1
|
Cao Y, Xia H, Tan X, Shi C, Ma Y, Meng D, Zhou M, Lv Z, Wang S, Jin Y. Intratumoural microbiota: a new frontier in cancer development and therapy. Signal Transduct Target Ther 2024; 9:15. [PMID: 38195689 PMCID: PMC10776793 DOI: 10.1038/s41392-023-01693-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/20/2023] [Accepted: 10/24/2023] [Indexed: 01/11/2024] Open
Abstract
Human microorganisms, including bacteria, fungi, and viruses, play key roles in several physiological and pathological processes. Some studies discovered that tumour tissues once considered sterile actually host a variety of microorganisms, which have been confirmed to be closely related to oncogenesis. The concept of intratumoural microbiota was subsequently proposed. Microbiota could colonise tumour tissues through mucosal destruction, adjacent tissue migration, and hematogenic invasion and affect the biological behaviour of tumours as an important part of the tumour microenvironment. Mechanistic studies have demonstrated that intratumoural microbiota potentially promote the initiation and progression of tumours by inducing genomic instability and mutations, affecting epigenetic modifications, promoting inflammation response, avoiding immune destruction, regulating metabolism, and activating invasion and metastasis. Since more comprehensive and profound insights about intratumoral microbiota are continuously emerging, new methods for the early diagnosis and prognostic assessment of cancer patients have been under examination. In addition, interventions based on intratumoural microbiota show great potential to open a new chapter in antitumour therapy, especially immunotherapy, although there are some inevitable challenges. Here, we aim to provide an extensive review of the concept, development history, potential sources, heterogeneity, and carcinogenic mechanisms of intratumoural microorganisms, explore the potential role of microorganisms in tumour prognosis, and discuss current antitumour treatment regimens that target intratumoural microorganisms and the research prospects and limitations in this field.
Collapse
Affiliation(s)
- Yaqi Cao
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Hui Xia
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Xueyun Tan
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Chunwei Shi
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Yanling Ma
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Daquan Meng
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Mengmeng Zhou
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Zhilei Lv
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Sufei Wang
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| |
Collapse
|
2
|
Ferreira MY, Carvalho Junior JDC, Ferreira LM. Evaluating the quality of studies reporting on clinical applications of stromal vascular fraction: A systematic review and proposed reporting guidelines (CLINIC-STRA-SVF). Regen Ther 2023; 24:332-342. [PMID: 37662694 PMCID: PMC10474569 DOI: 10.1016/j.reth.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/26/2023] [Accepted: 08/13/2023] [Indexed: 09/05/2023] Open
Abstract
Background The stromal vascular fraction (SVF) has been widely explored in a number of therapeutic applications in several specialties. Its therapeutic potential is being increasingly demonstrated, although its mechanism of action is still unclear. Objective To evaluate the quality of studies reporting on clinical applications of SVF. Method This is a systematic literature review that followed the PRISMA guidelines with the search of the studies from December 1, 2012, to December 1, 2022, in the following databases: MEDLINE, LILACS and EMBASE. The level of evidence of the studies was assessed using the GRADE system, and the rigor used in the publication of the results was assessed in relation to adherence to the guidelines indicated by the EQUATOR Network Group. The CLINIC - STRA-SVF reporting guideline was developed after the completion of this systematic review. Results A total of 538 articles were found, and 77 articles were selected after reading the titles and abstracts and removing duplicates. Then, 15 studies were removed for not meeting the inclusion criteria, leaving 62 studies. The CLINIC - STRA-SVF was developed and consists of 33 items and two tables. Conclusion There is scientific evidence, although mostly with a low level of evidence, that the use of SVF in clinical applications is safe and effective. The information published in these studies should be standardized, and the CLINIC - STRA-SVF reporting guideline proposed in this study may assist in the design, conduct, recording and reporting of clinical trials and others clinical studies involving the SVF.
Collapse
Affiliation(s)
- Marcio Yuri Ferreira
- Translational Surgery Graduate Program of Universidade Federal de São Paulo - Unifesp, São Paulo, SP, Brazil
| | | | - Lydia Masako Ferreira
- Plastic Surgery Division, Universidade Federal de São Paulo - Escola Paulista de Medicina, SP, Brazil
| |
Collapse
|
3
|
Yi J, Lin P, Li Q, Zhang A, Kong X. A new strategy for treating colorectal cancer: Regulating the influence of intestinal flora and oncolytic virus on interferon. Mol Ther Oncolytics 2023; 30:254-274. [PMID: 37701850 PMCID: PMC10493895 DOI: 10.1016/j.omto.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Colorectal cancer (CRC) has the third highest incidence and the second highest mortality in the world, which seriously affects human health, while current treatments methods for CRC, including systemic therapy, preoperative radiotherapy, and surgical local excision, still have poor survival rates for patients with metastatic disease, making it critical to develop new strategies for treating CRC. In this article, we found that the gut microbiota can modulate the signaling pathways of cancer cells through direct contact with tumor cells, generate inflammatory responses and oxidative stress through interactions between the innate and adaptive immune systems, and produce diverse metabolic combinations to trigger specific immune responses and promote the initiation of systemic type I interferon (IFN-I) and anti-viral immunity. In addition, oncolytic virus-mediated immunotherapy for regulating oncolytic virus can directly lyse tumor cells, induce the immune activity of the body, interact with interferon, inhibit the anti-viral effect of IFN-I, and enhance the anti-tumor effect of IFN-II. Interferon plays an important role in the anti-tumor process. We put forward that exploring the effects of intestinal flora and oncolytic virus on interferon to treat CRC is a promising therapeutic option.
Collapse
Affiliation(s)
- Jia Yi
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Peizhe Lin
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qingbo Li
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ao Zhang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xianbin Kong
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
4
|
Li M, Zhang M, Ye Q, Liu Y, Qian W. Preclinical and clinical trials of oncolytic vaccinia virus in cancer immunotherapy: a comprehensive review. Cancer Biol Med 2023; 20:j.issn.2095-3941.2023.0202. [PMID: 37615308 PMCID: PMC10546091 DOI: 10.20892/j.issn.2095-3941.2023.0202] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/19/2023] [Indexed: 08/25/2023] Open
Abstract
Oncolytic virotherapy has emerged as a promising treatment for human cancers owing to an ability to elicit curative effects via systemic administration. Tumor cells often create an unfavorable immunosuppressive microenvironment that degrade viral structures and impede viral replication; however, recent studies have established that viruses altered via genetic modifications can serve as effective oncolytic agents to combat hostile tumor environments. Specifically, oncolytic vaccinia virus (OVV) has gained popularity owing to its safety, potential for systemic delivery, and large gene insertion capacity. This review highlights current research on the use of engineered mutated viruses and gene-armed OVVs to reverse the tumor microenvironment and enhance antitumor activity in vitro and in vivo, and provides an overview of ongoing clinical trials and combination therapies. In addition, we discuss the potential benefits and drawbacks of OVV as a cancer therapy, and explore different perspectives in this field.
