1
|
Bagordo D, Rossi GP, Delles C, Wiig H, Rossitto G. Tangram of Sodium and Fluid Balance. Hypertension 2024; 81:490-500. [PMID: 38084591 PMCID: PMC10863667 DOI: 10.1161/hypertensionaha.123.19569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Homeostasis of fluid and electrolytes is a tightly controlled physiological process. Failure of this process is a hallmark of hypertension, chronic kidney disease, heart failure, and other acute and chronic diseases. While the kidney remains the major player in the control of whole-body fluid and electrolyte homeostasis, recent discoveries point toward more peripheral mechanisms leading to sodium storage in tissues, such as skin and muscle, and a link between this sodium and a range of diseases, including the conditions above. In this review, we describe multiple facets of sodium and fluid balance from traditional concepts to novel discoveries. We examine the differences between acute disruption of sodium balance and the longer term adaptation in chronic disease, highlighting areas that cannot be explained by a kidney-centric model alone. The theoretical and methodological challenges of more recently proposed models are discussed. We acknowledge the different roles of extracellular and intracellular spaces and propose an integrated model that maintains fluid and electrolyte homeostasis and can be distilled into a few elemental players: the microvasculature, the interstitium, and tissue cells. Understanding their interplay will guide a more precise treatment of conditions characterized by sodium excess, for which primary aldosteronism is presented as a prototype.
Collapse
Affiliation(s)
- Domenico Bagordo
- Emergency and Hypertension Unit, Dipartimento di Medicina (DIMED), Università degli Studi di Padova, Italy (D.B., G.P.R., G.R.)
| | - Gian Paolo Rossi
- Emergency and Hypertension Unit, Dipartimento di Medicina (DIMED), Università degli Studi di Padova, Italy (D.B., G.P.R., G.R.)
| | - Christian Delles
- School of Cardiovascular & Metabolic Health, University of Glasgow, United Kingdom (G.R., C.D.)
| | - Helge Wiig
- Department of Biomedicine, University of Bergen, Norway (H.W.)
| | - Giacomo Rossitto
- Emergency and Hypertension Unit, Dipartimento di Medicina (DIMED), Università degli Studi di Padova, Italy (D.B., G.P.R., G.R.)
- School of Cardiovascular & Metabolic Health, University of Glasgow, United Kingdom (G.R., C.D.)
| |
Collapse
|
2
|
Saleem M, Masenga SK, Ishimwe JA, Demirci M, Ahmad T, Jamison S, Albritton CF, Mwesigwa N, Porcia Haynes A, White J, Neikirk K, Vue Z, Hinton A, Arshad S, Desta S, Kirabo A. Recent Advances in Understanding Peripheral and Gut Immune Cell-Mediated Salt-Sensitive Hypertension and Nephropathy. Hypertension 2024; 81:436-446. [PMID: 38164753 PMCID: PMC10922672 DOI: 10.1161/hypertensionaha.123.22031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Hypertension is the primary modifiable risk factor for cardiovascular, renal, and cerebrovascular diseases and is considered the main contributing factor to morbidity and mortality worldwide. Approximately 50% of hypertensive and 25% of normotensive people exhibit salt sensitivity of blood pressure, which is an independent risk factor for cardiovascular disease. Human and animal studies demonstrate that the immune system plays an important role in the etiology and pathogenesis of salt sensitivity of blood pressure, kidney damage, and vascular diseases. Antigen-presenting and adaptive immune cells are implicated in salt-sensitive hypertension and salt-induced renal and vascular injury. Elevated sodium activates antigen-presenting cells to release proinflammatory cytokines including IL (interleukin) 6, tumor necrosis factor-α, IL-1β, and accumulate isolevuglandin-protein adducts. In turn, these activate T cells release prohypertensive cytokines including IL-17A. Moreover, high-salt intake is associated with gut dysbiosis, leading to inflammation, oxidative stress, and blood pressure elevation but the mechanistic contribution to salt-sensitivity of blood pressure is not clearly understood. Here, we discuss recent advances in research investigating the cause, potential biomarkers, and therapeutic targets for salt-sensitive hypertension as they pertain to the gut microbiome, immunity, and inflammation.
