1
|
Tian KJ, Yang Y, Chen GS, Deng NH, Tian Z, Bai R, Zhang F, Jiang ZS. Omics research in atherosclerosis. Mol Cell Biochem 2024:10.1007/s11010-024-05139-1. [PMID: 39446251 DOI: 10.1007/s11010-024-05139-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease characterized by lipid deposition within the arterial intima, as well as fibrous tissue proliferation and calcification. AS has long been recognized as one of the primary pathological foundations of cardiovascular diseases in humans. Its pathogenesis is intricate and not yet fully elucidated. Studies have shown that AS is associated with oxidative stress, inflammatory response, lipid deposition, and changes in cell phenotype. Unfortunately, there is currently no effective prevention or targeted treatment for AS. The rapid advancement of omics technologies, including genomics, transcriptomics, proteomics, and metabolomics, has opened up novel avenues to elucidate the fundamental pathophysiology and associated mechanisms of AS. Here, we review articles published over the past decade and focus on the current status, challenges, limitations, and prospects of omics in AS research and clinical practice. Emphasizing potential targets based on omics technologies will improve our understanding of this pathological condition and assist in the development of potential therapeutic approaches for AS-related diseases.
Collapse
Affiliation(s)
- Kai-Jiang Tian
- Pathology Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China
| | - Yu Yang
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China
| | - Guo-Shuai Chen
- Emergency Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China
| | - Nian-Hua Deng
- Anesthesiology Department, Dongguan Songshanhu Central Hospital, Dongguan, 523000, China
| | - Zhen Tian
- Clinical Laboratory, Dongguan Songshanhu Central Hospital, Dongguan, 523000, China
| | - Rui Bai
- Pathology Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China
| | - Fan Zhang
- Pathology Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China
| | - Zhi-Sheng Jiang
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China.
| |
Collapse
|
2
|
Carreras-Torres R, Galván-Femenía I, Farré X, Cortés B, Díez-Obrero V, Carreras A, Moratalla-Navarro F, Iraola-Guzmán S, Blay N, Obón-Santacana M, Moreno V, de Cid R. Multiomic integration analysis identifies atherogenic metabolites mediating between novel immune genes and cardiovascular risk. Genome Med 2024; 16:122. [PMID: 39449064 PMCID: PMC11515386 DOI: 10.1186/s13073-024-01397-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Understanding genetic-metabolite associations has translational implications for informing cardiovascular risk assessment. Interrogating functional genetic variants enhances our understanding of disease pathogenesis and the development and optimization of targeted interventions. METHODS In this study, a total of 187 plasma metabolite levels were profiled in 4974 individuals of European ancestry of the GCAT| Genomes for Life cohort. Results of genetic analyses were meta-analysed with additional datasets, resulting in up to approximately 40,000 European individuals. Results of meta-analyses were integrated with reference gene expression panels from 58 tissues and cell types to identify predicted gene expression associated with metabolite levels. This approach was also performed for cardiovascular outcomes in three independent large European studies (N = 700,000) to identify predicted gene expression additionally associated with cardiovascular risk. Finally, genetically informed mediation analysis was performed to infer causal mediation in the relationship between gene expression, metabolite levels and cardiovascular risk. RESULTS A total of 44 genetic loci were associated with 124 metabolites. Lead genetic variants included 11 non-synonymous variants. Predicted expression of 53 fine-mapped genes was associated with 108 metabolite levels; while predicted expression of 6 of these genes was also associated with cardiovascular outcomes, highlighting a new role for regulatory gene HCG27. Additionally, we found that atherogenic metabolite levels mediate the associations between gene expression and cardiovascular risk. Some of these genes showed stronger associations in immune tissues, providing further evidence of the role of immune cells in increasing cardiovascular risk. CONCLUSIONS These findings propose new gene targets that could be potential candidates for drug development aimed at lowering the risk of cardiovascular events through the modulation of blood atherogenic metabolite levels.
