1
|
Li X, Lin J, Zhou H, Lv HF, Yang L, Jiang Z. Impact of Omega-3 Enriched Lipid Emulsions on Retinopathy of Prematurity in Very Low Birth Weight Infants: A Retrospective Cohort Analysis. Indian J Pediatr 2025:10.1007/s12098-024-05394-6. [PMID: 39777717 DOI: 10.1007/s12098-024-05394-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025]
Abstract
OBJECTIVES To assess the effects of ω-3 long-chain polyunsaturated fatty acid (LCPUFA)-enriched lipid emulsions (SMOFlipid) vs. traditional soybean oil-based lipid emulsions (Intralipid) on the occurrence and severity of retinopathy of prematurity (ROP) in infants with very low birth weight (VLBW). METHODS In this retrospective cohort study, 301 VLBW infants who received either SMOFlipid or Intralipid for a minimum of 14 d were included. The main outcome measured was the frequency and severity of ROP, with secondary outcomes covering other complications associated with preterm birth. RESULTS Of the infants studied, 180 were administered SMOFlipid, while 121 received Intralipid. The incidence of ROP was notably lower in the SMOFlipid group (32.8% vs. 45.5%; RR 0.59; 95% CI 0.36-0.94; P = 0.026). Additionally, the occurrence of severe ROP was reduced by 66.06% in infants given SMOFlipid (5.6% vs. 16.5%; RR 0.30; 95% CI 0.13-0.66; P = 0.002). Multivariate logistic regression suggested that using SMOFlipid was linked to a reduced risk of both ROP (OR 0.44; 95% CI 0.24-0.82; P = 0.010) and severe ROP (OR 0.09; 95% CI 0.03-0.30; P < 0.001). There were no considerable differences noted in other complications associated with preterm birth between the two groups. CONCLUSIONS Compared to Intralipid, SMOFlipid treatment reduced both the risk and severity of ROP. Parenteral supplementation with fish oil-containing emulsions might offer a novel approach to lowering the incidence and severity of ROP in VLBW infants.
Collapse
Affiliation(s)
- Xing Li
- Department of Pharmacy, Qiantang Campus, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, 310018, China
| | - Jiami Lin
- Department of Nursing, Qiantang Campus, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, 310018, China
| | - Hongxia Zhou
- Department of Geriatric Psychiatry, Taizhou Second People's Hospital, Taizhou, 317200, China
| | - Hai-Feng Lv
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310053, China
| | - Lili Yang
- Department of Nursing, Qiantang Campus, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, 310018, China.
| | - Zhou Jiang
- Department of Neonatal Intensive Care Unit, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, 310018, China.
| |
Collapse
|
2
|
Duan J, Xu F, Zhu C, Wang J, Zhang X, Xu Y, Li B, Peng X, Zhu J, Wang X, Zhu C. Histological chorioamnionitis and pathological stages on very preterm infant outcomes. Histopathology 2024; 84:1024-1037. [PMID: 38253913 DOI: 10.1111/his.15147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/01/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
AIMS Histological chorioamnionitis (HCA) is a condition linked to preterm birth and neonatal infection and its relationship with various pathological stages in extremely preterm neonates, and with their associated short- and long-term consequences, remains a subject of research. This study investigated the connection between different pathological stages of HCA and both short-term complications and long-term outcomes in preterm infants born at or before 32 weeks of gestational age. METHODS Preterm infants born at ≤ 32 weeks of gestation who underwent placental pathology evaluation and were followed-up at 18-24 months of corrected age were included. Neonates were classified based on their exposure to HCA and were further subdivided into different groups according to maternal inflammatory responses (MIR) and fetal inflammatory responses (FIR) stages. We compared short-term complications during their hospital stay between the HCA-exposed and -unexposed groups and examined the influence of HCA stages on long-term outcomes. RESULTS The HCA group exhibited distinct characteristics such as higher rates of premature rupture of membranes > 18 h, reduced amniotic fluid, early-onset sepsis, bronchopulmonary dysplasia and intraventricular haemorrhage (IVH) grades III-IV (P < 0.05). The moderate-severe HCA group displayed lower gestational age, lower birth weight and higher incidence of IVH (grades III-IV) and preterm sepsis compared with the mild HCA group (P < 0.05). After adjusting for confounders, the MIR stages 2-3 group showed associations with cognitive impairment and cerebral palsy (P < 0.05), and the FIR stages 2-3 group also showed poor long-term outcomes and cognitive impairment (P < 0.05). CONCLUSIONS Moderate-severe HCA was associated with increased early-onset sepsis, severe IVH and poor long-term outcomes, including cognitive impairment and cerebral palsy. Vigilant prevention strategies are warranted for severe HCA cases in order to mitigate poorer clinical outcomes.