Collapse
Affiliation(s)
- Mohammad Saleem
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sepiso K Masenga
- Mulungushi University, School of Medicine and Health Sciences, HAND Research Group, Livingstone, Zambia
| | - Jeanne A Ishimwe
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mert Demirci
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Taseer Ahmad
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Punjab, Pakistan
| | - Sydney Jamison
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- School of Graduate Studies, Meharry Medical College, Nashville, TN, USA
| | - Claude F. Albritton
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- School of Graduate Studies, Meharry Medical College, Nashville, TN, USA
| | - Naome Mwesigwa
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexandria Porcia Haynes
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jalyn White
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- Spelman College Department of Chemistry and Biochemistry, Atlanta, GA, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Suha Arshad
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Selam Desta
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Annet Kirabo
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology
- Vanderbilt Institute for Infection, Immunology and Inflammation
- Vanderbilt Institute for Global Health
| |
Collapse
|
3
|
Wagner B, Malhotra D, Schmidt D, Raj DS, Khitan ZJ, Shapiro JI, Tzamaloukas AH. Hypertonic Saline Infusion for Hyponatremia: Limitations of the Adrogué-Madias and Other Formulas. KIDNEY360 2023; 4:e555-e561. [PMID: 36758190 PMCID: PMC10278828 DOI: 10.34067/kid.0000000000000075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/10/2023] [Indexed: 02/11/2023]
Abstract
Hypertonic saline infusion is used to correct hyponatremia with severe symptoms. The selection of the volume of infused hypertonic saline ( VInf ) should address prevention of overcorrection or undercorrection. Several formulas computing this VInf have been proposed. The limitations common to these formulas consist of (1) failure to include potential determinants of change in serum sodium concentration ([ Na ]) including exchanges between osmotically active and inactive sodium compartments, changes in hydrogen binding of body water to hydrophilic compounds, and genetic influences and (2) inaccurate estimates of baseline body water entered in any formula and of gains or losses of water, sodium, and potassium during treatment entered in formulas that account for such gains or losses. In addition, computing VInf from the Adrogué-Madias formula by a calculation assuming a linear relation between VInf and increase in [ Na ] is a source of errors because the relation between these two variables was proven to be curvilinear. However, these errors were shown to be negligible by a comparison of estimates of VInf by the Adrogué-Madias formula and by a formula using the same determinants of the change in [ Na ] and the curvilinear relation between this change and VInf . Regardless of the method used to correct hyponatremia, monitoring [ Na ] and changes in external balances of water, sodium, and potassium during treatment remain imperative.
Collapse
Affiliation(s)
- Brent Wagner
- Division of Nephrology, University of New Mexico School of Medicine, Albuquerque, New Mexico
- Research Service, Raymond G. Murphy Veterans Affairs Medical Center, Albuquerque, New Mexico
- Kidney Institute of New Mexico, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Deepak Malhotra
- Division of Nephrology, University of Toledo College of Medicine, Toledo, Ohio
| | - Darren Schmidt
- Division of Nephrology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Dominic S. Raj
- Division of Nephrology, George Washington University School of Medicine, Washington, DC
| | - Zeid J. Khitan
- Division of Nephrology, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Joseph I. Shapiro
- Division of Nephrology, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Antonios H. Tzamaloukas
- Division of Nephrology, University of New Mexico School of Medicine, Albuquerque, New Mexico
- Research Service, Raymond G. Murphy Veterans Affairs Medical Center, Albuquerque, New Mexico
| |
Collapse
|
4
|
Ertuglu LA, Mutchler AP, Yu J, Kirabo A. Inflammation and oxidative stress in salt sensitive hypertension; The role of the NLRP3 inflammasome. Front Physiol 2022; 13:1096296. [PMID: 36620210 PMCID: PMC9814168 DOI: 10.3389/fphys.2022.1096296] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Salt-sensitivity of blood pressure is an independent risk factor for cardiovascular disease and affects approximately half of the hypertensive population. While the precise mechanisms of salt-sensitivity remain unclear, recent findings on body sodium homeostasis and salt-induced immune cell activation provide new insights into the relationship between high salt intake, inflammation, and hypertension. The immune system, specifically antigen-presenting cells (APCs) and T cells, are directly implicated in salt-induced renal and vascular injury and hypertension. Emerging evidence suggests that oxidative stress and activation of the NLRP3 inflammasome drive high sodium-mediated activation of APCs and T cells and contribute to the development of renal and vascular inflammation and hypertension. In this review, we summarize the recent insights into our understanding of the mechanisms of salt-sensitive hypertension and discuss the role of inflammasome activation as a potential therapeutic target.
