Algorithm to Improve the Detection of Adverse Drug Events. Front Pharmacol 2022; 12:773135. [PMID: 35046809 PMCID: PMC8762263 DOI: 10.3389/fphar.2021.773135] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Improving adverse drug event (ADE) detection is important for post-marketing drug safety surveillance. Existing statistical approaches can be further optimized owing to their high efficiency and low cost. Objective: The objective of this study was to evaluate the proposed approach for use in pharmacovigilance, the early detection of potential ADEs, and the improvement of drug safety. Methods: We developed a novel integrated approach, the Bayesian signal detection algorithm, based on the pharmacological network model (ICPNM) using the FDA Adverse Event Reporting System (FAERS) data published from 2004 to 2009 and from 2014 to 2019Q2, PubChem, and DrugBank database. First, we used a pharmacological network model to generate the probabilities for drug-ADE associations, which comprised the proper prior information component (IC). We then defined the probability of the propensity score adjustment based on a logistic regression model to control for the confounding bias. Finally, we chose the Side Effect Resource (SIDER) and the Observational Medical Outcomes Partnership (OMOP) data to evaluate the detection performance and robustness of the ICPNM compared with the statistical approaches [disproportionality analysis (DPA)] by using the area under the receiver operator characteristics curve (AUC) and Youden’s index. Results: Of the statistical approaches implemented, the ICPNM showed the best performance (AUC, 0.8291; Youden’s index, 0.5836). Meanwhile, the AUCs of the IC, EBGM, ROR, and PRR were 0.7343, 0.7231, 0.6828, and 0.6721, respectively. Conclusion: The proposed ICPNM combined the strengths of the pharmacological network model and the Bayesian signal detection algorithm and performed better in detecting true drug-ADE associations. It also detected newer ADE signals than a DPA and may be complementary to the existing statistical approaches.
Collapse
Affiliation(s)
- Xiangmin Ji
- School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, China
| | - Guimei Cui
- School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, China
| | - Chengzhen Xu
- School of Computer Science and Technology, Huaibei Normal University, Huaibei, China
| | - Jie Hou
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China
| | - Yunfei Zhang
- Department of Mathematics and Computer Engineering, Ordos Institute of Technology, Ordos, China
| | - Yan Ren
- School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, China
| |
Collapse
|
10
|
Lagoutte-Renosi J, Allemand F, Ramseyer C, Yesylevskyy S, Davani S. Molecular modeling in cardiovascular pharmacology: Current state of the art and perspectives. Drug Discov Today 2021; 27:985-1007. [PMID: 34863931 DOI: 10.1016/j.drudis.2021.11.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/02/2021] [Accepted: 11/25/2021] [Indexed: 01/10/2023]
Abstract
Molecular modeling in pharmacology is a promising emerging tool for exploring drug interactions with cellular components. Recent advances in molecular simulations, big data analysis, and artificial intelligence (AI) have opened new opportunities for rationalizing drug interactions with their pharmacological targets. Despite the obvious utility and increasing impact of computational approaches, their development is not progressing at the same speed in different fields of pharmacology. Here, we review current in silico techniques used in cardiovascular diseases (CVDs), cardiological drug discovery, and assessment of cardiotoxicity. In silico techniques are paving the way to a new era in cardiovascular medicine, but their use somewhat lags behind that in other fields.
Collapse
Affiliation(s)
- Jennifer Lagoutte-Renosi
- EA 3920 Université Bourgogne Franche-Comté, 25000 Besançon, France; Laboratoire de Pharmacologie Clinique et Toxicologie-CHU de Besançon, 25000 Besançon, France
| | - Florentin Allemand
- EA 3920 Université Bourgogne Franche-Comté, 25000 Besançon, France; Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25000 Besançon, France
| | - Christophe Ramseyer
- Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25000 Besançon, France
| | - Semen Yesylevskyy
- Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25000 Besançon, France; Department of Physics of Biological Systems, Institute of Physics of The National Academy of Sciences of Ukraine, Nauky Sve. 46, Kyiv, Ukraine; Receptor.ai inc, 16192 Coastal Highway, Lewes, DE, USA
| | - Siamak Davani
- EA 3920 Université Bourgogne Franche-Comté, 25000 Besançon, France; Laboratoire de Pharmacologie Clinique et Toxicologie-CHU de Besançon, 25000 Besançon, France.
| |
Collapse
|
11
|
Asai A, Konno M, Taniguchi M, Vecchione A, Ishii H. Computational healthcare: Present and future perspectives (Review). Exp Ther Med 2021; 22:1351. [PMID: 34659497 PMCID: PMC8515560 DOI: 10.3892/etm.2021.10786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/19/2021] [Indexed: 12/05/2022] Open
Abstract
Artificial intelligence (AI) has been developed through repeated new discoveries since around 1960. The use of AI is now becoming widespread within society and our daily lives. AI is also being introduced into healthcare, such as medicine and drug development; however, it is currently biased towards specific domains. The present review traces the history of the development of various AI-based applications in healthcare and compares AI-based healthcare with conventional healthcare to show the future prospects for this type of care. Knowledge of the past and present development of AI-based applications would be useful for the future utilization of novel AI approaches in healthcare.
