1
|
Wegmann R, Bankel L, Festl Y, Lau K, Lee S, Arnold F, Cappelletti V, Fehr A, Picotti P, Dedes KJ, Franzen D, Lenggenhager D, Bode PK, Zoche M, Moch H, Britschgi C, Snijder B. Molecular and functional landscape of malignant serous effusions for precision oncology. Nat Commun 2024; 15:8544. [PMID: 39358333 PMCID: PMC11447229 DOI: 10.1038/s41467-024-52694-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024] Open
Abstract
Personalized treatment for patients with advanced solid tumors critically depends on the deep characterization of tumor cells from patient biopsies. Here, we comprehensively characterize a pan-cancer cohort of 150 malignant serous effusion (MSE) samples at the cellular, molecular, and functional level. We find that MSE-derived cancer cells retain the genomic and transcriptomic profiles of their corresponding primary tumors, validating their use as a patient-relevant model system for solid tumor biology. Integrative analyses reveal that baseline gene expression patterns relate to global ex vivo drug sensitivity, while high-throughput drug-induced transcriptional changes in MSE samples are indicative of drug mode of action and acquired treatment resistance. A case study exemplifies the added value of multi-modal MSE profiling for patients who lack genetically stratified treatment options. In summary, our study provides a functional multi-omics view on a pan-cancer solid tumor cohort and underlines the feasibility and utility of MSE-based precision oncology.
Collapse
Affiliation(s)
- Rebekka Wegmann
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Lorenz Bankel
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland
| | - Yasmin Festl
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Kate Lau
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Sohyon Lee
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Fabian Arnold
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Valentina Cappelletti
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Aaron Fehr
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Paola Picotti
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Konstantin J Dedes
- Department of Gynecology, University Hospital Zurich, Zurich, Switzerland
| | - Daniel Franzen
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
| | - Daniela Lenggenhager
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Peter K Bode
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Martin Zoche
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Holger Moch
- Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Christian Britschgi
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland
- Medical Oncology and Hematology, Cantonal Hospital Winterthur, Winterthur, Switzerland
| | - Berend Snijder
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland.
- Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland.
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
| |
Collapse
|
2
|
Myong S, Nguyen AQ, Challa S. Biological Functions and Therapeutic Potential of NAD + Metabolism in Gynecological Cancers. Cancers (Basel) 2024; 16:3085. [PMID: 39272943 PMCID: PMC11394644 DOI: 10.3390/cancers16173085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/31/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an important cofactor for both metabolic and signaling pathways, with the dysregulation of NAD+ levels acting as a driver for diseases such as neurodegeneration, cancers, and metabolic diseases. NAD+ plays an essential role in regulating the growth and progression of cancers by controlling important cellular processes including metabolism, transcription, and translation. NAD+ regulates several metabolic pathways such as glycolysis, the citric acid (TCA) cycle, oxidative phosphorylation, and fatty acid oxidation by acting as a cofactor for redox reactions. Additionally, NAD+ acts as a cofactor for ADP-ribosyl transferases and sirtuins, as well as regulating cellular ADP-ribosylation and deacetylation levels, respectively. The cleavage of NAD+ by CD38-an NAD+ hydrolase expressed on immune cells-produces the immunosuppressive metabolite adenosine. As a result, metabolizing and maintaining NAD+ levels remain crucial for the function of various cells found in the tumor microenvironment, hence its critical role in tissue homeostasis. The NAD+ levels in cells are maintained by a balance between NAD+ biosynthesis and consumption, with synthesis being controlled by the Preiss-Handler, de novo, and NAD+ salvage pathways. The primary source of NAD+ synthesis in a variety of cell types is directed by the expression of the enzymes central to the three biosynthesis pathways. In this review, we describe the role of NAD+ metabolism and its synthesizing and consuming enzymes' control of cancer cell growth and immune responses in gynecologic cancers. Additionally, we review the ongoing efforts to therapeutically target the enzymes critical for NAD+ homeostasis in gynecologic cancers.