Collapse
Affiliation(s)
- Robert Carreras-Torres
- Digestive Diseases and Microbiota Group, Girona Biomedical Research Institute (IDIBGI), 17190, Salt, Girona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Spain
| | - Iván Galván-Femenía
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute for Science and Technology, Barcelona, Spain
- Genomes for Life-GCAT Lab, CORE Program. Germans Trias I Pujol Research Institute (IGTP), Badalona, Spain
| | - Xavier Farré
- Genomes for Life-GCAT Lab, CORE Program. Germans Trias I Pujol Research Institute (IGTP), Badalona, Spain
- Grup de Recerca en Impacte de Les Malalties Cròniques I Les Seves Trajectòries (GRIMTra) (IGTP), Badalona, Spain
| | - Beatriz Cortés
- Genomes for Life-GCAT Lab, CORE Program. Germans Trias I Pujol Research Institute (IGTP), Badalona, Spain
| | - Virginia Díez-Obrero
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Spain
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, 08908, Barcelona, Spain
| | - Anna Carreras
- Genomes for Life-GCAT Lab, CORE Program. Germans Trias I Pujol Research Institute (IGTP), Badalona, Spain
| | - Ferran Moratalla-Navarro
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Spain
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, 08908, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain
- Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Susana Iraola-Guzmán
- Genomes for Life-GCAT Lab, CORE Program. Germans Trias I Pujol Research Institute (IGTP), Badalona, Spain
- Grup de Recerca en Impacte de Les Malalties Cròniques I Les Seves Trajectòries (GRIMTra) (IGTP), Badalona, Spain
| | - Natalia Blay
- Genomes for Life-GCAT Lab, CORE Program. Germans Trias I Pujol Research Institute (IGTP), Badalona, Spain
- Grup de Recerca en Impacte de Les Malalties Cròniques I Les Seves Trajectòries (GRIMTra) (IGTP), Badalona, Spain
| | - Mireia Obón-Santacana
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Spain
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, 08908, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain
| | - Víctor Moreno
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Spain.
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, 08908, Barcelona, Spain.
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain.
- Department of Clinical Sciences, University of Barcelona, Barcelona, Spain.
| | - Rafael de Cid
- Genomes for Life-GCAT Lab, CORE Program. Germans Trias I Pujol Research Institute (IGTP), Badalona, Spain.
- Grup de Recerca en Impacte de Les Malalties Cròniques I Les Seves Trajectòries (GRIMTra) (IGTP), Badalona, Spain.
| |
Collapse
|
3
|
Hou J, Cao Y, Deng Q, Zhang Q, Deng X, Chen Z, Zhong Z. A fluorescence-based immunochromatographic assay using quantum dot-encapsulated nanoparticles for the rapid and sensitive detection of fetuin-B. Anal Chim Acta 2024; 1288:342143. [PMID: 38220278 DOI: 10.1016/j.aca.2023.342143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/14/2023] [Indexed: 01/16/2024]
Abstract
Coronary artery disease (CAD) is the leading cause of death worldwide. Earlier detection of CAD improves treatment outcomes and secondary prevention. The circulating fetuin-B protein is considered to be a promising biomarker for the early detection of CAD. However, a facile and reliable clinical test for fetuin-B is still lacking. Herein, we describe a reliable fluorescent biosensor for detecting fetuin-B in plasma that combines quantum dots-doped polystyrene nanoparticles with an immunochromatographic assay strip (QNPs-ICAS). The QNPs served as detection signals in the QNPs-ICAS sensor system, which was based on a double-antibody sandwich structure. Under optimum experimental conditions, the biosensor exhibited a broad linear range of 1-200 ng mL-1 and a low detection limit of 0.299 ng mL-1. Furthermore, the proposed immunosensor demonstrated high sensitivity, satisfactory selectivity, good reproducibility, and excellent recovery. Finally, the performance and applicability of our QNPs-based ICAS system were validated in clinical samples using a commercial ELISA kit with excellent correlations (r = 0.98451, n = 116). To conclude, the proposed sensor served as a rapid, sensitive, and accurate method for detecting fetuin-B in actual clinical samples, thereby demonstrating its potential for preliminary CAD screening and diagnosis.