Collapse
Affiliation(s)
- Jiajia Duan
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Falin Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chaoya Zhu
- Department of Pathology, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ju Wang
- Department of Anesthesiology, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoli Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bingbing Li
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xirui Peng
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinjin Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Center for Perinatal Medicine and Health, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Li W, Wang Y, Song J, Zhang C, Xu Y, Xu F, Wang X, Zhu C. Association between bronchopulmonary dysplasia and death or neurodevelopmental impairment at 3 years in preterm infants without severe brain injury. Front Neurol 2023; 14:1292372. [PMID: 38033771 PMCID: PMC10684711 DOI: 10.3389/fneur.2023.1292372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
Objective We investigated the association between bronchopulmonary dysplasia (BPD) and 3 years death or neurodevelopmental impairment (NDI) in very preterm infants without severe brain injury. Method Our prospective cohort study recruited preterm infants who were born prior to 32 weeks of gestational age and survived in the neonatal intensive care unit until 36 weeks of corrected age. Upon reaching 3 years of age, each infant was assessed for death or NDI such as cerebral palsy, cognitive deficit, hearing loss, and blindness. Correlations between BPD and death or NDI were determined using multiple logistic regression analyses adjusted for confounding factors. Result A total of 1,417 infants without severe brain injury who survived until 36 weeks of corrected age were initially enrolled in the study. Over the study period, 201 infants were lost to follow-up and 5 infants were excluded. Our final dataset, therefore, included 1,211 infants, of which 17 died after 36 weeks of corrected age and 1,194 were followed up to 3 years of age. Among these infants, 337 (27.8%) developed BPD. Interestingly, by 3 years of age, BPD was demonstrated to be independently associated with death or NDI, with an adjusted odds ratio of 1.935 (95% confidence interval: 1.292-2.899, p = 0.001), in preterm infants without severe neonatal brain injury. Conclusion Our findings indicate that BPD is strongly associated with death or NDI in preterm infants without severe neonatal brain injury at 3 years of age. Further research is needed to understand the mechanisms linking the development of BPD with death or NDI and whether appropriate treatment of BPD may ameliorate or prevent the development of neurological complications.
Collapse
Affiliation(s)
- Wenli Li
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
- Department of Neonatology, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Wang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
- Department of Neonatology, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Juan Song
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
- Department of Neonatology, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chen Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
- Department of Neonatology, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Falin Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
- Department of Neonatology, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
- Center for Perinatal Medicine and Health, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
- Department of Women’s and Children’s Health, Karolinska Institute, Stockholm, Sweden
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Goteborg, Sweden
| |
Collapse
|
4
|
Fischer HS, Reibel NJ, Bührer C, Dame C. Effect of Early Erythropoietin on Retinopathy of Prematurity: A Stratified Meta-Analysis. Neonatology 2023; 120:566-576. [PMID: 37369177 DOI: 10.1159/000530126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/07/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Recombinant human erythropoietin (rhEPO) lost its role in minimizing red blood cell transfusion in very preterm infants after it had been associated with severe retinopathy of prematurity (ROP). Previous systematic reviews did not stratify ROP by gestation and birth weight (BW). OBJECTIVES The aim of this study was to investigate the effect of early prophylactic rhEPO on ROP in a stratified meta-analysis of randomized controlled trials (RCTs). METHODS The databases EMBASE, MEDLINE, and the Cochrane Central Register of Controlled Trials were searched in January 2022 and complemented by citation searching. RCTs comparing early rhEPO treatment with no treatment or placebo were selected if they were published in a peer-reviewed journal and reported ROP outcomes. Previously unpublished data were requested from the study authors to allow stratified analyses by gestational age (GA) and BW. Data were extracted and analyzed using the standard methods of the Cochrane Neonatal Review Group. Pre-specified outcomes were "ROP stage ≥3" (primary outcome) and "any ROP." RESULTS Fourteen RCTs, comprising 2,040 infants of <29 weeks of GA, were included for meta-analysis. Data syntheses showed no effects of rhEPO on ROP stage ≥3 or on any ROP, neither in infants of <29 weeks GA, nor in infants of <1,000 g BW, nor in any GA strata. The risk ratio (95% confidence interval) for ROP stage ≥3 in infants of <29 weeks of GA was 1.13 (0.84, 1.53), p = 0.41 (quality of evidence: moderate). CONCLUSIONS The present meta-analysis detected no effects of early rhEPO on ROP in any comparison, but most stratified analyses were limited by low statistical power.