Collapse
Affiliation(s)
- Subin Myong
- The University of Chicago Comprehensive Cancer Center, The University of Chicago, Chicago, IL 60637, USA
| | - Anh Quynh Nguyen
- Department of Obstetrics and Gynecology, The University of Chicago, Chicago, IL 60637, USA
| | - Sridevi Challa
- The University of Chicago Comprehensive Cancer Center, The University of Chicago, Chicago, IL 60637, USA
- Department of Obstetrics and Gynecology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
3
|
Strobl MAR, Martin AL, West J, Gallaher J, Robertson-Tessi M, Gatenby R, Wenham R, Maini PK, Damaghi M, Anderson ARA. To modulate or to skip: De-escalating PARP inhibitor maintenance therapy in ovarian cancer using adaptive therapy. Cell Syst 2024; 15:510-525.e6. [PMID: 38772367 PMCID: PMC11190943 DOI: 10.1016/j.cels.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 02/27/2024] [Accepted: 04/17/2024] [Indexed: 05/23/2024]
Abstract
Toxicity and emerging drug resistance pose important challenges in poly-adenosine ribose polymerase inhibitor (PARPi) maintenance therapy of ovarian cancer. We propose that adaptive therapy, which dynamically reduces treatment based on the tumor dynamics, might alleviate both issues. Utilizing in vitro time-lapse microscopy and stepwise model selection, we calibrate and validate a differential equation mathematical model, which we leverage to test different plausible adaptive treatment schedules. Our model indicates that adjusting the dosage, rather than skipping treatments, is more effective at reducing drug use while maintaining efficacy due to a delay in cell kill and a diminishing dose-response relationship. In vivo pilot experiments confirm this conclusion. Although our focus is toxicity mitigation, reducing drug use may also delay resistance. This study enhances our understanding of PARPi treatment scheduling and illustrates the first steps in developing adaptive therapies for new treatment settings. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Maximilian A R Strobl
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA; Department of Translational Hematology & Oncology Research, Cleveland Clinic, Cleveland, OH, USA.
| | - Alexandra L Martin
- Department of Obstetrics and Gynecology, University of Tennessee Health Science Center, Memphis, TN, USA; Division of Gynecologic Oncology, West Cancer Center and Research Institute, Memphis, TN, USA
| | - Jeffrey West
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Jill Gallaher
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Mark Robertson-Tessi
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Robert Gatenby
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA; Cancer Biology and Evolution Program, Moffitt Cancer Center, Tampa, FL, USA
| | - Robert Wenham
- Gynecologic Oncology Program, Moffitt Cancer Center, Tampa, FL, USA
| | - Philip K Maini
- Wolfson Centre for Mathematical Biology, University of Oxford, Oxford, UK.
| | - Mehdi Damaghi
- Department of Pathology, Stony Brook Medicine, SUNY, Brookhaven, NY, USA; Stony Brook Cancer Center, Stony Brook Medicine, SUNY, Brookhaven, NY, USA.
| | | |
Collapse
|
4
|
Tadić V, Zhang W, Brozovic A. The high-grade serous ovarian cancer metastasis and chemoresistance in 3D models. Biochim Biophys Acta Rev Cancer 2024; 1879:189052. [PMID: 38097143 DOI: 10.1016/j.bbcan.2023.189052] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
High-grade serous ovarian cancer (HGSOC) is the most frequent and aggressive type of epithelial ovarian cancer, with high recurrence rate and chemoresistance being the main issues in its clinical management. HGSOC is specifically challenging due to the metastatic dissemination via spheroids in the ascitic fluid. The HGSOC spheroids represent the invasive and chemoresistant cellular fraction, which is impossible to investigate in conventional two-dimensional (2D) monolayer cell cultures lacking critical cell-to-cell and cell-extracellular matrix interactions. Three-dimensional (3D) HGSOC cultures, where cells aggregate and exhibit relevant interactions, offer a promising in vitro model of peritoneal metastasis and multicellular drug resistance. This review summarizes recent studies of HGSOC in 3D culture conditions and highlights the role of multicellular HGSOC spheroids and ascitic environment in HGSOC metastasis and chemoresistance.