Collapse
Affiliation(s)
- Mengyuan Li
- Department of Hematology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Minghuan Zhang
- Department of Hematology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Qian Ye
- Hangzhou Rong-Gu Biotechnology Limited Company, Hangzhou 310056, China
| | - Yunhua Liu
- Department of Pathology & Pathophysiology and Department of Surgical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wenbin Qian
- Department of Hematology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
5
|
Wang X, Shen Y, Wan X, Hu X, Cai WQ, Wu Z, Xin Q, Liu X, Gui J, Xin HY, Xin HW. Oncolytic virotherapy evolved into the fourth generation as tumor immunotherapy. J Transl Med 2023; 21:500. [PMID: 37491263 PMCID: PMC10369732 DOI: 10.1186/s12967-023-04360-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 07/16/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Oncolytic virotherapy (OVT) is a promising anti-tumor modality that utilizes oncolytic viruses (OVs) to preferentially attack cancers rather than normal tissues. With the understanding particularly in the characteristics of viruses and tumor cells, numerous innovative OVs have been engineered to conquer cancers, such as Talimogene Laherparepvec (T-VEC) and tasadenoturev (DNX-2401). However, the therapeutic safety and efficacy must be further optimized and balanced to ensure the superior safe and efficient OVT in clinics, and reasonable combination therapy strategies are also important challenges worthy to be explored. MAIN BODY Here we provided a critical review of the development history and status of OVT, emphasizing the mechanisms of enhancing both safety and efficacy. We propose that oncolytic virotherapy has evolved into the fourth generation as tumor immunotherapy. Particularly, to arouse T cells by designing OVs expressing bi-specific T cell activator (BiTA) is a promising strategy of killing two birds with one stone. Amazing combination of therapeutic strategies of OVs and immune cells confers immense potential for managing cancers. Moreover, the attractive preclinical OVT addressed recently, and the OVT in clinical trials were systematically reviewed. CONCLUSION OVs, which are advancing into clinical trials, are being envisioned as the frontier clinical anti-tumor agents coming soon.
Collapse
Affiliation(s)
- Xianwang Wang
- Department of Biochemistry and Molecular Biology, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China.
| | - Yihua Shen
- The Second School of Clinical Medicine, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Xingxia Wan
- College of Arts and Sciences, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Xiaoqing Hu
- The Second School of Clinical Medicine, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Wen-Qi Cai
- Xinzhou Traditional Chinese Medicine Hospital, Zhongnan Hospital of Wuhan University (Xinzhou), Wuhan, 430000, Hubei, China
| | - Zijun Wu
- The Second School of Clinical Medicine, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Qiang Xin
- School of Graduate Students, Inner Mongolia Medical University, Inner Mongolian Autonomous Region, Hohhot, 010110, China
| | - Xiaoqing Liu
- College of Arts and Sciences, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Jingang Gui
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Hong-Yi Xin
- The Doctoral Scientific Research Center, People's Hospital of Lianjiang, Guangdong, 524400, China.
- The Doctoral Scientific Research Center, Affiliated People's Hospital of Lianjiang, Guangdong Medical University, Guangdong, 524400, China.
| | - Hong-Wu Xin
- Department of Biochemistry and Molecular Biology, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China.
| |
Collapse
|
6
|
Kingsak M, Meethong T, Jongkhumkrong J, Cai L, Wang Q. Therapeutic potential of oncolytic viruses in the era of precision oncology. BIOMATERIALS TRANSLATIONAL 2023; 4:67-84. [PMID: 38283919 PMCID: PMC10817786 DOI: 10.12336/biomatertransl.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 01/30/2024]
Abstract
Oncolytic virus (OV) therapy has been shown to be an effective targeted cancer therapy treatment in recent years, providing an avenue of treatment that poses no damage to surrounding healthy tissues. Not only do OVs cause direct oncolysis, but they also amplify both innate and adaptive immune responses generating long-term anti-tumour immunity. Genetically engineered OVs have become the common promising strategy to enhance anti-tumour immunity, safety, and efficacy as well as targeted delivery. The studies of various OVs have been accomplished through phase I-III clinical trial studies. In addition, the uses of carrier platforms of organic materials such as polymer chains, liposomes, hydrogels, and cell carriers have played a vital role in the potentially targeted delivery of OVs. The mechanism, rational design, recent clinical trials, applications, and the development of targeted delivery platforms of OVs will be discussed in this review.
Collapse
Affiliation(s)
- Monchupa Kingsak
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Thongpon Meethong
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Jinnawat Jongkhumkrong
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Li Cai
- Department of Chemistry, University of South Carolina Lancaster, Lancaster, SC, USA
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
7
|
Ottolino-Perry K, Mealiea D, Sellers C, Acuna SA, Angarita FA, Okamoto L, Scollard D, Ginj M, Reilly R, McCart JA. Vaccinia virus and peptide-receptor radiotherapy synergize to improve treatment of peritoneal carcinomatosis. Mol Ther Oncolytics 2023; 29:44-58. [PMID: 37180034 PMCID: PMC10173076 DOI: 10.1016/j.omto.2023.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/05/2023] [Indexed: 05/15/2023] Open
Abstract
Tumor-specific overexpression of receptors enables a variety of targeted cancer therapies, exemplified by peptide-receptor radiotherapy (PRRT) for somatostatin receptor (SSTR)-positive neuroendocrine tumors. While effective, PRRT is restricted to tumors with SSTR overexpression. To overcome this limitation, we propose using oncolytic vaccinia virus (vvDD)-mediated receptor gene transfer to permit molecular imaging and PRRT in tumors without endogenous SSTR overexpression, a strategy termed radiovirotherapy. We hypothesized that vvDD-SSTR combined with a radiolabeled somatostatin analog could be deployed as radiovirotherapy in a colorectal cancer peritoneal carcinomatosis model, producing tumor-specific radiopeptide accumulation. Following vvDD-SSTR and 177Lu-DOTATOC treatment, viral replication and cytotoxicity, as well as biodistribution, tumor uptake, and survival, were evaluated. Radiovirotherapy did not alter virus replication or biodistribution, but synergistically improved vvDD-SSTR-induced cell killing in a receptor-dependent manner and significantly increased the tumor-specific accumulation and tumor-to-blood ratio of 177Lu-DOTATOC, making tumors imageable by microSPECT/CT and causing no significant toxicity. 177Lu-DOTATOC significantly improved survival over virus alone when combined with vvDD-SSTR but not control virus. We have therefore demonstrated that vvDD-SSTR can convert receptor-negative tumors into receptor-positive tumors and facilitate molecular imaging and PRRT using radiolabeled somatostatin analogs. Radiovirotherapy represents a promising treatment strategy with potential applications in a wide range of cancers.