Collapse
Affiliation(s)
- Jingyuan Hou
- Center for Cardiovascular Diseases, Meizhou Clinical Institute of Shantou University Medical College, Meizhou, Guangdong, 514031, China; GuangDong Engineering Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, Guangdong, 514031, China
| | - Yue Cao
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510180, China
| | - Qiaoting Deng
- Center for Cardiovascular Diseases, Meizhou Clinical Institute of Shantou University Medical College, Meizhou, Guangdong, 514031, China
| | - Qunji Zhang
- Center for Cardiovascular Diseases, Meizhou Clinical Institute of Shantou University Medical College, Meizhou, Guangdong, 514031, China
| | - Xunwei Deng
- Center for Cardiovascular Diseases, Meizhou Clinical Institute of Shantou University Medical College, Meizhou, Guangdong, 514031, China
| | - Zhenhua Chen
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China.
| | - Zhixiong Zhong
- Center for Cardiovascular Diseases, Meizhou Clinical Institute of Shantou University Medical College, Meizhou, Guangdong, 514031, China; GuangDong Engineering Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, Guangdong, 514031, China.
| |
Collapse
|
4
|
Zhang X, Li Y, Chen Y. Development of a Comprehensive Gene Signature Linking Hypoxia, Glycolysis, Lactylation, and Metabolomic Insights in Gastric Cancer through the Integration of Bulk and Single-Cell RNA-Seq Data. Biomedicines 2023; 11:2948. [PMID: 38001949 PMCID: PMC10669360 DOI: 10.3390/biomedicines11112948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Hypoxia and anaerobic glycolysis are cancer hallmarks and sources of the metabolite lactate. Intriguingly, lactate-induced protein lactylation is considered a novel epigenetic mechanism that predisposes cells toward a malignant state. However, the significance of comprehensive hypoxia-glycolysis-lactylation-related genes (HGLRGs) in cancer is unclear. We aimed to construct a model centered around HGLRGs for predicting survival, metabolic features, drug responsiveness, and immune response in gastric cancer. METHODS The integration of bulk and single-cell RNA-Seq data was achieved using data obtained from the TCGA and GEO databases to analyze HGLRG expression patterns. A HGLRG risk-score model was developed based on univariate Cox regression and a LASSO-Cox regression model and subsequently validated. Additionally, the relationships between the identified HGLRG signature and multiple metabolites, drug sensitivity and various cell clusters were explored. RESULTS Thirteen genes were identified as constituting the HGLRG signature. Using this signature, we established predictive models, including HGLRG risk scores and nomogram and Cox regression models. The stratification of patients into high- and low-risk groups based on HGLRG risk scores showed a better prognosis in the latter. The high-risk group displayed increased sensitivity to cytotoxic drugs and targeted inhibitors. The expression of the HGLRG BGN displayed a strong correlation with amino acids and lipid metabolites. Notably, a significant difference in immune infiltration, such as that of M1 macrophages and CD8 T cells, was correlated with the HGLRG signature. The abundant DUSP1 within the mesenchymal components was highlighted by single-cell transcriptomics. CONCLUSION The innovative HGLRG signature demonstrates efficacy in predicting survival and providing a practical clinical model for gastric cancer. The HGLRG signature reflects the internal metabolism, drug responsiveness, and immune microenvironment components of gastric cancer and is expected to boost patients' response to targeted therapy and immunotherapy.
Collapse
Affiliation(s)
- Xiangqian Zhang
- NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratroy for Anticancer Drugs, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yun Li
- NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratroy for Anticancer Drugs, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yongheng Chen
- NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratroy for Anticancer Drugs, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
5
|
Du Z, Li F, Jiang L, Li L, Du Y, Yu H, Luo Y, Wang Y, Sun H, Hu C, Li J, Yang Y, Jiao X, Wang L, Qin Y. Metabolic systems approaches update molecular insights of clinical phenotypes and cardiovascular risk in patients with homozygous familial hypercholesterolemia. BMC Med 2023; 21:275. [PMID: 37501168 PMCID: PMC10375787 DOI: 10.1186/s12916-023-02967-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Homozygous familial hypercholesterolemia (HoFH) is an orphan metabolic disease characterized by extremely elevated low-density lipoprotein cholesterol (LDL-C), xanthomas, aortic stenosis, and premature atherosclerotic cardiovascular disease (ASCVD). In addition to LDL-C, studies in experimental models and small clinical populations have suggested that other types of metabolic molecules might also be risk factors responsible for cardiovascular complications in HoFH, but definitive evidence from large-scale human studies is still lacking. Herein, we aimed to comprehensively characterize the metabolic features and risk factors of human HoFH by using metabolic systems strategies. METHODS Two independent multi-center cohorts with a total of 868 individuals were included in the cross-sectional study. First, comprehensive serum metabolome/lipidome-wide analyses were employed to identify the metabolomic patterns for differentiating HoFH patients (n = 184) from heterozygous FH (HeFH, n = 376) and non-FH (n = 100) subjects in the discovery