Collapse
Affiliation(s)
- Vanja Tadić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Str. 54, Zagreb HR-10000, Croatia
| | - Wei Zhang
- Department of Engineering Mechanics, Dalian University of Technology, Linggong Road 2, Dalian CN-116024, China
| | - Anamaria Brozovic
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Str. 54, Zagreb HR-10000, Croatia.
| |
Collapse
|
5
|
Wilczyński J, Paradowska E, Wilczyńska J, Wilczyński M. Prediction of Chemoresistance-How Preclinical Data Could Help to Modify Therapeutic Strategy in High-Grade Serous Ovarian Cancer. Curr Oncol 2023; 31:229-249. [PMID: 38248100 PMCID: PMC10814576 DOI: 10.3390/curroncol31010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/12/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is one of the most lethal tumors generally and the most fatal cancer of the female genital tract. The approved standard therapy consists of surgical cytoreduction and platinum/taxane-based chemotherapy, and of targeted therapy in selected patients. The main therapeutic problem is chemoresistance of recurrent and metastatic HGSOC tumors which results in low survival in the group of FIGO III/IV. Therefore, the prediction and monitoring of chemoresistance seems to be of utmost importance for the improvement of HGSOC management. This type of cancer has genetic heterogeneity with several subtypes being characterized by diverse gene signatures and disturbed peculiar epigenetic regulation. HGSOC develops and metastasizes preferentially in the specific intraperitoneal environment composed mainly of fibroblasts, adipocytes, and immune cells. Different HGSOC subtypes could be sensitive to distinct sets of drugs. Moreover, primary, metastatic, and recurrent tumors are characterized by an individual biology, and thus diverse drug responsibility. Without a precise identification of the tumor and its microenvironment, effective treatment seems to be elusive. This paper reviews tumor-derived genomic, mutational, cellular, and epigenetic biomarkers of HGSOC drug resistance, as well as tumor microenvironment-derived biomarkers of chemoresistance, and discusses their possible use in the novel complex approach to ovarian cancer therapy and monitoring.
Collapse
Affiliation(s)
- Jacek Wilczyński
- Department of Gynecological Surgery and Gynecological Oncology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland;
| | - Justyna Wilczyńska
- Department of Tele-Radiotherapy, Mikolaj Kopernik Provincial Multi-Specialized Oncology and Traumatology Center, 62 Pabianicka Str., 93-513 Lodz, Poland;
| | - Miłosz Wilczyński
- Department of Gynecological, Endoscopic and Oncological Surgery, Polish Mother’s Health Center—Research Institute, 281/289 Rzgowska Str., 93-338 Lodz, Poland;
- Department of Surgical and Endoscopic Gynecology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
| |
Collapse
|
6
|
Abbas ZN, Al-Saffar AZ, Jasim SM, Sulaiman GM. Comparative analysis between 2D and 3D colorectal cancer culture models for insights into cellular morphological and transcriptomic variations. Sci Rep 2023; 13:18380. [PMID: 37884554 PMCID: PMC10603139 DOI: 10.1038/s41598-023-45144-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
Drug development is a time-consuming and expensive process, given the low success rate of clinical trials. Now, anticancer drug developments have shifted to three-dimensional (3D) models which are more likely to mimic tumor behavior compared to traditional two-dimensional (2D) cultures. A comparative study among different aspects was conducted between 2D and 3D cultures using colorectal cancer (CRC) cell lines, in addition, Formalin-Fixed Paraffin-Embedded (FFPE) block samples of patients with CRC were used for evaluation. Compared to the 2D culture, cells grown in 3D displayed significant (p < 0.01) differences in the pattern of cell proliferation over time, cell death phase profile, expression of tumorgenicity-related genes, and responsiveness to 5-fluorouracil, cisplatin, and doxorubicin. Epigenetically, 3D cultures and FFPE shared the same methylation pattern and microRNA expression, while 2D cells showed elevation in methylation rate and altered microRNA expression. Lastly, transcriptomic study depending on RNA sequencing and thorough bioinformatic analyses showed significant (p-adj < 0.05) dissimilarity in gene expression profile between 2D and 3D cultures involving thousands of genes (up/down-regulated) of multiple pathways for each cell line. Taken together, the study provides insights into variations in cellular morphologies between cells cultured in 2D and 3D models.
Collapse
Affiliation(s)
- Zaid Nsaif Abbas
- Department of Molecular and Medical Biotechnology, College of Biotechnology, Al-Nahrain University, Jadriya, Baghdad, Iraq
| | - Ali Z Al-Saffar
- Department of Molecular and Medical Biotechnology, College of Biotechnology, Al-Nahrain University, Jadriya, Baghdad, Iraq.