Collapse
Affiliation(s)
- Kathryn Ottolino-Perry
- Toronto General Research Institute, University Health Network, 200 Elizabeth Street, M5G 2C4 Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, 1 King’s College Circle, M5S 1A8 Toronto, ON, Canada
| | - David Mealiea
- Toronto General Research Institute, University Health Network, 200 Elizabeth Street, M5G 2C4 Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, 1 King’s College Circle, M5S 1A8 Toronto, ON, Canada
| | - Clara Sellers
- Toronto General Research Institute, University Health Network, 200 Elizabeth Street, M5G 2C4 Toronto, ON, Canada
| | - Sergio A. Acuna
- Toronto General Research Institute, University Health Network, 200 Elizabeth Street, M5G 2C4 Toronto, ON, Canada
| | - Fernando A. Angarita
- Toronto General Research Institute, University Health Network, 200 Elizabeth Street, M5G 2C4 Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, 1 King’s College Circle, M5S 1A8 Toronto, ON, Canada
| | - Lili Okamoto
- Institute of Medical Science, University of Toronto, 1 King’s College Circle, M5S 1A8 Toronto, ON, Canada
| | - Deborah Scollard
- STTARR, Radiation Medicine Program, Princess Margaret Hospital, UHN, 610 University Avenue, M5G 2C1 Toronto, ON, Canada
| | - Mihaela Ginj
- Institute of Medical Science, University of Toronto, 1 King’s College Circle, M5S 1A8 Toronto, ON, Canada
| | - Raymond Reilly
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, M5S 3M2 Toronto, ON, Canada
| | - J. Andrea McCart
- Toronto General Research Institute, University Health Network, 200 Elizabeth Street, M5G 2C4 Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, 1 King’s College Circle, M5S 1A8 Toronto, ON, Canada
- Department of Surgery, Mount Sinai Hospital and University of Toronto, 600 University Avenue, M5G 1X5 Toronto, ON, Canada
- Corresponding author: Dave Mealiea, Room 1225, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada.
| |
Collapse
|
8
|
Sousa-Pimenta M, Martins Â, Machado V. Oncolytic viruses in hematological malignancies: hijacking disease biology and fostering new promises for immune and cell-based therapies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 379:189-219. [PMID: 37541724 DOI: 10.1016/bs.ircmb.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
The increased tropism for malignant cells of some viruses has been highlighted in recent studies, prompting their use as a strategy to modify the transcriptional profile of those cells, while sparing the healthy ones. Likewise, they have been recognized as players modulating microenvironmental immunity, namely through an increase in antigen-presenting, natural-killer, and T CD8+ cytotoxic cells by a cross-priming mechanism elicited by tumor-associated antigens. The immunomodulatory role of the oncolytic virus seems relevant in hematological malignancies, which may relapse as a result of a proliferative burst elicited by an external stimulus in progenitor or neoplastic stem cells. By reprogramming the host cells and the surrounding environment, the potential of virotherapy ranges from the promise to eradicate the minimal measurable disease (in acute leukemia, for example), to the ex vivo purging of malignant progenitor cells in the setting of autologous bone marrow transplantation. In this review, we analyze the recent advances in virotherapy in hematological malignancies, either when administered alone or together with chemotherapeutic agents or other immunomodulators.
Collapse
Affiliation(s)
- Mário Sousa-Pimenta
- Serviço de Onco-Hematologia, Instituto Português de Oncologia do Porto, Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Departamento de Biomedicina, Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto, Universidade do Porto, Porto, Portugal.
| | - Ângelo Martins
- Serviço de Onco-Hematologia, Instituto Português de Oncologia do Porto, Porto, Portugal
| | - Vera Machado
- Grupo de Oncologia Molecular e Patologia Viral, Centro de investigação do IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Instituto português de Oncologia do Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), LAB2, Rua Dr António Bernardino de Almeida, Porto, Portugal
| |
Collapse
|
9
|
Salihoglu R, Srivastava M, Liang C, Schilling K, Szalay A, Bencurova E, Dandekar T. PRO-Simat: Protein network simulation and design tool. Comput Struct Biotechnol J 2023; 21:2767-2779. [PMID: 37181657 PMCID: PMC10172639 DOI: 10.1016/j.csbj.2023.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 05/16/2023] Open
Abstract
PRO-Simat is a simulation tool for analysing protein interaction networks, their dynamic change and pathway engineering. It provides GO enrichment, KEGG pathway analyses, and network visualisation from an integrated database of more than 8 million protein-protein interactions across 32 model organisms and the human proteome. We integrated dynamical network simulation using the Jimena framework, which quickly and efficiently simulates Boolean genetic regulatory networks. It enables simulation outputs with in-depth analysis of the type, strength, duration and pathway of the protein interactions on the website. Furthermore, the user can efficiently edit and analyse the effect of network modifications and engineering experiments. In case studies, applications of PRO-Simat are demonstrated: (i) understanding mutually exclusive differentiation pathways in Bacillus subtilis, (ii) making Vaccinia virus oncolytic by switching on its viral replication mainly in cancer cells and triggering cancer cell apoptosis and (iii) optogenetic control of nucleotide processing protein networks to operate DNA storage. Multilevel communication between components is critical for efficient network switching, as demonstrated by a general census on prokaryotic and eukaryotic networks and comparing design with synthetic networks using PRO-Simat. The tool is available at https://prosimat.heinzelab.de/ as a web-based query server.