Collapse
Affiliation(s)
- Hendrik S Fischer
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Nora J Reibel
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Bührer
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christof Dame
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
5
|
Razak A, Patel W, Durrani NUR, Pullattayil AK. Interventions to Reduce Severe Brain Injury Risk in Preterm Neonates: A Systematic Review and Meta-analysis. JAMA Netw Open 2023; 6:e237473. [PMID: 37052920 PMCID: PMC10102877 DOI: 10.1001/jamanetworkopen.2023.7473] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/23/2023] [Indexed: 04/14/2023] Open
Abstract
Importance Interventions to reduce severe brain injury risk are the prime focus in neonatal clinical trials. Objective To evaluate multiple perinatal interventions across clinical settings for reducing the risk of severe intraventricular hemorrhage (sIVH) and cystic periventricular leukomalacia (cPVL) in preterm neonates. Data Sources MEDLINE, Embase, CENTRAL (Cochrane Central Register of Controlled Trials), and CINAHL (Cumulative Index to Nursing and Allied Health Literature) databases were searched from inception until September 8, 2022, using prespecified search terms and no language restrictions. Study Selection Randomized clinical trials (RCTs) that evaluated perinatal interventions, chosen a priori, and reported 1 or more outcomes (sIVH, cPVL, and severe brain injury) were included. Data Extraction and Synthesis Two co-authors independently extracted the data, assessed the quality of the trials, and evaluated the certainty of the evidence using the Cochrane GRADE (Grading of Recommendations, Assessment, Development, and Evaluation) approach. Fixed-effects pairwise meta-analysis was used for data synthesis. Main Outcomes and Measures The 3 prespecified outcomes were sIVH, cPVL, and severe brain injury. Results A total of 221 RCTs that assessed 44 perinatal interventions (6 antenatal, 6 delivery room, and 32 neonatal) were included. Meta-analysis showed with moderate certainty that antenatal corticosteroids were associated with small reduction in sIVH risk (risk ratio [RR], 0.54 [95% CI, 0.35-0.82]; absolute risk difference [ARD], -1% [95% CI, -2% to 0%]; number needed to treat [NNT], 80 [95% CI, 48-232]), whereas indomethacin prophylaxis was associated with moderate reduction in sIVH risk (RR, 0.64 [95% CI, 0.52-0.79]; ARD, -5% [95% CI, -8% to -3%]; NNT, 20 [95% CI, 13-39]). Similarly, the meta-analysis showed with low certainty that volume-targeted ventilation was associated with large reduction in risk of sIVH (RR, 0.51 [95% CI, 0.36-0.72]; ARD, -9% [95% CI, -13% to -5%]; NNT, 11 [95% CI, 7-23]). Additionally, early erythropoiesis-stimulating agents (RR, 0.68 [95% CI, 0.57-0.83]; ARD, -3% [95% CI, -4% to -1%]; NNT, 34 [95% CI, 22-67]) and prophylactic ethamsylate (RR, 0.68 [95% CI, 0.48-0.97]; ARD, -4% [95% CI, -7% to 0%]; NNT, 26 [95% CI, 13-372]) were associated with moderate reduction in sIVH risk (low certainty). The meta-analysis also showed with low certainty that compared with delayed cord clamping, umbilical cord milking was associated with a moderate increase in sIVH risk (RR, 1.82 [95% CI, 1.03-3.21]; ARD, 3% [95% CI, 0%-6%]; NNT, -30 [95% CI, -368 to -16]). Conclusions and Relevance Results of this study suggest that a few interventions, including antenatal corticosteroids and indomethacin prophylaxis, were associated with reduction in sIVH risk (moderate certainty), and volume-targeted ventilation, early erythropoiesis-stimulating agents, and prophylactic ethamsylate were associated with reduction in sIVH risk (low certainty) in preterm neonates. However, clinicians should carefully consider all of the critical factors that may affect applicability in these interventions, including certainty of the evidence, before applying them to clinical practice.