| | - Saba Mahdi Jasim
- Oncology Teaching Hospital, Medical City, Ministry of Health, Baghdad, Iraq
| | - Ghassan M Sulaiman
- Division of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad, Iraq
| |
Collapse
|
7
|
Riillo C, Polerà N, Di Martino MT, Juli G, Hokanson CA, Odineca T, Signorelli S, Grillone K, Ascrizzi S, Mancuso A, Staropoli N, Caparello B, Cerra M, Nisticò G, Tagliaferri P, Crea R, Caracciolo D, Tassone P. A Pronectin™ AXL-targeted first-in-class bispecific T cell engager (pAXLxCD3ε) for ovarian cancer. J Transl Med 2023; 21:301. [PMID: 37143061 PMCID: PMC10161629 DOI: 10.1186/s12967-023-04101-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/01/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Pronectins™ are a new class of fibronectin-3-domain 14th-derived (14Fn3) antibody mimics that can be engineered as bispecific T cell engager (BTCE) to redirect immune effector cells against cancer. We describe here the in vitro and in vivo activity of a Pronectin™ AXL-targeted first-in-class bispecific T cell engager (pAXLxCD3ε) against Epithelial Ovarian Cancer (EOC). METHODS pAXLxCD3ε T-cell mediated cytotoxicity was evaluated by flow cytometry and bioluminescence. pAXLxCD3ε mediated T-cell infiltration, activation and proliferation were assessed by immunofluorescence microscopy and by flow cytometry. Activity of pAXLxCD3ε was also investigated in combination with poly-ADP ribose polymerase inhibitors (PARPi). In vivo antitumor activity of pAXLxCD3ε was evaluated in immunocompromised (NSG) mice bearing intraperitoneal or subcutaneous EOC xenografts and immunologically reconstituted with human peripheral blood mononuclear cells (PBMC). RESULTS pAXLxCD3ε induced dose-dependent cytotoxicity by activation of T lymphocytes against EOC cells, regardless of their histologic origin. The addition of PARPi to cell cultures enhanced pAXLxCD3ε cytotoxicity. Importantly, in vivo, pAXLxCD3ε was highly effective against EOC xenografts in two different NSG mouse models, by inhibiting the growth of tumor cells in ascites and subcutaneous xenografts. This effect translated into a significantly prolonged survival of treated animals. CONCLUSION pAXLxCD3ε is an active therapeutics against EOC cells providing a rational for its development as a novel agent in this still incurable disease. The preclinical validation of a first-in-class agent opens the way to the development of a new 14Fn3-based scaffold platform for the generation of innovative immune therapeutics against cancer.
Collapse
Affiliation(s)
- Caterina Riillo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Nicoletta Polerà
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | | | - Giada Juli
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | | | | | - Stefania Signorelli
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Katia Grillone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Serena Ascrizzi
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Antonia Mancuso
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Nicoletta Staropoli
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | | | - Maria Cerra
- Giovanni Paolo II General Hospital, Lamezia Terme, Italy
| | | | | | - Roberto Crea
- Protelica, Inc, Hayward, CA, USA.
- Renato Dulbecco Institute, Lamezia Terme, Italy.
| | - Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy.
- S.H.R.O., College of Science and Technology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Tomas E, Shepherd TG. Insights into high-grade serous carcinoma pathobiology using three-dimensional culture model systems. J Ovarian Res 2023; 16:70. [PMID: 37038202 PMCID: PMC10088149 DOI: 10.1186/s13048-023-01145-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/28/2023] [Indexed: 04/12/2023] Open
Abstract
Epithelial ovarian cancer (EOC) research has become more complex as researchers try to fully understand the metastatic process. Especially as we delve into the concept of tumour dormancy, where cells transition between proliferative and dormant states to survive during disease progression. Thus, the in vitro models used to conduct this research need to reflect this vast biological complexity. The innovation behind the many three-dimensional (3D) spheroid models has been refined to easily generate reproducible spheroids so that we may understand the various molecular signaling changes of cells during metastasis and determine therapeutic efficacy of treatments. This ingenuity was then used to develop the 3D ex vivo patient-derived organoid model, as well as multiple co-culture model systems for EOC research. Although, researchers need to continue to push the boundaries of these current models for in vitro and even in vivo work in the future. In this review, we describe the 3D models already in use, where these models can be developed further and how we can use these models to gain the most knowledge on EOC pathogenesis and discover new targeted therapies.