Collapse
Affiliation(s)
- Rana Salihoglu
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany
| | - Mugdha Srivastava
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany
- Core Unit Systems Medicine, University of Würzburg, 97080 Würzburg, Germany
| | - Chunguang Liang
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany
| | - Klaus Schilling
- Informatics VII, Robotics and Telematics, Department of Mathematics and Informatics, Am Hubland, University of Würzburg, D-97074 Würzburg, Germany
| | - Aladar Szalay
- Dept. of Biochemistry, Biocenter, Am Hubland, University of Würzburg, D-97074 Würzburg, Germany
- Department of Radiation Medicine and Applied Sciences, Rebecca & John Moores Comprehensive Cancer Center, University of California, San Diego, CA, USA
- Dept. of Pathology, Center of Immune technologies, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Elena Bencurova
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany
- Corresponding author.
| | - Thomas Dandekar
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany
- Corresponding author at: Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
10
|
Nguyen DH, Herrmann T, Härtl B, Draganov D, Minev I, Neuharth F, Gomez A, Alamillo A, Schneider LE, Kleinholz D, Minev B, Santidrian AF. Development of Allogeneic Stem Cell-Based Platform for Delivery and Potentiation of Oncolytic Virotherapy. Cancers (Basel) 2022; 14:cancers14246136. [PMID: 36551636 PMCID: PMC9777144 DOI: 10.3390/cancers14246136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
We describe the repurposing and optimization of the TK-positive (thymidine kinase) vaccinia virus strain ACAM1000/ACAM2000™ as an oncolytic virus. This virus strain has been widely used as a smallpox vaccine and was also used safely in our recent clinical trial in patients with advanced solid tumors and Acute Myeloid Leukemia (AML). The vaccinia virus was amplified in CV1 cells and named CAL1. CAL1 induced remarkable oncolysis in various human and mouse cancer cells and preferentially amplified in cancer cells, supporting the use of this strain as an oncolytic virus. However, the therapeutic potential of CAL1, as demonstrated with other oncolytic viruses, is severely restricted by the patients' immune system. Thus, to develop a clinically relevant oncolytic virotherapy agent, we generated a new off-the-shelf therapeutic called Supernova1 (SNV1) by loading CAL1 virus into allogeneic adipose-derived mesenchymal stem cells (AD-MSC). Culturing the CAL1-infected stem cells allows the expression of virally encoded proteins and viral amplification prior to cryopreservation. We found that the CAL1 virus loaded into AD-MSC was resistant to humoral inactivation. Importantly, the virus-loaded stem cells (SNV1) released larger number of infectious viral particles and virally encoded proteins, leading to augmented therapeutic efficacy in vitro and in animal tumor models.
Collapse
Affiliation(s)
- Duong Hoang Nguyen
- Calidi Biotherapeutics, San Diego, CA 92037, USA
- Correspondence: (D.H.N.); (A.F.S.); Tel.: +1-858-794-9600 (A.F.S.)
| | | | | | | | | | | | | | | | | | | | - Boris Minev
- Calidi Biotherapeutics, San Diego, CA 92037, USA
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, CA 92093, USA
| | - Antonio F. Santidrian
- Calidi Biotherapeutics, San Diego, CA 92037, USA
- Correspondence: (D.H.N.); (A.F.S.); Tel.: +1-858-794-9600 (A.F.S.)
| |
Collapse
|
11
|
Al‐kharboosh R, Perera JJ, Bechtle A, Bu G, Quinones‐Hinojosa A. Emerging point-of-care autologous cellular therapy using adipose-derived stromal vascular fraction for neurodegenerative diseases. Clin Transl Med 2022; 12:e1093. [PMID: 36495120 PMCID: PMC9736801 DOI: 10.1002/ctm2.1093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative disorders are characterized by the gradual decline and irreversible loss of cognitive functions and CNS structures. As therapeutic recourse stagnates, neurodegenerative diseases will cost over a trillion dollars by 2050. A dearth of preventive and regenerative measures to hinder regression and enhance recovery has forced patients to settle for traditional therapeutics designed to manage symptoms, leaving little hope for a cure. In the last decade, pre-clinical animal models and clinical investigations in humans have demonstrated the safety and promise of an emerging cellular product from subcutaneous fat. The adipose-derived stromal vascular fraction (SVF) is an early intervention and late-stage novel 'at point' of care cellular treatment, demonstrating improvements in clinical applications for Multiple Sclerosis, Alzheimer's disease, and Parkinson's disease. SVF is a heterogeneous fraction of cells forming a robust cellular ecosystem and serving as a novel and valuable source of point-of-care autologous cell therapy, providing an easy-to-access population that we hypothesize can mediate repair through 'bi-directional' communication in response to pathological cues. We provide the first comprehensive review of all pre-clinical and clinical findings available to date and highlight major challenges and future directions. There is a greater medical and economic urgency to innovate and develop novel cellular therapy solutions that enable the repair and regeneration of neuronal tissue that has undergone irreversible and permanent damage.
Collapse
Affiliation(s)
- Rawan Al‐kharboosh
- Department of NeuroscienceMayo ClinicJacksonvilleFlorida,Department of Regenerative SciencesMayo Clinic Graduate SchoolRochesterMinnesota,Department of NeurosurgeryMayo ClinicJacksonvilleFlorida
| | | | | | - Guojun Bu
- Department of NeuroscienceMayo ClinicJacksonvilleFlorida
| | | |
Collapse
|
12
|
Delgado-Bonet P, Tomeo-Martín BD, Delgado-Bonet B, Sardón-Ruiz D, Torrado-Carvajal A, Mateo I, Perisé-Barrios AJ. Intracranial Virotherapy for a Canine Hemangioma. Int J Mol Sci 2022; 23:ijms231911677. [PMID: 36232978 PMCID: PMC9569716 DOI: 10.3390/ijms231911677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/29/2022] [Indexed: 11/18/2022] Open
Abstract
Intracranial hemangiomas are rare neoplastic lesions in dogs that usually appear with life-threatening symptoms. The treatment of choice is tumor resection; however, complete resection is rarely achieved. The patient's prognosis therefore usually worsens due to tumor progression, and adjuvant treatments are required to control the disease. Oncolytic viruses are an innovative approach that lyses the tumor cells and induces immune responses. Here, we report the intratumoral inoculation of ICOCAV15 (an oncolytic adenovirus) in a canine intracranial hemangioma, as adjuvant treatment for incomplete tumor resection. The canine patient showed no side effects, and the tumor volume decreased over the 12 months after the treatment, as measured by magnetic resonance imaging using volumetric criteria. When progressive disease was detected at month 18, a new dose of ICOCAV15 was administered. The patient died 31.9 months after the first inoculation of the oncolytic adenovirus. Furthermore, tumor-infiltrated immune cells increased in number after the viral administrations, suggesting tumor microenvironment activation. The increased number of infiltrated immune cells, the long survival time and the absence of side effects suggest that ICOCAV15 could be a safe and effective treatment and should be further explored as a novel therapy for canine hemangiomas.