Collapse
Affiliation(s)
- Abdul Razak
- Department of Pediatrics, Monash University, Melbourne, Victoria, Australia
- Monash Newborn, Monash Children’s Hospital, Melbourne, Victoria, Australia
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
| | - Waseemoddin Patel
- Division of Neonatology, Department of Pediatrics, Sidra Medicine, Doha, Qatar
| | - Naveed Ur Rehman Durrani
- Division of Neonatology, Department of Pediatrics, Sidra Medicine, Doha, Qatar
- Department of Pediatrics, Weill Cornell Medicine–Qatar, Doha, Qatar
| | | |
Collapse
|
6
|
Fevereiro-Martins M, Marques-Neves C, Guimarães H, Bicho M. Retinopathy of prematurity: A review of pathophysiology and signaling pathways. Surv Ophthalmol 2023; 68:175-210. [PMID: 36427559 DOI: 10.1016/j.survophthal.2022.11.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
Retinopathy of prematurity (ROP) is a vasoproliferative disorder of the retina and a leading cause of visual impairment and childhood blindness worldwide. The disease is characterized by an early stage of retinal microvascular degeneration, followed by neovascularization that can lead to subsequent retinal detachment and permanent visual loss. Several factors play a key role during the different pathological stages of the disease. Oxidative and nitrosative stress and inflammatory processes are important contributors to the early stage of ROP. Nitric oxide synthase and arginase play important roles in ischemia/reperfusion-induced neurovascular degeneration. Destructive neovascularization is driven by mediators of the hypoxia-inducible factor pathway, such as vascular endothelial growth factor and metabolic factors (succinate). The extracellular matrix is involved in hypoxia-induced retinal neovascularization. Vasorepulsive molecules (semaphorin 3A) intervene preventing the revascularization of the avascular zone. This review focuses on current concepts about signaling pathways and their mediators, involved in the pathogenesis of ROP, highlighting new potentially preventive and therapeutic modalities. A better understanding of the intricate molecular mechanisms underlying the pathogenesis of ROP should allow the development of more effective and targeted therapeutic agents to reduce aberrant vasoproliferation and facilitate physiological retinal vascular development.
Collapse
Affiliation(s)
- Mariza Fevereiro-Martins
- Laboratório de Genética and Grupo Ecogenética e Saúde Humana, Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Investigação Científica Bento da Rocha Cabral, Lisboa, Portugal; Departamento de Oftalmologia, Hospital Cuf Descobertas, Lisboa, Portugal.
| | - Carlos Marques-Neves
- Centro de Estudos das Ci.¼ncias da Visão, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Grupo Ecogenética e Saúde Humana, Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| | - Hercília Guimarães
- Departamento de Ginecologia-Obstetrícia e Pediatria, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.
| | - Manuel Bicho
- Laboratório de Genética and Grupo Ecogenética e Saúde Humana, Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Investigação Científica Bento da Rocha Cabral, Lisboa, Portugal.