Collapse
Affiliation(s)
- Ayumu Asai
- Center of Medical Innovation and Translational Research, Department of Medical Data Science, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Artificial Intelligence Research Center, Osaka University, Ibaraki, Osaka 567-0047, Japan.,The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Masamitsu Konno
- Center of Medical Innovation and Translational Research, Department of Medical Data Science, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masateru Taniguchi
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Andrea Vecchione
- Department of Clinical and Molecular Medicine, University of Rome 'Sapienza', Santo Andrea Hospital, I-1035-00189 Rome, Italy
| | - Hideshi Ishii
- Center of Medical Innovation and Translational Research, Department of Medical Data Science, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
12
|
Caufield JH, Sigdel D, Fu J, Choi H, Guevara-Gonzalez V, Wang D, Ping P. Cardiovascular Informatics: building a bridge to data harmony. Cardiovasc Res 2021; 118:732-745. [PMID: 33751044 DOI: 10.1093/cvr/cvab067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
The search for new strategies for better understanding cardiovascular disease is a constant one, spanning multitudinous types of observations and studies. A comprehensive characterization of each disease state and its biomolecular underpinnings relies upon insights gleaned from extensive information collection of various types of data. Researchers and clinicians in cardiovascular biomedicine repeatedly face questions regarding which types of data may best answer their questions, how to integrate information from multiple datasets of various types, and how to adapt emerging advances in machine learning and/or artificial intelligence to their needs in data processing. Frequently lauded as a field with great practical and translational potential, the interface between biomedical informatics and cardiovascular medicine is challenged with staggeringly massive datasets. Successful application of computational approaches to decode these complex and gigantic amounts of information becomes an essential step toward realizing the desired benefits. In this review, we examine recent efforts to adapt informatics strategies to cardiovascular biomedical research: automated information extraction and unification of multifaceted -omics data. We discuss how and why this interdisciplinary space of Cardiovascular Informatics is particularly relevant to and supportive of current experimental and clinical research. We describe in detail how open data sources and methods can drive discovery while demanding few initial resources, an advantage afforded by widespread availability of cloud computing-driven platforms. Subsequently, we provide examples of how interoperable computational systems facilitate exploration of data from multiple sources, including both consistently-formatted structured data and unstructured data. Taken together, these approaches for achieving data harmony enable molecular phenotyping of cardiovascular (CV) diseases and unification of cardiovascular knowledge.
Collapse
Affiliation(s)
- J Harry Caufield
- NHLBI Integrated Cardiovascular Data Science Training Program at University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA.,Departments of Physiology at UCLA School of Medicine, Los Angeles, CA, 90095, USA
| | - Dibakar Sigdel
- NHLBI Integrated Cardiovascular Data Science Training Program at University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA.,Departments of Physiology at UCLA School of Medicine, Los Angeles, CA, 90095, USA
| | - John Fu
- NHLBI Integrated Cardiovascular Data Science Training Program at University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Howard Choi
- NHLBI Integrated Cardiovascular Data Science Training Program at University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Vladimir Guevara-Gonzalez
- NHLBI Integrated Cardiovascular Data Science Training Program at University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Ding Wang
- Departments of Physiology at UCLA School of Medicine, Los Angeles, CA, 90095, USA
| | - Peipei Ping
- NHLBI Integrated Cardiovascular Data Science Training Program at University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA.,Departments of Physiology at UCLA School of Medicine, Los Angeles, CA, 90095, USA.,Department of Medicine (Cardiology) at UCLA School of Medicine, Los Angeles, CA, 90095, USA.,Bioinformatics and Medical Informatics, Los Angeles, CA, 90095, USA.,Scalable Analytics Institute (ScAi) at UCLA School of Engineering, Los Angeles, CA, 90095, USA
| |
Collapse
|
13
|
Mantripragada AS, Teja SP, Katasani RR, Joshi P, V M, Ramesh R. Prediction of adverse drug reactions using drug convolutional neural networks. J Bioinform Comput Biol 2021; 19:2050046. [PMID: 33472571 DOI: 10.1142/s0219720020500468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prediction of Adverse Drug Reactions (ADRs) has been an important aspect of Pharmacovigilance because of its impact in the pharma industry. The standard process of introduction of a new drug into a market involves a lot of clinical trials and tests. This is a tedious and time consuming process and also involves a lot of monetary resources. The faster approval of a drug helps the patients who are in need of the drug. The in silico prediction of Adverse Drug Reactions can help speed up the aforementioned process. The challenges involved are lack of negative data present and predicting ADR from just the chemical structure. Although many models are already available to predict ADR, most of the models use biological activities identifiers, chemical and physical properties in addition to chemical structures of the drugs. But for most of the new drugs to be tested, only chemical structures will be available. The performance of the existing models predicting ADR only using chemical structures is not efficient. Therefore, an efficient prediction of ADRs from just the chemical structure has been proposed in this paper. The proposed method involves a separate model for each ADR, making it a binary classification problem. This paper presents a novel CNN model called Drug Convolutional Neural Network (DCNN) to predict ADRs using chemical structures of the drugs. The performance is measured using the metrics such as Accuracy, Recall, Precision, Specificity, F1 score, AUROC and MCC. The results obtained by the proposed DCNN model outperform the competing models on the SIDER4.1 database in terms of all the metrics. A case study has been performed on a COVID-19 recommended drugs, where the proposed model predicted the ADRs that are well aligned with the observations made by medical professionals using conventional methods.