Collapse
Affiliation(s)
- Pablo Delgado-Bonet
- Biomedical Research Unit (UIB-UAX), Universidad Alfonso X el Sabio, 28691 Madrid, Spain
| | | | - Blanca Delgado-Bonet
- Medical Image Analysis and Biometry Laboratory, Universidad Rey Juan Carlos, 28933 Madrid, Spain
| | - David Sardón-Ruiz
- Department of Veterinary Pathology, Universidad Alfonso X el Sabio, 28691 Madrid, Spain
| | - Angel Torrado-Carvajal
- Medical Image Analysis and Biometry Laboratory, Universidad Rey Juan Carlos, 28933 Madrid, Spain
| | - Isidro Mateo
- Neurology Service, Veterinary Hospital VETSIA, 28914 Madrid, Spain
- Neurology Service, Veterinary Clinical Hospital, Universidad Alfonso X el Sabio, 28691 Madrid, Spain
| | - Ana Judith Perisé-Barrios
- Biomedical Research Unit (UIB-UAX), Universidad Alfonso X el Sabio, 28691 Madrid, Spain
- Correspondence: ; Tel.: +34-918105319
| |
Collapse
|
13
|
Tang C, Li L, Mo T, Na J, Qian Z, Fan D, Sun X, Yao M, Pan L, Huang Y, Zhong L. Oncolytic viral vectors in the era of diversified cancer therapy: from preclinical to clinical. Clin Transl Oncol 2022; 24:1682-1701. [PMID: 35612653 PMCID: PMC9131313 DOI: 10.1007/s12094-022-02830-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/21/2022] [Indexed: 12/19/2022]
Abstract
With the in-depth research and wide application of immunotherapy recently, new therapies based on oncolytic viruses are expected to create new prospects for cancer treatment via eliminating the suppression of the immune system by tumors. Currently, an increasing number of viruses are developed and engineered, and various virus vectors based on effectively stimulating human immune system to kill tumor cells have been approved for clinical treatment. Although the virus can retard the proliferation of tumor cells, the choice of oncolytic viruses in biological cancer therapy is equally critical given their therapeutic efficacy, safety and adverse effects. Moreover, previously known oncolytic viruses have not been systematically classified. Therefore, in this review, we summarized and distinguished the characteristics of several common types of oncolytic viruses: herpes simplex virus, adenovirus, measles virus, Newcastle disease virus, reovirus and respiratory syncytial virus. Subsequently, we outlined that these oncolytic viral vectors have been transformed from preclinical studies in combination with immunotherapy, radiotherapy, chemotherapy, and nanoparticles into clinical therapeutic strategies for various advanced solid malignancies or circulatory system cancers.
Collapse
Affiliation(s)
- Chao Tang
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Lan Li
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Tong Mo
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jintong Na
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhangbo Qian
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Dianfa Fan
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xinjun Sun
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Min Yao
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Lina Pan
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yong Huang
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Liping Zhong
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
14
|
Safety and Efficacy of an Oncolytic Adenovirus as an Immunotherapy for Canine Cancer Patients. Vet Sci 2022; 9:vetsci9070327. [PMID: 35878344 PMCID: PMC9316846 DOI: 10.3390/vetsci9070327] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 11/28/2022] Open
Abstract
Simple Summary The use of oncolytic virus is an innovative approach that has shown promising results as a treatment in oncology. Epithelial-derived tumors are the most frequent neoplasms in dogs, but gold standard therapies can be highly invasive procedures. Due to the accessible localization of these tumors, the intratumoral administration is feasible. Therefore, we propose to determine the safety and efficacy of intratumoral administration of oncolytic adenovirus ICOCAV15, in canine patients with epithelial-derived tumors. Eight dogs with carcinoma/adenocarcinoma were intratumorally treated with ICOCAV15. No clinically relevant changes were observed in the blood count, biochemistry and coagulation test analyzed during follow-up. The survival time of the 6/8 dogs exceeded the median survival time with chemotherapy, showing a partial response rate of 25% and 75% of stable disease. ICOCAV15 was detected in the target lesion by qPCR and immunohistochemistry. Also, some of the non-treated metastasis showed an infiltration of ICOCAV15 by immunohistochemistry. The immune populations were evaluated, and an increase of CD8+, MAC387+, CD3+ and CD20+ cells was reported in some of the patients after the inoculation. These results show that intratumoral ICOCAV15 is safe and well tolerated by dogs. Also, they suggest ICOCAV15 could be a new tool in veterinary oncology for accessible carcinomas/adenocarcinomas. Abstract The use of oncolytic viruses is an innovative approach to lyse tumor cells and induce antitumor immune responses. Eight dogs diagnosed with carcinoma/adenocarcinoma were intratumorally treated with ICOCAV15, an oncolytic canine adenovirus (CAV). To evaluate the treatment’s safety, a blood count, biochemistry, and coagulation test were performed before treatment and during follow-up. Immune populations were analyzed by flow cytometry. Anti-adenovirus antibodies were also determined. The immune infiltration, vascularization, and viral presence in the tumor were determined by CD3, CD4, CD20, CD31 and CAV by immunohistochemistry. All the dogs maintained a good quality of life during follow-up, and some had increased median survival time when compared with dogs treated with chemotherapy. No treatment-related adverse effects were detected. The Response Evaluation Criteria In Solid Tumors criteria were also assessed: two patients showed a partial response and the rest showed stable disease at various times during the study. ICOCAV15 was detected inside the tumor during follow-up, and antiviral antibodies were detected in all patients. Furthermore, the tumor-infiltrating immune cells increased after viral administration. Therefore, we suggest that intratumorally administered ICOCAV15 could represent as a new tool for the treatment of canine carcinoma because it is safe, well-tolerated by dogs, and shows promising results.
Collapse
|
15
|
Naumenko VA, Stepanenko AA, Lipatova AV, Vishnevskiy DA, Chekhonin VP. Infection of non-cancer cells: A barrier or support for oncolytic virotherapy? MOLECULAR THERAPY - ONCOLYTICS 2022; 24:663-682. [PMID: 35284629 PMCID: PMC8898763 DOI: 10.1016/j.omto.2022.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oncolytic viruses are designed to specifically target cancer cells, sparing normal cells. Although numerous studies demonstrate the ability of oncolytic viruses to infect a wide range of non-tumor cells, the significance of this phenomenon for cancer virotherapy is poorly understood. To fill the gap, we summarize the data on infection of non-cancer targets by oncolytic viruses with a special focus on tumor microenvironment and secondary lymphoid tissues. The review aims to address two major questions: how do attenuated viruses manage to infect normal cells, and whether it is of importance for oncolytic virotherapy.