| |
Collapse
|
7
|
Systemic Cytokines in Retinopathy of Prematurity. J Pers Med 2023; 13:jpm13020291. [PMID: 36836525 PMCID: PMC9966226 DOI: 10.3390/jpm13020291] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
Retinopathy of prematurity (ROP), a vasoproliferative vitreoretinal disorder, is the leading cause of childhood blindness worldwide. Although angiogenic pathways have been the main focus, cytokine-mediated inflammation is also involved in ROP etiology. Herein, we illustrate the characteristics and actions of all cytokines involved in ROP pathogenesis. The two-phase (vaso-obliteration followed by vasoproliferation) theory outlines the evaluation of cytokines in a time-dependent manner. Levels of cytokines may even differ between the blood and the vitreous. Data from animal models of oxygen-induced retinopathy are also valuable. Although conventional cryotherapy and laser photocoagulation are well established and anti-vascular endothelial growth factor agents are available, less destructive novel therapeutics that can precisely target the signaling pathways are required. Linking the cytokines involved in ROP to other maternal and neonatal diseases and conditions provides insights into the management of ROP. Suppressing disordered retinal angiogenesis via the modulation of hypoxia-inducible factor, supplementation of insulin-like growth factor (IGF)-1/IGF-binding protein 3 complex, erythropoietin, and its derivatives, polyunsaturated fatty acids, and inhibition of secretogranin III have attracted the attention of researchers. Recently, gut microbiota modulation, non-coding RNAs, and gene therapies have shown promise in regulating ROP. These emerging therapeutics can be used to treat preterm infants with ROP.
Collapse
|
8
|
Cung T, Wang H, Hartnett ME. The Effects of Nicotinamide Adenine Dinucleotide Phosphate (NADPH) Oxidase and Erythropoietin, and Their Interactions in Angiogenesis: Implications in Retinopathy of Prematurity. Cells 2022; 11:cells11121951. [PMID: 35741081 PMCID: PMC9222209 DOI: 10.3390/cells11121951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 01/27/2023] Open
Abstract
Retinopathy of prematurity (ROP) is a leading cause of vision impairment and blindness in premature infants. Oxidative stress is implicated in its pathophysiology. NADPH oxidase (NOX), a major enzyme responsible for reactive oxygen species (ROS) generation in endothelial cells, has been studied for its involvement in physiologic and pathologic angiogenesis. Erythropoietin (EPO) has gained interest recently due to its tissue protective and angiogenic effects, and it has been shown to act as an antioxidant. In this review, we summarize studies performed over the last five years regarding the role of various NOXs in physiologic and pathologic angiogenesis. We also discuss the effect of EPO in tissue and vasoprotection, and the intersection of EPO and NOX-mediated oxidative stress in angiogenesis and the pathophysiology of ROP.
Collapse
|
9
|
Ottolenghi S, Milano G, Cas MD, Findley TO, Paroni R, Corno AF. Can Erythropoietin Reduce Hypoxemic Neurological Damages in Neonates With Congenital Heart Defects? Front Pharmacol 2021; 12:770590. [PMID: 34912224 PMCID: PMC8666450 DOI: 10.3389/fphar.2021.770590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/11/2021] [Indexed: 11/21/2022] Open
Abstract
Congenital heart defects (CHD), the most common cause of birth defects with increasing birth prevalence, affect nearly 1% of live births worldwide. Cyanotic CHD are characterized by hypoxemia, with subsequent reduced oxygen delivery to the brain, especially critical during brain development, beginning in the fetus and continuing through the neonatal period. Therefore, neonates with CHD carry a high risk for neurological comorbidities, even more frequently when there are associated underlying genetic disorders. We review the currently available knowledge on potential prevention strategies to reduce brain damage induced by hypoxemia during fetal development and immediately after birth, and the role of erythropoietin (EPO) as a potential adjunctive treatment. Maternal hyper-oxygenation had been studied as a potential therapeutic to improve fetal oxygenation. Despite demonstrating some effectiveness, maternal hyper-oxygenation has proven to be impractical for extensive clinical application, thus prompting the investigation of specific pathways for pharmacological intervention. Among those, the role of antioxidant pathways and Hypoxia Inducible Factors (HIF) have been studied for their involvement in the protective response to hypoxic injury. One of the proteins induced by HIF, EPO, has properties of being anti-apoptotic, antioxidant, and protective for neurons, astrocytes, and oligodendrocytes. In human trials, EPO administration in neonates with hypoxic ischemic encephalopathy (HIE) significantly reduced the neurological hypoxemic damages in several reported studies. Currently, it is unknown if the mechanisms of pathophysiology of cyanotic CHD are like HIE. Neonates with cyanotic CHD are exposed to both chronic hypoxemia and episodes of acute ischemia-reperfusion injury when undergo cardiopulmonary bypass surgery requiring aortic cross-clamp and general anesthesia. Our review supports future trials to evaluate the potential efficiency of EPO in reducing the hypoxemic neurologic damages in neonates with CHD. Furthermore, it suggests the need to identify early biomarkers of hypoxia-induced neurological damage, which must be sensitive to the neuroprotective effects of EPO.