Collapse
Affiliation(s)
- Emily Tomas
- London Regional Cancer Program, The Mary & John Knight Translational Ovarian Cancer Research Unit, 790 Commissioners Rd. E. Room A4-836, London, ON, N6A 4L6, Canada
- Department of Anatomy & Cell Biology, Western University, London, ON, Canada
| | - Trevor G Shepherd
- London Regional Cancer Program, The Mary & John Knight Translational Ovarian Cancer Research Unit, 790 Commissioners Rd. E. Room A4-836, London, ON, N6A 4L6, Canada.
- Department of Anatomy & Cell Biology, Western University, London, ON, Canada.
- Department of Obstetrics & Gynaecology, Western University, London, ON, Canada.
- Department of Oncology, Western University, London, ON, Canada.
| |
Collapse
|
9
|
Strobl M, Martin AL, West J, Gallaher J, Robertson-Tessi M, Gatenby R, Wenham R, Maini P, Damaghi M, Anderson A. Adaptive therapy for ovarian cancer: An integrated approach to PARP inhibitor scheduling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.22.533721. [PMID: 36993591 PMCID: PMC10055330 DOI: 10.1101/2023.03.22.533721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Toxicity and emerging drug resistance are important challenges in PARP inhibitor (PARPi) treatment of ovarian cancer. Recent research has shown that evolutionary-inspired treatment algorithms which adapt treatment to the tumor's treatment response (adaptive therapy) can help to mitigate both. Here, we present a first step in developing an adaptive therapy protocol for PARPi treatment by combining mathematical modelling and wet-lab experiments to characterize the cell population dynamics under different PARPi schedules. Using data from in vitro Incucyte Zoom time-lapse microscopy experiments and a step-wise model selection process we derive a calibrated and validated ordinary differential equation model, which we then use to test different plausible adaptive treatment schedules. Our model can accurately predict the in vitro treatment dynamics, even to new schedules, and suggests that treatment modifications need to be carefully timed, or one risks losing control over tumour growth, even in the absence of any resistance. This is because our model predicts that multiple rounds of cell division are required for cells to acquire sufficient DNA damage to induce apoptosis. As a result, adaptive therapy algorithms that modulate treatment but never completely withdraw it are predicted to perform better in this setting than strategies based on treatment interruptions. Pilot experiments in vivo confirm this conclusion. Overall, this study contributes to a better understanding of the impact of scheduling on treatment outcome for PARPis and showcases some of the challenges involved in developing adaptive therapies for new treatment settings.
Collapse
Affiliation(s)
- Maximilian Strobl
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Alexandra L. Martin
- Department of Obstetrics and Gynecology, University of Tennessee Health Science Center, Memphis, TN, USA
- Division of Gynecologic Oncology, West Cancer Center and Research Institute, Memphis, TN, USA
| | - Jeffrey West
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Jill Gallaher
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Mark Robertson-Tessi
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Robert Gatenby
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA
- Cancer Biology and Evolution Program, Moffitt Cancer Center, Tampa, FL, USA
| | - Robert Wenham
- Gynecologic Oncology Program, Moffitt Cancer Center, Tampa, FL, USA
| | - Philip Maini
- Wolfson Centre for Mathematical Biology, University of Oxford, Oxford, UK
| | - Mehdi Damaghi
- Department of Pathology, Stony Brook Medicine, SUNY, NY, USA
- Stony Brook Cancer Center, Stony Brook Medicine, SUNY, NY, USA
| | - Alexander Anderson
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
10
|
Wu Y, Xu S, Cheng S, Yang J, Wang Y. Clinical application of PARP inhibitors in ovarian cancer: from molecular mechanisms to the current status. J Ovarian Res 2023; 16:6. [PMID: 36611214 PMCID: PMC9826575 DOI: 10.1186/s13048-023-01094-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/02/2023] [Indexed: 01/08/2023] Open
Abstract
As a kind of gynecological tumor, ovarian cancer is not as common as cervical cancer and breast cancer, but its malignant degree is higher. Despite the increasingly mature treatment of ovarian cancer, the five-year survival rate of patients is still less than 50%. Based on the concept of synthetic lethality, poly (ADP- ribose) polymerase (PARP) inhibitors target tumor cells with defects in homologous recombination repair(HRR), the most significant being the target gene Breast cancer susceptibility genes(BRCA). PARP inhibitors capture PARP-1 protein at the site of DNA damage to destroy the original reaction, causing the accumulation of PARP-DNA nucleoprotein complexes, resulting in DNA double-strand breaks(DSBs) and cell death. PARP inhibitors have been approved for the treatment of ovarian cancer for several years and achieved good results. However, with the widespread use of PARP inhibitors, more and more attention has been paid to drug resistance and side effects. Therefore, further research is needed to understand the mechanism of PARP inhibitors, to be familiar with the adverse reactions of the drug, to explore the markers of its efficacy and prognosis, and to deal with its drug resistance. This review elaborates the use of PARP inhibitors in ovarian cancer.