Collapse
Affiliation(s)
- Victor A. Naumenko
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Corresponding author Victor A. Naumenko, PhD, V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia.
| | - Aleksei A. Stepanenko
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Department of Medical Nanobiotechnology, N.I Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Anastasiia V. Lipatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Daniil A. Vishnevskiy
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
| | - Vladimir P. Chekhonin
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Department of Medical Nanobiotechnology, N.I Pirogov Russian National Research Medical University, Moscow 117997, Russia
| |
Collapse
|
16
|
Kulkarni R, Chen WC, Lee Y, Kao CF, Hu SL, Ma HH, Jan JT, Liao CC, Liang JJ, Ko HY, Sun CP, Lin YS, Wang YC, Wei SC, Lin YL, Ma C, Chao YC, Chou YC, Chang W. Vaccinia virus-based vaccines confer protective immunity against SARS-CoV-2 virus in Syrian hamsters. PLoS One 2021; 16:e0257191. [PMID: 34499677 PMCID: PMC8428573 DOI: 10.1371/journal.pone.0257191] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
COVID-19 in humans is caused by Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) that belongs to the beta family of coronaviruses. SARS-CoV-2 causes severe respiratory illness in 10-15% of infected individuals and mortality in 2-3%. Vaccines are urgently needed to prevent infection and to contain viral spread. Although several mRNA- and adenovirus-based vaccines are highly effective, their dependence on the "cold chain" transportation makes global vaccination a difficult task. In this context, a stable lyophilized vaccine may present certain advantages. Accordingly, establishing additional vaccine platforms remains vital to tackle SARS-CoV-2 and any future variants that may arise. Vaccinia virus (VACV) has been used to eradicate smallpox disease, and several attenuated viral strains with enhanced safety for human applications have been developed. We have generated two candidate SARS-CoV-2 vaccines based on two vaccinia viral strains, MVA and v-NY, that express full-length SARS-CoV-2 spike protein. Whereas MVA is growth-restricted in mammalian cells, the v-NY strain is replication-competent. We demonstrate that both candidate recombinant vaccines induce high titers of neutralizing antibodies in C57BL/6 mice vaccinated according to prime-boost regimens. Furthermore, our vaccination regimens generated TH1-biased immune responses in mice. Most importantly, prime-boost vaccination of a Syrian hamster infection model with MVA-S and v-NY-S protected the hamsters against SARS-CoV-2 infection, supporting that these two vaccines are promising candidates for future development. Finally, our vaccination regimens generated neutralizing antibodies that partially cross-neutralized SARS-CoV-2 variants of concern.
Collapse
Affiliation(s)
- Rakesh Kulkarni
- Molecular and Cell Biology, Taiwan International Graduate Program, National Defense Medical Center, Academia Sinica and Graduate Institute of Life Science, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Wen-Ching Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ying Lee
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chi-Fei Kao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Shiu-Lok Hu
- Department of Pharmaceutics, University of Washington, Seattle, Washington, United States of America
| | - Hsiu-Hua Ma
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Jia-Tsrong Jan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chun-Che Liao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jian-Jong Liang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hui-Ying Ko
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Cheng-Pu Sun
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yin-Shoiou Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Chiuan Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Academi Sinica SPF Animal Facility, Academia Sinica, Taipei, Taiwan
| | - Sung-Chan Wei
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Ling Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, Taiwan
| | - Che Ma
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Chan Chao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Chi Chou
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, Taiwan
| | - Wen Chang
- Molecular and Cell Biology, Taiwan International Graduate Program, National Defense Medical Center, Academia Sinica and Graduate Institute of Life Science, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
17
|
Malogolovkin A, Gasanov N, Egorov A, Weener M, Ivanov R, Karabelsky A. Combinatorial Approaches for Cancer Treatment Using Oncolytic Viruses: Projecting the Perspectives through Clinical Trials Outcomes. Viruses 2021; 13:1271. [PMID: 34209981 PMCID: PMC8309967 DOI: 10.3390/v13071271] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023] Open
Abstract
Recent cancer immunotherapy breakthroughs have fundamentally changed oncology and revived the fading hope for a cancer cure. The immune checkpoint inhibitors (ICI) became an indispensable tool for the treatment of many malignant tumors. Alongside ICI, the application of oncolytic viruses in clinical trials is demonstrating encouraging outcomes. Dozens of combinations of oncolytic viruses with conventional radiotherapy and chemotherapy are widely used or studied, but it seems quite complicated to highlight the most effective combinations. Our review summarizes the results of clinical trials evaluating oncolytic viruses with or without genetic alterations in combination with immune checkpoint blockade, cytokines, antigens and other oncolytic viruses as well. This review is focused on the efficacy and safety of virotherapy and the most promising combinations based on the published clinical data, rather than presenting all oncolytic virus variations, which are discussed in comprehensive literature reviews. We briefly revise the research landscape of oncolytic viruses and discuss future perspectives in virus immunotherapy, in order to provide an insight for novel strategies of cancer treatment.
Collapse
Affiliation(s)
- Alexander Malogolovkin
- Gene Therapy Department, Sirius University of Science and Technology, Olympic Avenue, 1, 354340 Sochi, Russia; (N.G.); (A.E.); (M.W.); (R.I.)
| | | | | | | | | | - Alexander Karabelsky
- Gene Therapy Department, Sirius University of Science and Technology, Olympic Avenue, 1, 354340 Sochi, Russia; (N.G.); (A.E.); (M.W.); (R.I.)
| |
Collapse
|
18
|
Chianese A, Santella B, Ambrosino A, Stelitano D, Rinaldi L, Galdiero M, Zannella C, Franci G. Oncolytic Viruses in Combination Therapeutic Approaches with Epigenetic Modulators: Past, Present, and Future Perspectives. Cancers (Basel) 2021; 13:cancers13112761. [PMID: 34199429 PMCID: PMC8199618 DOI: 10.3390/cancers13112761] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Cancer rates have been accelerating significantly in recent years. Despite notable advances having been made in cancer therapy, and numerous studies being currently conducted in clinical trials, research is always looking for new treatment. Novel and promising anticancer therapies comprise combinations of oncolytic viruses and epigenetic modulators, including chromatin modifiers, such as DNA methyltransferase and histone deacetylases, and microRNA. Combinatorial treatments have several advantages: they enhance viral entry, replication, and spread between proximal cells and, moreover, they strengthen the immune response. In this review we summarize the main combination of therapeutic approaches, giving an insight into past, present, and future perspectives. Abstract According to the World Cancer Report, cancer rates have been increased by 50% with 15 million new cases in the year 2020. Hepatocellular carcinoma (HCC) is the only one of the most common tumors to cause a huge increase in mortality with a survival rate between 40% and 70% at 5 years, due to the high relapse and limitations associated with current therapies. Despite great progress in medicine, oncological research is always looking for new therapies: different technologies have been evaluated in clinical trials and others have been already used in clinics. Among them, oncolytic virotherapy represents a therapeutic option with a widespread possibility of approaches and applications. Oncolytic viruses are naturally occurring, or are engineered, viruses characterized by the unique features of preferentially infecting, replicating, and lysing malignant tumor cells, as well as activating the immune response. The combination of oncolytic virotherapy and chemical drugs are arousing great interest in the tumor treatment. In this scenario, novel and promising anticancer therapies comprise combinations of oncolytic viruses and epigenetic modulators or inhibitors of the signalling pathways. Combination treatments are required to improve the immune response and allow viral entry, replication, and diffusion between proximal cells. In this review, we summarize all combination therapies associated with virotherapy, including co-administered inhibitors of chromatin modifiers (combination strategies) and inserted target sites for miRNAs (recombination or arming strategies).