Collapse
Affiliation(s)
- Sara Ottolenghi
- Department of Health Science, University of Milan, Milan, Italy.,Department of Medicine and Surgery, University of Milano Bicocca, Milan, Italy
| | - Giuseppina Milano
- Department Cœur-Vaisseaux, Cardiac Surgery Center, University Hospital of Lausanne, Lausanne, Switzerland
| | - Michele Dei Cas
- Department of Health Science, University of Milan, Milan, Italy
| | - Tina O Findley
- Department of Pediatrics, Children's Heart Institute, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Rita Paroni
- Department of Health Science, University of Milan, Milan, Italy
| | - Antonio F Corno
- Department of Pediatrics, Children's Heart Institute, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
10
|
Bui KCT, Ellenhorn N, Abbasi A, Villosis MFB, Nguyen M, Truong H, Watson T, Buchanan J, Chen Q. Erythropoietin is not a risk factor for severe retinopathy of prematurity among high risk preterm infants. Early Hum Dev 2021; 161:105440. [PMID: 34407495 DOI: 10.1016/j.earlhumdev.2021.105440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/20/2021] [Accepted: 08/02/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Retinopathy of prematurity (ROP) is a developmental retinal vaso-proliferative disease and a leading cause of blindness in children. Early gestational age, low birth weight and unregulated oxygen exposure are the main risk factors for the development of ROP. There are conflicting reports of a possible association between recombinant Erythropoietin (rhEPO) use and an increased risk for the development of ROP. OBJECTIVE To determine whether rhEPO is an independent risk factor for the development of severe ROP among preterm infants with a gestational age of 23 to 32 weeks and a birth weight <1500 g. METHODS We performed a retrospective study of risk factors for ROP on a cohort of 1762 premature infants born between 2009 and 2014, half of whom received rhEPO. To examine the association between treated ROP and rhEPO, a propensity score (PS) analysis was performed using the inverse probability of treatment weighted (IPTW) approach. RESULTS The incidence of treated ROP was 7.3% (129/1762). PS analysis did not show an association between rhEPO and severe ROP needing treatment or ROP stage 2 or higher, in either the whole population or in the subgroup of babies born at 23 to 28 weeks gestation, in whom the incidence of severe ROP was the highest. Of 117 patients treated for Type 1 or worsening stage 3 ROP, 17 were first diagnosed after NICU discharge. CONCLUSION Our study showed no association between Erythropoietin use and severe ROP and highlights the importance of Ophthalmology follow up after hospital discharge.