Collapse
Affiliation(s)
- Yongsong Wu
- grid.24516.340000000123704535Department of Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai200092, China ,grid.16821.3c0000 0004 0368 8293Obstetrics and Gynecology, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Shilin Xu
- grid.16821.3c0000 0004 0368 8293Obstetrics and Gynecology, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Shanshan Cheng
- grid.16821.3c0000 0004 0368 8293Obstetrics and Gynecology, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Jiani Yang
- grid.24516.340000000123704535Department of Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai200092, China
| | - Yu Wang
- grid.24516.340000000123704535Department of Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai200092, China
| |
Collapse
|
11
|
Xie T, Dickson KA, Yee C, Ma Y, Ford CE, Bowden NA, Marsh DJ. Targeting Homologous Recombination Deficiency in Ovarian Cancer with PARP Inhibitors: Synthetic Lethal Strategies That Impact Overall Survival. Cancers (Basel) 2022; 14:4621. [PMID: 36230543 PMCID: PMC9563432 DOI: 10.3390/cancers14194621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/09/2022] [Accepted: 09/21/2022] [Indexed: 11/23/2022] Open
Abstract
The advent of molecular targeted therapies has made a significant impact on survival of women with ovarian cancer who have defects in homologous recombination repair (HRR). High-grade serous ovarian cancer (HGSOC) is the most common histological subtype of ovarian cancer, with over 50% displaying defective HRR. Poly ADP ribose polymerases (PARPs) are a family of enzymes that catalyse the transfer of ADP-ribose to target proteins, functioning in fundamental cellular processes including transcription, chromatin remodelling and DNA repair. In cells with deficient HRR, PARP inhibitors (PARPis) cause synthetic lethality leading to cell death. Despite the major advances that PARPis have heralded for women with ovarian cancer, questions and challenges remain, including: can the benefits of PARPis be brought to a wider range of women with ovarian cancer; can other drugs in clinical use function in a similar way or with greater efficacy than currently clinically approved PARPis; what can we learn from long-term responders to PARPis; can PARPis sensitise ovarian cancer cells to immunotherapy; and can synthetic lethal strategies be employed more broadly to develop new therapies for women with ovarian cancer. We examine these, and other, questions with focus on improving outcomes for women with ovarian cancer.
Collapse
Affiliation(s)
- Tao Xie
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Kristie-Ann Dickson
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Christine Yee
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Yue Ma
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Caroline E. Ford
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nikola A. Bowden
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW 2289, Australia
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2289, Australia
- Hunter Medical Research Institute, Newcastle, NSW 2289, Australia
| | - Deborah J. Marsh
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
12
|
D’Ambrosio C, Erriquez J, Capellero S, Cignetto S, Alvaro M, Ciamporcero E, Di Renzo MF, Perera T, Valabrega G, Olivero M. Cancer Cells Haploinsufficient for ATM Are Sensitized to PARP Inhibitors by MET Inhibition. Int J Mol Sci 2022; 23:5770. [PMID: 35628590 PMCID: PMC9146142 DOI: 10.3390/ijms23105770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 02/01/2023] Open
Abstract
The MET oncogene encodes a tyrosine kinase (TK) receptor. Its activation protects cells from death but also stimulates DNA damage response by triggering excess replicative stress. Transcriptomic classification of cancer cell lines based on MET expression showed that response to the PARP inhibitor (PARPi) olaparib is poorer in MET overexpressing cell lines. Accordingly, a high MET expressing lung carcinoma cell line was sensitized to PARPi by MET TK inhibition. This was not linked solely to MET overexpression: other MET overexpressing cell lines were biochemically but not functionally responsive to combined inhibition. Moreover, exogenously induced MET overexpression was unable to induce resistance to PARPi. The MET overexpressing cell line, responsive to the combined PARP and MET inhibition, carried a heterozygous mutation of the ATM gene and showed an attenuated response of ATM to PARPi. Among the downstream targets of ATM activation, NuMA was phosphorylated only in response to the combined PARP and MET inhibition. Given the role played by NuMA in mitosis, data show that the latter is affected by MET and PARP inhibition in cells with haploinsufficient ATM. This is important as ATM heterozygous mutation is frequently found in human cancer and in lung carcinomas in particular.