Collapse
Affiliation(s)
- Annalisa Chianese
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (A.A.); (D.S.); (M.G.)
| | - Biagio Santella
- Section of Microbiology and Virology, University Hospital “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Annalisa Ambrosino
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (A.A.); (D.S.); (M.G.)
| | - Debora Stelitano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (A.A.); (D.S.); (M.G.)
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (A.A.); (D.S.); (M.G.)
- Section of Microbiology and Virology, University Hospital “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (A.A.); (D.S.); (M.G.)
- Correspondence: (C.Z.); (G.F.)
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
- Correspondence: (C.Z.); (G.F.)
| |
Collapse
|
19
|
Lin W, Zhao Y, Zhong L. Current strategies of virotherapy in clinical trials for cancer treatment. J Med Virol 2021; 93:4668-4692. [PMID: 33738818 DOI: 10.1002/jmv.26947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/12/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022]
Abstract
As a novel immune-active agent for cancer treatment, viruses have the ability of infecting and replicating in tumor cells. The safety and efficacy of viruses has been tested and confirmed in preclinical and clinical trials. In the last decade, virotherapy has been adopted as a monotherapy or combined therapy with immunotherapy, chemotherapy, or radiotherapy, showing promising outcomes against cancer. In this review, the current strategies of viruses used in clinical trials are classified and described. Besides this, the challenge and future prospects of virotherapy in the management for cancer patients are discussed in this review.
Collapse
Affiliation(s)
- Weijian Lin
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Yongxiang Zhao
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Liping Zhong
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| |
Collapse
|
20
|
Lim KP, Zainal NS. Monitoring T Cells Responses Mounted by Therapeutic Cancer Vaccines. Front Mol Biosci 2021; 8:623475. [PMID: 33937323 PMCID: PMC8082312 DOI: 10.3389/fmolb.2021.623475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/24/2021] [Indexed: 02/03/2023] Open
Abstract
With the regulatory approval of Provenge and Talimogene laherparepvec (T-VEC) for the treatment of metastatic prostate cancer and advanced melanoma respectively, and other promising clinical trials outcomes, cancer vaccine is gaining prominence as a cancer therapeutic agent. Cancer vaccine works to induce T cell priming, expansion, and infiltration resulting in antigen-specific cytotoxicity. Such an approach that can drive cytotoxicity within the tumor could complement the success of checkpoint inhibitors as tumors shown to have high immune cell infiltration are those that would respond well to these antibodies. With the advancements in cancer vaccine, methods to monitor and understand how cancer vaccines modify the immune milieu is under rapid development. This includes using ELISpot and intracellular staining to detect cytokine secretion by activated T cells; tetramer and CyTOF to quantitate the level of antigen specific T cells; proliferation and cell killing assay to detect the expansion of T cell and specific killing activity. More recently, T cell profiling has provided unprecedented detail on immune cell subsets and providing clues to the mechanism involved in immune activation. Here, we reviewed cancer vaccines currently in clinical trials and highlight available techniques in monitoring the clinical response in patients.
Collapse
Affiliation(s)
- Kue Peng Lim
- Cancer Immunology and Immunotherapy Research Unit, Cancer Research Malaysia, Subang Jaya, Malaysia
| | - Nur Syafinaz Zainal
- Cancer Immunology and Immunotherapy Research Unit, Cancer Research Malaysia, Subang Jaya, Malaysia
| |
Collapse
|
21
|
Wang X, Yang Y, Wang N, Wu X, Xu J, Zhou Y, Zhao X, He Z. Mesenchymal stem cell carriers enhance antitumor efficacy induced by oncolytic reovirus in acute myeloid leukemia. Int Immunopharmacol 2021; 94:107437. [PMID: 33571747 DOI: 10.1016/j.intimp.2021.107437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 12/12/2022]
Abstract
Chemotherapy is the main treatment for acute myeloid leukemia (AML), but the therapeutic efficacy is modest, and most commonly manifests as relapse from remission. Thus, improving long-term AML survival is a crucial clinical challenge. In recent years, oncolytic virotherapy has provided an alternative approach for AML treatment. The use of oncolytic reoviruses has been explored in more than 30 clinical trials for safety and feasibility issues. However, like other oncolytic viruses, neutralizing antibodies (NAbs) reduce therapeutic efficacy. To tackle this problem, human umbilical cord mesenchymal stem cells (hUC-MSCs) were used to deliver reovirus using in vitro and in vivo models. Human UC-MSCs were successfully loaded with reovirus, without impairing biological function.We also observed in vitro protective effects of hUC-MSCs on reovirus in the presence of NAbs. In the immunocompromised AML mouse model, hUC-MSCs effectively carried reoviruses to tumor lesions and significantly prolonged the survival of AML xenografts in mice in the presence of a high titer anti-reovirus antibody (p = 0.001). However, reovirus-induced activation of AKT, stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), and NF-κB signaling led to the maintenance of intrinsic migratory properties and secretion of pro-inflammatory cytokines from hUC-MSCs, particularly CXCL10. In immuno-competent AML mice, MSCs carrying reovirus triggered immune responses, and eventually inhibited tumor growth. Therefore, these results suggest that MSCs as carriers of oncolytic reoviruses can enhance the antitumor efficacy of virotherapy.