Collapse
Affiliation(s)
- Kim Chi T Bui
- Department of Pediatrics, Kaiser Permanente Los Angeles, California, United States of America.
| | - Naomi Ellenhorn
- Department of Ophthalmology, Kaiser Permanente Los Angeles, California, United States of America
| | - Afshan Abbasi
- Department of Pediatrics, Kaiser Permanente Downey, California, United States of America
| | - Maria Fe B Villosis
- Department of Pediatrics, Kaiser Permanente Panorama City, California, United States of America
| | - Marielle Nguyen
- Department of Pediatrics, Kaiser Permanente Orange County, California, United States of America
| | - Huy Truong
- Department of Pediatrics, Kaiser Permanente Fontana, California, United States of America
| | - Tameka Watson
- Department of Pediatrics, Kaiser Permanente Los Angeles, California, United States of America
| | - Joanna Buchanan
- Department of Pediatrics, Kaiser Permanente Los Angeles, California, United States of America
| | - Qiaoling Chen
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, California, United States of America
| |
Collapse
|
11
|
Feizi S, Alemzadeh-Ansari M, Karimian F, Esfandiari H. Use of erythropoietin in ophthalmology: a review. Surv Ophthalmol 2021; 67:427-439. [PMID: 34157346 DOI: 10.1016/j.survophthal.2021.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 12/17/2022]
Abstract
Erythropoietin (EPO) is a glycoprotein hormone that regulates hematopoiesis in the human body. The presence of EPO and its receptors in different tissues indicates that this hormone has extramedullary effects in other tissues, including the eye. We focus on the biological roles of this hormone in the development and normal physiologic functions of the eye. Furthermore, we explore the role of EPO in the management of different ocular diseases - including diabetic retinopathy, retinopathy of prematurity, inherited retinal degeneration, branch and central retinal vein occlusion, retinal detachment, traumatic optic neuropathy, optic neuritis, methanol optic neuropathy, nonarteritic anterior ischemic optic neuropathy, glaucoma, and scleral necrosis.
Collapse
Affiliation(s)
- Sepehr Feizi
- Ophthalmic Research Center, Department of Ophthalmology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Farid Karimian
- Ophthalmic Research Center, Department of Ophthalmology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Esfandiari
- Department of Ophthalmology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
12
|
Ma X, Shi Y. Whether erythropoietin can be a neuroprotective agent against premature brain injury: cellular mechanisms and clinical efficacy. Curr Neuropharmacol 2021; 20:611-629. [PMID: 34030616 DOI: 10.2174/1570159x19666210524154519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/27/2021] [Accepted: 05/08/2021] [Indexed: 11/22/2022] Open
Abstract
Preterm infants are at high risk of brain injury. With more understanding of the preterm brain injury's pathogenesis, neuroscientists are looking for more effective methods to prevent and treat it, among which erythropoietin (Epo) is considered as a prime candidate. This review tries to clarify the possible mechanisms of Epo in preterm neuroprotection and summarize updated evidence considering Epo as a pharmacological neuroprotective strategy in animal models and clinical trials. To date, various animal models have validated that Epo is an anti-apoptotic, anti-inflammatory, anti-oxidant, anti-excitotoxic, neurogenetic, erythropoietic, angiogenetic, and neurotrophic agent, thus preventing preterm brain injury. However, although the scientific rationale and preclinical data for Epo's neuroprotective effect are promising, when translated to bedside, the results vary in different studies, especially in its long-term efficacy. Based on existing evidence, it is still too early to recommend Epo as the standard treatment for preterm brain injury.
Collapse
Affiliation(s)
- Xueling Ma
- Department of Neonatology, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing 400014, China
| | - Yuan Shi
- Department of Neonatology, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing 400014, China
| |
Collapse
|
13
|
Chen X, Zhang X, Li W, Li W, Wang Y, Zhang S, Zhu C. Iatrogenic vs. Spontaneous Preterm Birth: A Retrospective Study of Neonatal Outcome Among Very Preterm Infants. Front Neurol 2021; 12:649749. [PMID: 33833733 PMCID: PMC8021792 DOI: 10.3389/fneur.2021.649749] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/01/2021] [Indexed: 12/11/2022] Open
Abstract
Objective: Preterm birth is a leading contributor to childhood morbidity and mortality, and the incidence tends to increase and is higher in developing countries. The aim of this study was to analyze the potential impact of preterm birth in different etiology groups on neonatal complications and outcomes and to gain insight into preventive strategies. Methods: We performed a retrospective cohort study of preterm infants less than 32 weeks' gestation in the Third Affiliated Hospital of Zhengzhou University from 2014 to 2019. Preterm births were categorized as spontaneous or iatrogenic, and these groups were compared for maternal and neonatal characteristics, neonatal complications, and outcomes. All infants surviving at discharge were followed up at 12 months of corrected age to compare the neurodevelopmental outcomes. Results: A total of 1,415 mothers and 1,689 neonates were included, and the preterm population consisted of 1,038 spontaneous preterm infants and 651 iatrogenic preterm infants. There was a significant difference in the incidence of small for gestational age between the two groups. Infants born following spontaneous labor presented with a higher risk of intraventricular hemorrhage, whereas iatrogenic preterm birth was associated with higher risk of necrotizing enterocolitis and coagulopathy and higher risk of pathoglycemia. There was no difference in mortality between the two groups. Follow-up data were available for 1,114 infants, and no differences in neurologic outcomes were observed between the two preterm birth subtypes. Conclusions: Preterm births with different etiologies were associated with some neonatal complications, but not with neurodevelopmental outcomes at 12 months of corrected age.