Collapse
Affiliation(s)
- Concetta D’Ambrosio
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (C.D.); (J.E.); (S.C.); (S.C.); (M.A.); (M.F.D.R.); (M.O.)
- Department of Oncology, University of Torino, 10129 Torino, Italy
| | - Jessica Erriquez
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (C.D.); (J.E.); (S.C.); (S.C.); (M.A.); (M.F.D.R.); (M.O.)
| | - Sonia Capellero
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (C.D.); (J.E.); (S.C.); (S.C.); (M.A.); (M.F.D.R.); (M.O.)
- Department of Oncology, University of Torino, 10129 Torino, Italy
| | - Simona Cignetto
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (C.D.); (J.E.); (S.C.); (S.C.); (M.A.); (M.F.D.R.); (M.O.)
- Department of Oncology, University of Torino, 10129 Torino, Italy
| | - Maria Alvaro
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (C.D.); (J.E.); (S.C.); (S.C.); (M.A.); (M.F.D.R.); (M.O.)
- Department of Oncology, University of Torino, 10129 Torino, Italy
| | | | - Maria Flavia Di Renzo
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (C.D.); (J.E.); (S.C.); (S.C.); (M.A.); (M.F.D.R.); (M.O.)
- Department of Oncology, University of Torino, 10129 Torino, Italy
| | - Timothy Perera
- OCTIMET Oncology NV, 2340 Beerse, Belgium; (E.C.); (T.P.)
| | - Giorgio Valabrega
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (C.D.); (J.E.); (S.C.); (S.C.); (M.A.); (M.F.D.R.); (M.O.)
- Department of Oncology, University of Torino, 10129 Torino, Italy
| | - Martina Olivero
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (C.D.); (J.E.); (S.C.); (S.C.); (M.A.); (M.F.D.R.); (M.O.)
- Department of Oncology, University of Torino, 10129 Torino, Italy
| |
Collapse
|
13
|
Braccini S, Tacchini C, Chiellini F, Puppi D. Polymeric Hydrogels for In Vitro 3D Ovarian Cancer Modeling. Int J Mol Sci 2022; 23:3265. [PMID: 35328686 PMCID: PMC8954571 DOI: 10.3390/ijms23063265] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer (OC) grows and interacts constantly with a complex microenvironment, in which immune cells, fibroblasts, blood vessels, signal molecules and the extracellular matrix (ECM) coexist. This heterogeneous environment provides structural and biochemical support to the surrounding cells and undergoes constant and dynamic remodeling that actively promotes tumor initiation, progression, and metastasis. Despite the fact that traditional 2D cell culture systems have led to relevant medical advances in cancer research, 3D cell culture models could open new possibilities for the development of an in vitro tumor microenvironment more closely reproducing that observed in vivo. The implementation of materials science and technology into cancer research has enabled significant progress in the study of cancer progression and drug screening, through the development of polymeric scaffold-based 3D models closely recapitulating the physiopathological features of native tumor tissue. This article provides an overview of state-of-the-art in vitro tumor models with a particular focus on 3D OC cell culture in pre-clinical studies. The most representative OC models described in the literature are presented with a focus on hydrogel-based scaffolds, which guarantee soft tissue-like physical properties as well as a suitable 3D microenvironment for cell growth. Hydrogel-forming polymers of either natural or synthetic origin investigated in this context are described by highlighting their source of extraction, physical-chemical properties, and application for 3D ovarian cancer cell culture.
Collapse
Affiliation(s)
| | | | | | - Dario Puppi
- BioLab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM-Pisa, Via Moruzzi 13, 56124 Pisa, Italy; (S.B.); (C.T.)