cohort. Then, the metabolomic patterns were verified in the validation cohort with 48 HoFH patients, 110 HeFH patients, and 50 non-FH individuals. Subsequently, correlation/regression analyses were performed to investigate the associations of clinical/metabolic alterations with typical phenotypes of HoFH. In the prospective study, a total of 84 HoFH patients with available follow-up were enrolled from the discovery cohort. Targeted metabolomics, deep proteomics, and random forest approaches were performed to investigate the ASCVD-associated biomarkers in HoFH patients. RESULTS Beyond LDL-C, various bioactive metabolites in multiple pathways were discovered and validated for differentiating HoFH from HoFH and non-FH. Our results demonstrated that the inflammation and oxidative stress-related metabolites in the pathways of arachidonic acid and lipoprotein(a) metabolism were independently associated with the prevalence of corneal arcus, xanthomas, and supravalvular/valvular aortic stenosis in HoFH patients. Our results also identified a small marker panel consisting of high-density lipoprotein cholesterol, lipoprotein(a), apolipoprotein A1, and eight proinflammatory and proatherogenic metabolites in the pathways of arachidonic acid, phospholipid, carnitine, and sphingolipid metabolism that exhibited significant performances on predicting first ASCVD events in HoFH patients. CONCLUSIONS Our findings demonstrate that human HoFH is associated with a variety of metabolic abnormalities and is more complex than previously known. Furthermore, this study provides additional metabolic alterations that hold promise as residual risk factors in HoFH population.
Collapse
Affiliation(s)
- Zhiyong Du
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China
| | - Fan Li
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China
| | - Long Jiang
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Linyi Li
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China
| | - Yunhui Du
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China
| | - Huahui Yu
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China
| | - Yan Luo
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China
| | - Yu Wang
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China
| | - Haili Sun
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China
| | - Chaowei Hu
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China
| | - Jianping Li
- Department of Cardiology, Peking University First Hospital, Beijing, 100034, China
| | - Ya Yang
- Suzhou Municipal Hospital, Suzhou, 215002, Jiangsu Province, China
| | - Xiaolu Jiao
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, College of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310020, Zhejiang Province, China
| | - Luya Wang
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China.
| | - Yanwen Qin
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China.
| |
Collapse
|
6
|
Kangasniemi MH, Arffman RK, Joenväärä S, Haverinen A, Luiro K, Tohmola T, Renkonen R, Heikinheimo O, Tapanainen JS, Piltonen TT. Ethinylestradiol in combined hormonal contraceptive has a broader effect on serum proteome compared with estradiol valerate: a randomized controlled trial. Hum Reprod 2022; 38:89-102. [PMID: 36416543 PMCID: PMC9825269 DOI: 10.1093/humrep/deac250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/19/2022] [Indexed: 11/24/2022] Open
Abstract
STUDY QUESTION Does an estradiol-based combined oral contraceptive (COC) have a milder effect on the serum proteome than an ethinylestradiol (EE)-based COC or dienogest (DNG) only? SUMMARY ANSWER The changes in serum proteome were multifold after the use of a synthetic EE-based COC compared to natural estrogen COC or progestin-only preparation. WHAT IS KNOWN ALREADY EE-based COCs widely affect metabolism, inflammation, hepatic protein synthesis and blood coagulation. Studies comparing serum proteomes after the use of COCs containing EE and natural estrogens are lacking. STUDY DESIGN, SIZE, DURATION This was a spin-off from a randomized, controlled, two-center clinical trial. Women (n = 59) were randomized to use either EE + DNG, estradiol valerate (EV) + DNG or DNG only continuously for 9 weeks. PARTICIPANTS/MATERIALS, SETTING, METHODS Participants were healthy, young, white volunteer women. Serum samples were collected before and after 9 weeks of hormonal exposure. Samples from 44 women were available for analysis (EE + DNG n = 14, EV + DNG n = 16 and DNG only n = 14). Serum proteins were analyzed by quantitative, discovery-type label-free proteomics. MAIN RESULTS AND THE ROLE OF CHANCE Altogether, 446 proteins/protein families with two or more unique peptides were detected and quantified. The number of proteins/families that altered over the 9-week period within the study groups was 121 for EE + DNG and 5 for EV + DNG, while no changes were detected for DNG only. When alterations were compared between the groups, significant differences were detected for 63 proteins/protein families, of which 58 were between the EE + DNG and EV + DNG groups. The most affected functions during the use of EE + DNG were the complement system, acute phase response signaling, metabolism and the coagulation system. The results were validated by fetuin-B and cortisol-binding globulin ELISA and sex hormone-binding globulin immunoassay. LARGE SCALE DATA Data are available via ProteomeXchange with identifiers PXD033617 (low abundance fraction) and PXD033618 (high abundance fraction). LIMITATIONS, REASONS FOR CAUTION The power analysis of the trial was not based on the