Collapse
Affiliation(s)
- Xianyao Wang
- Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; Center for Tissue Engineering and Stem Cell Research , Guizhou Medical University, Guiyang 550004, China; Key Laboratory of Adult Stem Cell Translational Research (Chinese Academy of Medical Sciences), Guiyang 550004, China
| | - Yichen Yang
- Center for Tissue Engineering and Stem Cell Research , Guizhou Medical University, Guiyang 550004, China
| | - Nianxue Wang
- Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; Center for Tissue Engineering and Stem Cell Research , Guizhou Medical University, Guiyang 550004, China
| | - Xijun Wu
- Center for Tissue Engineering and Stem Cell Research , Guizhou Medical University, Guiyang 550004, China; Key Laboratory of Adult Stem Cell Translational Research (Chinese Academy of Medical Sciences), Guiyang 550004, China
| | - Jianwei Xu
- Center for Tissue Engineering and Stem Cell Research , Guizhou Medical University, Guiyang 550004, China; Key Laboratory of Adult Stem Cell Translational Research (Chinese Academy of Medical Sciences), Guiyang 550004, China; Department of Pharmacology, Guizhou Medical University, Guiyang 550025, China
| | - Yanhua Zhou
- Center for Tissue Engineering and Stem Cell Research , Guizhou Medical University, Guiyang 550004, China; Key Laboratory of Adult Stem Cell Translational Research (Chinese Academy of Medical Sciences), Guiyang 550004, China
| | - Xing Zhao
- Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; Center for Tissue Engineering and Stem Cell Research , Guizhou Medical University, Guiyang 550004, China; Key Laboratory of Adult Stem Cell Translational Research (Chinese Academy of Medical Sciences), Guiyang 550004, China.
| | - Zhixu He
- Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; Key Laboratory of Adult Stem Cell Translational Research (Chinese Academy of Medical Sciences), Guiyang 550004, China; Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
22
|
Kloker LD, Berchtold S, Smirnow I, Beil J, Krieg A, Sipos B, Lauer UM. Oncolytic vaccinia virus GLV-1h68 exhibits profound antitumoral activities in cell lines originating from neuroendocrine neoplasms. BMC Cancer 2020; 20:628. [PMID: 32631270 PMCID: PMC7339398 DOI: 10.1186/s12885-020-07121-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
Background Oncolytic virotherapy is an upcoming treatment option for many tumor entities. But so far, a first oncolytic virus only was approved for advanced stages of malignant melanomas. Neuroendocrine tumors (NETs) constitute a heterogenous group of tumors arising from the neuroendocrine system at diverse anatomic sites. Due to often slow growth rates and (in most cases) endocrine non-functionality, NETs are often detected only in a progressed metastatic situation, where therapy options are still severely limited. So far, immunotherapies and especially immunovirotherapies are not established as novel treatment modalities for NETs. Methods In this immunovirotherapy study, pancreatic NET (BON-1, QGP-1), lung NET (H727, UMC-11), as well as neuroendocrine carcinoma (NEC) cell lines (HROC-57, NEC-DUE1) were employed. The well characterized genetically engineered vaccinia virus GLV-1 h68, which has already been investigated in various clinical trials, was chosen as virotherapeutical treatment modality. Results Profound oncolytic efficiencies were found for NET/NEC tumor cells. Besides, NET/NEC tumor cell bound expression of GLV-1 h68-encoded marker genes was observed also. Furthermore, a highly efficient production of viral progenies was detected by sequential virus quantifications. Moreover, the mTOR inhibitor everolimus, licensed for treatment of metastatic NETs, was not found to interfere with GLV-1 h68 replication, making a combinatorial treatment of both feasible. Conclusions In summary, the oncolytic vaccinia virus GLV-1 h68 was found to exhibit promising antitumoral activities, replication capacities and a potential for future combinatorial approaches in cell lines originating from neuroendocrine neoplasms. Based on these preliminary findings, virotherapeutic effects now have to be further evaluated in animal models for treatment of Neuroendocrine neoplasms (NENs).
Collapse
Affiliation(s)
- Linus D Kloker
- Department of Internal Medicine VIII, Department of Medical Oncology and Pneumology, University Hospital Tuebingen, University of Tuebingen, Otfried-Mueller-Strasse 10, 72076, Tuebingen, Baden-Wuerttemberg, Germany
| | - Susanne Berchtold
- Department of Internal Medicine VIII, Department of Medical Oncology and Pneumology, University Hospital Tuebingen, University of Tuebingen, Otfried-Mueller-Strasse 10, 72076, Tuebingen, Baden-Wuerttemberg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 72076, Tuebingen, Germany
| | - Irina Smirnow
- Department of Internal Medicine VIII, Department of Medical Oncology and Pneumology, University Hospital Tuebingen, University of Tuebingen, Otfried-Mueller-Strasse 10, 72076, Tuebingen, Baden-Wuerttemberg, Germany
| | - Julia Beil
- Department of Internal Medicine VIII, Department of Medical Oncology and Pneumology, University Hospital Tuebingen, University of Tuebingen, Otfried-Mueller-Strasse 10, 72076, Tuebingen, Baden-Wuerttemberg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 72076, Tuebingen, Germany
| | - Andreas Krieg
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, 40225, Duesseldorf, Germany
| | - Bence Sipos
- Department of Internal Medicine VIII, Department of Medical Oncology and Pneumology, University Hospital Tuebingen, University of Tuebingen, Otfried-Mueller-Strasse 10, 72076, Tuebingen, Baden-Wuerttemberg, Germany
| | - Ulrich M Lauer
- Department of Internal Medicine VIII, Department of Medical Oncology and Pneumology, University Hospital Tuebingen, University of Tuebingen, Otfried-Mueller-Strasse 10, 72076, Tuebingen, Baden-Wuerttemberg, Germany. .,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 72076, Tuebingen, Germany.
| |
Collapse
|
23
|
Enhancing therapeutic efficacy of oncolytic vaccinia virus armed with Beclin-1, an autophagic Gene in leukemia and myeloma. Biomed Pharmacother 2020; 125:110030. [PMID: 32187960 DOI: 10.1016/j.biopha.2020.110030] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 12/11/2022] Open
Abstract
Different strategies were taken to make virotherapy more effective at killing cancer cells. Among them, oncolytic virus which arms the therapeutic gene to enhance antitumor activity is a prevalent approach. In this study, a newly developed oncolytic vaccinia virus (OVV) that expresses Beclin-1 (OVV-BECN1) was tested for its in vitro and in vivo oncolytic activity in blood cancer. Results showed that the OVV exhibited higher infectivity for leukemia cells. OVV-BECN1 induced significant apoptosis-independent cell death either in wild-type leukemia and multiple myeloma (MM) cell lines or caspase-3 shRNA leukemia cell lines, and had a superior antitumor activity compared to the parent OVV. Autophagic cell death induced by OVV-BECN1 was demonstrated in vitro and in vivo experiments. Finally, upregulation of SIRT-1, a member of class III histone deacetylases, by OVV-BECN1 resulted in the deacetylation of LC3 and its distribution from the nucleus toward the cytoplasm, which might contribute to induction of autophagy. Overall, our data showed a favorable therapeutic effect of the oncolytic vaccinia virus on blood cancers through oncolytic and autophagic mechanisms, and may therefore constitute a promising and effective therapeutic strategy for treating human leukemia and MM. However, further studies are warranted for its reliable clinical translation.
Collapse
|