Collapse
Affiliation(s)
- Xi Chen
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoli Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenhua Li
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wendong Li
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Wang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shan Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Song J, Wang Y, Xu F, Sun H, Zhang X, Xia L, Zhang S, Li K, Peng X, Li B, Zhang Y, Kang W, Wang X, Zhu C. Erythropoietin Improves Poor Outcomes in Preterm Infants with Intraventricular Hemorrhage. CNS Drugs 2021; 35:681-690. [PMID: 33959935 PMCID: PMC8219571 DOI: 10.1007/s40263-021-00817-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Intraventricular hemorrhage (IVH) is a common complication in preterm infants that has poor outcomes, especially in severe cases, and there are currently no widely accepted effective treatments. Erythropoietin has been shown to be neuroprotective in neonatal brain injury. OBJECTIVE The objective of this study was to evaluate the protective effect of repeated low-dose recombinant human erythropoietin (rhEPO) in preterm infants with IVH. METHODS This was a single-blinded prospective randomized controlled trial. Preterm infants ≤ 32 weeks gestational age who were diagnosed with IVH within 72 h after birth were randomized to receive rhEPO 500 IU/kg or placebo (equivalent volume of saline) every other day for 2 weeks. The primary outcome was death or neurological disability assessed at 18 months of corrected age. RESULTS A total of 316 eligible infants were included in the study, with 157 in the rhEPO group and 159 in the placebo group. Although no significant differences in mortality (p = 0.176) or incidence of neurological disability (p = 0.055) separately at 18 months of corrected age were seen between the rhEPO and placebo groups, significantly fewer infants had poor outcomes (death and neurological disability) in the rhEPO group: 14.9 vs. 26.4%; odds ratio (OR) 0.398; 95% confidence interval (CI) 0.199-0.796; p = 0.009. In addition, the incidence of Mental Development Index scores of < 70 was lower in the rhEPO group than in the placebo group: 7.2 vs. 15.3%; OR 0.326; 95% CI 0.122-0.875; p = 0.026. CONCLUSIONS Treatment with repeated low-dose rhEPO improved outcomes in preterm infants with IVH. TRIAL REGISTRATION The study was retrospectively registered on ClinicalTrials.gov on 16 April 2019 (NCT03914690).
Collapse
Affiliation(s)
- Juan Song
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Yong Wang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Falin Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Huiqing Sun
- Department of Neonatology, Children’s Hospital of Zhengzhou University, Zhengzhou, 450018 China
| | - Xiaoli Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Lei Xia
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Shan Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Kenan Li
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Xirui Peng
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Bingbing Li
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Yaodong Zhang
- Department of Neonatology, Children’s Hospital of Zhengzhou University, Zhengzhou, 450018 China
| | - Wenqing Kang
- Department of Neonatology, Children’s Hospital of Zhengzhou University, Zhengzhou, 450018 China
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China ,Center for Perinatal Medicine and Health, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China. .,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden. .,Department of Women's and Children's Health, Karolinska Institutet, 17176, Stockholm, Sweden.
| |
Collapse
|