proteomic analysis of this spin-off study. In the future, targeted proteomic analysis with samples from another trial should be carried out in order to confirm the results. WIDER IMPLICATIONS OF THE FINDINGS The EE-based COC exerted a broader effect on the serum proteome than the EV-based COC or the DNG-only preparation. These results demonstrate that the effects of EE in COCs go far beyond the established endpoint markers of estrogen action, while the EV combination is closer to the progestin-only preparation. The study indicates that EV could provide a preferable option to EE in COCs in the future and signals a need for further studies comparing the clinical health outcomes of COCs containing EE and natural estrogens. STUDY FUNDING/COMPETING INTEREST(S) Funding for this researcher-initiated study was obtained from the Helsinki University Hospital research funds, the Hospital District of Helsinki and Uusimaa, the Sigrid Juselius Foundation, the Academy of Finland, the Finnish Medical Association, the University of Oulu Graduate School, the Emil Aaltonen Foundation, the Swedish Cultural Foundation in Finland, the Novo Nordisk Foundation, Orion Research Foundation and the Northern Ostrobothnia Regional Fund. The funders had no role in study design, data collection and analysis, publishing decisions or manuscript preparation. T.P. has received honoraria for lectures, consultations and research grants from Exeltis, Gedeon Richter, MSD, Merck, Pfizer, Roche, Stragen and Mithra Pharmaceuticals. O.H. occasionally serves on advisory boards for Bayer AG and Gedeon Richter and has designed and lectured at educational events for these companies. The other authors have nothing to disclose. O.H. occasionally serves on advisory boards for Bayer AG and Gedeon Richter and has designed and lectured at educational events for these companies. The other authors have nothing to disclose. TRIAL REGISTRATION NUMBER ClinicalTrials.gov NCT02352090. TRIAL REGISTRATION DATE 27 January 2015. DATE OF FIRST PATIENT’S ENROLMENT 1 April 2015.
Collapse
Affiliation(s)
- M H Kangasniemi
- Correspondence address. Department of Obstetrics and Gynecology, Clinical Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, 90014 Oulu, Finland. E-mail:
| | - R K Arffman
- Department of Obstetrics and Gynecology, Clinical Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - S Joenväärä
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland,HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - A Haverinen
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - K Luiro
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - T Tohmola
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland,HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - R Renkonen
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland,HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - O Heikinheimo
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - J S Tapanainen
- Department of Obstetrics and Gynecology, Clinical Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland,Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - T T Piltonen
- Department of Obstetrics and Gynecology, Clinical Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| |
Collapse
|
7
|
Du Z, Li F, Li L, Wang Y, Li J, Yang Y, Jiang L, Wang L, Qin Y. Low-density lipoprotein receptor genotypes modify the sera metabolome of patients with homozygous familial hypercholesterolemia. iScience 2022; 25:105334. [DOI: 10.1016/j.isci.2022.105334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/30/2022] [Accepted: 10/10/2022] [Indexed: 10/31/2022] Open
|
8
|
Du Z, Sun H, Du Y, Li L, Lv Q, Yu H, Li F, Wang Y, Jiao X, Hu C, Qin Y. Comprehensive Metabolomics and Machine Learning Identify Profound Oxidative Stress and Inflammation Signatures in Hypertensive Patients with Obstructive Sleep Apnea. Antioxidants (Basel) 2022; 11:antiox11101946. [PMID: 36290670 PMCID: PMC9598902 DOI: 10.3390/antiox11101946] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Obstructive sleep apnea (OSA) can aggravate blood pressure and increase the risk of cardiovascular diseases in hypertensive individuals, yet the underlying pathophysiological process is still incompletely understood. More importantly, OSA remains a significantly undiagnosed condition. In this study, a total of 559 hypertensive patients with and without OSA were included. Metabolome and lipidome-wide analyses were performed to explore the pathophysiological processes of hypertension comorbid OSA and derive potential biomarkers for diagnosing OSA in hypertensive subjects. Compared to non-OSA hypertensive patients (discovery set = 120; validation set = 116), patients with OSA (discovery set = 165; validation set = 158) demonstrated a unique sera metabolic phenotype dominated by abnormalities in biological processes of oxidative stress and inflammation. By integrating three machine learning algorithms, six discriminatory metabolites (including 5-hydroxyeicosatetraenoic acid, taurine, histidine, lysophosphatidic acid 16:0, lysophosphatidylcholine 18:0, and dihydrosphingosine) were selected for constructing diagnostic and classified model. Notably, the established multivariate-model could accurately identify OSA subjects. The corresponding area under the curve values and the correct classification rates were 0.995 and 96.8% for discovery sets, 0.997 and 99.1% for validation sets. This work updates the molecular insights of hypertension comorbid OSA and paves the way for the use of metabolomics for the diagnosis of OSA in hypertensive individuals.