Collapse
Affiliation(s)
| | - Sai Phani Teja
- Department of Computer Science and Engineering, IIITDM Kancheepuram, Chennai 600127, India
| | - Rohith Reddy Katasani
- Department of Computer Science and Engineering, IIITDM Kancheepuram, Chennai 600127, India
| | - Pratik Joshi
- Department of Computer Science and Engineering, IIITDM Kancheepuram, Chennai 600127, India
| | - Masilamani V
- Department of Computer Science and Engineering, IIITDM Kancheepuram, Chennai 600127, India
| | | |
Collapse
|
14
|
Zhou Y, Li S, Zhao Y, Guo M, Liu Y, Li M, Wen Z. Quantitative Structure-Activity Relationship (QSAR) Model for the Severity Prediction of Drug-Induced Rhabdomyolysis by Using Random Forest. Chem Res Toxicol 2021; 34:514-521. [PMID: 33393765 DOI: 10.1021/acs.chemrestox.0c00347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Drug-induced rhabdomyolysis (DIR) is a rare and potentially life-threatening muscle injury that is characterized by low incidence and high risk. To our best knowledge, the performance of the current predictive models for the early detection of DIR is suboptimal because of the scarcity and dispersion of DIR cases. Therefore, on the basis of the curated drug information from the Drug-Induced Rhabdomyolysis Atlas (DIRA) database, we proposed a random forest (RF) model to predict the DIR severity of the marketed drugs. Compared with the state-of-art methods, our proposed model outperformed extreme gradient boosting, support vector machine, and logistic regression in distinguishing the Most-DIR concern drugs from the No-DIR concern drugs (Matthews correlation coefficient (MCC) and recall rate of our model were 0.46 and 0.81, respectively). Our model was subsequently applied to predicting the potentially serious DIR for 1402 drugs, which were reported to cause DIR by the postmarketing DIR surveillance data in the FDA Spontaneous Adverse Events Reporting System (FAERS). As a result, 62.7% (94) of drugs ranked in the top 150 drugs with the Most-DIR concerns in FAERS can be identified by our model. The top four drugs (odds ratio >30) including acepromazine, rapacuronium, oxyphenbutazone, and naringenin were correctly predicted by our model. In conclusion, the RF model can well predict the Most-DIR concern drug only based on the chemical structure information and can be a facilitated tool for early DIR detection.
Collapse
Affiliation(s)
- Yifan Zhou
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Shihai Li
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yiru Zhao
- College of Computer Science, Sichuan University, Chengdu, Sichuan 610064, China
| | - Mingkun Guo
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yuan Liu
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Menglong Li
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Zhining Wen
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.,Medical Big Data Center, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
15
|
NDDSA: A network- and domain-based method for predicting drug-side effect associations. Inf Process Manag 2020. [DOI: 10.1016/j.ipm.2020.102357] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Kagiyama N, Shrestha S, Farjo PD, Sengupta PP. Artificial Intelligence: Practical Primer for Clinical Research in Cardiovascular Disease. J Am Heart Assoc 2019; 8:e012788. [PMID: 31450991 PMCID: PMC6755846 DOI: 10.1161/jaha.119.012788] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Sirish Shrestha
- West Virginia University Heart and Vascular Institute Morgantown WV
| | - Peter D Farjo
- West Virginia University Heart and Vascular Institute Morgantown WV
| | | |
Collapse
|