| |
Collapse
|
14
|
Toward More Comprehensive Homologous Recombination Deficiency Assays in Ovarian Cancer, Part 1: Technical Considerations. Cancers (Basel) 2022; 14:cancers14051132. [PMID: 35267439 PMCID: PMC8909526 DOI: 10.3390/cancers14051132] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary High-grade serous ovarian cancer (HGSOC) is the most frequent and lethal form of ovarian cancer and is associated with homologous recombination deficiency (HRD) in 50% of cases. This specific alteration is associated with sensitivity to PARP inhibitors (PARPis). Despite vast prognostic improvements due to PARPis, current molecular assays assessing HRD status suffer from several limitations, and there is an urgent need for a more accurate evaluation. In these companion reviews (Part 1: Technical considerations; Part 2: Medical perspectives), we develop an integrative review to provide physicians and researchers involved in HGSOC management with a holistic perspective, from translational research to clinical applications. Abstract High-grade serous ovarian cancer (HGSOC), the most frequent and lethal form of ovarian cancer, exhibits homologous recombination deficiency (HRD) in 50% of cases. In addition to mutations in BRCA1 and BRCA2, which are the best known thus far, defects can also be caused by diverse alterations to homologous recombination-related genes or epigenetic patterns. HRD leads to genomic instability (genomic scars) and is associated with PARP inhibitor (PARPi) sensitivity. HRD is currently assessed through BRCA1/2 analysis, which produces a genomic instability score (GIS). However, despite substantial clinical achievements, FDA-approved companion diagnostics (CDx) based on GISs have important limitations. Indeed, despite the use of GIS in clinical practice, the relevance of such assays remains controversial. Although international guidelines include companion diagnostics as part of HGSOC frontline management, they also underscore the need for more powerful and alternative approaches for assessing patient eligibility to PARP inhibitors. In these companion reviews, we review and present evidence to date regarding HRD definitions, achievements and limitations in HGSOC. Part 1 is dedicated to technical considerations and proposed perspectives that could lead to a more comprehensive and dynamic assessment of HR, while Part 2 provides a more integrated approach for clinicians.
Collapse
|
15
|
Martinez R, Huang W, Buck H, Rea S, Defnet AE, Kane MA, Shapiro P. Proteomic Changes in the Monolayer and Spheroid Melanoma Cell Models of Acquired Resistance to BRAF and MEK1/2 Inhibitors. ACS OMEGA 2022; 7:3293-3311. [PMID: 35128241 PMCID: PMC8811929 DOI: 10.1021/acsomega.1c05361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Extracellular signal-regulated kinase-1/2 (ERK1/2) pathway inhibitors are important therapies for treating many cancers. However, acquired resistance to most protein kinase inhibitors limits their ability to provide durable responses. Approximately 50% of malignant melanomas contain activating mutations in BRAF, which promotes cancer cell survival through the direct phosphorylation of the mitogen-activated protein kinase MAPK/ERK 1/2 (MEK1/2) and the activation of ERK1/2. Although the combination treatment with BRAF and MEK1/2 inhibitors is a recommended approach to treat melanoma, the development of drug resistance remains a barrier to achieving long-term patient benefits. Few studies have compared the global proteomic changes in BRAF/MEK1/2 inhibitor-resistant melanoma cells under different growth conditions. The current study uses high-resolution label-free mass spectrometry to compare relative protein changes in BRAF/MEK1/2 inhibitor-resistant A375 melanoma cells grown as monolayers or spheroids. While approximately 66% of proteins identified were common in the monolayer and spheroid cultures, only 6.2 or 3.6% of proteins that significantly increased or decreased, respectively, were common between the drug-resistant monolayer and spheroid cells. Drug-resistant monolayers showed upregulation of ERK-independent signaling pathways, whereas drug-resistant spheroids showed primarily elevated catabolic metabolism to support oxidative phosphorylation. These studies highlight the similarities and differences between monolayer and spheroid cell models in identifying actionable targets to overcome drug resistance.
Collapse
Affiliation(s)
- Ramon Martinez
- Department
of Pharmaceutical Sciences, University of
Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United
States
| | - Weiliang Huang
- Department
of Pharmaceutical Sciences, University of
Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United
States
| | - Heather Buck
- Nathan
Schnaper Internship Program in Translational Cancer Research, Marlene
and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22S. Greene Street, Baltimore, Maryland 21201, United States
| | - Samantha Rea
- Nathan
Schnaper Internship Program in Translational Cancer Research, Marlene
and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22S. Greene Street, Baltimore, Maryland 21201, United States
| | - Amy E. Defnet
- Department
of Pharmaceutical Sciences, University of
Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United
States
| | - Maureen A. Kane
- Department
of Pharmaceutical Sciences, University of
Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United
States
| | - Paul Shapiro
- Department
of Pharmaceutical Sciences, University of
Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United
States
| |
Collapse
|