Collapse
Affiliation(s)
- Zhiyong Du
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing 100029, China
| | - Haili Sun
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing 100029, China
| | - Yunhui Du
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing 100029, China
| | - Linyi Li
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing 100029, China
| | - Qianwen Lv
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing 100029, China
| | - Huahui Yu
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing 100029, China
| | - Fan Li
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing 100029, China
| | - Yu Wang
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing 100029, China
| | - Xiaolu Jiao
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing 100029, China
| | - Chaowei Hu
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing 100029, China
| | - Yanwen Qin
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing 100029, China
- Correspondence: ; Tel./Fax: +86-10-64456529
| |
Collapse
|
9
|
Azimzadeh O, von Toerne C, Subramanian V, Sievert W, Multhoff G, Atkinson MJ, Tapio S. Data-Independent Acquisition Proteomics Reveals Long-Term Biomarkers in the Serum of C57BL/6J Mice Following Local High-Dose Heart Irradiation. Front Public Health 2021; 9:678856. [PMID: 34277544 PMCID: PMC8283568 DOI: 10.3389/fpubh.2021.678856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/18/2021] [Indexed: 12/23/2022] Open
Abstract
Background and Purpose: Cardiotoxicity is a well-known adverse effect of radiation therapy. Measurable abnormalities in the heart function indicate advanced and often irreversible heart damage. Therefore, early detection of cardiac toxicity is necessary to delay and alleviate the development of the disease. The present study investigated long-term serum proteome alterations following local heart irradiation using a mouse model with the aim to detect biomarkers of radiation-induced cardiac toxicity. Materials and Methods: Serum samples from C57BL/6J mice were collected 20 weeks after local heart irradiation with 8 or 16 Gy X-ray; the controls were sham-irradiated. The samples were analyzed by quantitative proteomics based on data-independent acquisition mass spectrometry. The proteomics data were further investigated using bioinformatics and ELISA. Results: The analysis showed radiation-induced changes in the level of several serum proteins involved in the acute phase response, inflammation, and cholesterol metabolism. We found significantly enhanced expression of proinflammatory cytokines (TNF-α, TGF-β, IL-1, and IL-6) in the serum of the irradiated mice. The level of free fatty acids, total cholesterol, low-density lipoprotein (LDL), and oxidized LDL was increased, whereas that of high-density lipoprotein was decreased by irradiation. Conclusions: This study provides information on systemic effects of heart irradiation. It elucidates a radiation fingerprint in the serum that may be used to elucidate adverse cardiac effects after radiation therapy.
Collapse
Affiliation(s)
- Omid Azimzadeh
- Institute of Radiation Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Section Radiation Biology, Federal Office for Radiation Protection, Oberschleissheim, Germany
| | - Christine von Toerne
- Research Unit Protein Science, Helmholtz Zentrum München - German Research Center for Environmental Health, Munich, Germany
| | - Vikram Subramanian
- Institute of Radiation Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Wolfgang Sievert
- Department of Radiation Oncology, Center for Translational Cancer Research (TranslaTUM), Campus Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Gabriele Multhoff
- Department of Radiation Oncology, Center for Translational Cancer Research (TranslaTUM), Campus Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Michael J Atkinson
- Institute of Radiation Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Radiation Biology, Technical University of Munich, Munich, Germany
| | - Soile Tapio
- Institute of Radiation Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Institute for Biological and Medical Imaging, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|