Collapse
Affiliation(s)
- Lale A. Ertuglu
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United Staes,*Correspondence: Annet Kirabo, ; Lale A. Ertuglu,
| | - Ashley Pitzer Mutchler
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Justin Yu
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States,*Correspondence: Annet Kirabo, ; Lale A. Ertuglu,
| |
Collapse
|
5
|
Shi W, Hu R, Zhao R, Zhu J, Shen H, Li H, Wang L, Yang Z, Jiang Q, Qiao Y, Jiang G, Cheng J, Wan X. Transcriptome analysis of hepatopancreas and gills of Palaemon gravieri under salinity stress. Gene 2022; 851:147013. [DOI: 10.1016/j.gene.2022.147013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/01/2022] [Accepted: 10/25/2022] [Indexed: 11/04/2022]
|
6
|
Ertuglu LA, Kirabo A. Dendritic Cell Epithelial Sodium Channel in Inflammation, Salt-Sensitive Hypertension, and Kidney Damage. KIDNEY360 2022; 3:1620-1629. [PMID: 36245645 PMCID: PMC9528365 DOI: 10.34067/kid.0001272022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/24/2022] [Indexed: 11/27/2022]
Abstract
Salt-sensitive hypertension is a major risk factor for cardiovascular morbidity and mortality. The pathophysiologic mechanisms leading to different individual BP responses to changes in dietary salt remain elusive. Research in the last two decades revealed that the immune system plays a critical role in the development of hypertension and related end organ damage. Moreover, sodium accumulates nonosmotically in human tissue, including the skin and muscle, shifting the dogma on body sodium balance and its regulation. Emerging evidence suggests that high concentrations of extracellular sodium can directly trigger an inflammatory response in antigen-presenting cells (APCs), leading to hypertension and vascular and renal injury. Importantly, sodium entry into APCs is mediated by the epithelial sodium channel (ENaC). Although the role of the ENaC in renal regulation of sodium excretion and BP is well established, these new findings imply that the ENaC may also exert BP modulatory effects in extrarenal tissue through an immune-dependent pathway. In this review, we discuss the recent advances in our understanding of the pathophysiology of salt-sensitive hypertension with a particular focus on the roles of APCs and the extrarenal ENaC.
Collapse
|
7
|
Rohrscheib M, Sam R, Raj DS, Argyropoulos CP, Unruh ML, Lew SQ, Ing TS, Levin NW, Tzamaloukas AH. Edelman Revisited: Concepts, Achievements, and Challenges. Front Med (Lausanne) 2022; 8:808765. [PMID: 35083255 PMCID: PMC8784663 DOI: 10.3389/fmed.2021.808765] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
The key message from the 1958 Edelman study states that combinations of external gains or losses of sodium, potassium and water leading to an increase of the fraction (total body sodium plus total body potassium) over total body water will raise the serum sodium concentration ([Na]S), while external gains or losses leading to a decrease in this fraction will lower [Na]S. A variety of studies have supported this concept and current quantitative methods for correcting dysnatremias, including formulas calculating the volume of saline needed for a change in [Na]S are based on it. Not accounting for external losses of sodium, potassium and water during treatment and faulty values for body water inserted in the formulas predicting the change in [Na]S affect the accuracy of these formulas. Newly described factors potentially affecting the change in [Na]S during treatment of dysnatremias include the following: (a) exchanges during development or correction of dysnatremias between osmotically inactive sodium stored in tissues and osmotically active sodium in solution in body fluids; (b) chemical binding of part of body water to macromolecules which would decrease the amount of body water available for osmotic exchanges; and (c) genetic influences on the determination of sodium concentration in body fluids. The effects of these newer developments on the methods of treatment of dysnatremias are not well-established and will need extensive studying. Currently, monitoring of serum sodium concentration remains a critical step during treatment of dysnatremias.
Collapse
Affiliation(s)
- Mark Rohrscheib
- Department of Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Ramin Sam
- Department of Medicine, Zuckerberg San Francisco General Hospital and Trauma Center, University of California San Francisco School of Medicine, San Francisco, CA, United States
| | - Dominic S Raj
- Department of Medicine, George Washington University, Washington, DC, United States
| | - Christos P Argyropoulos
- Department of Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Mark L Unruh
- Department of Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Susie Q Lew
- Department of Medicine, George Washington University, Washington, DC, United States
| | - Todd S Ing
- Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Nathan W Levin
- Mount Sinai Icahn School of Medicine, New York, NY, United States
| | - Antonios H Tzamaloukas
- Research Service, Department of Medicine, Raymond G. Murphy Veterans Affairs Medical Center and University of New Mexico School of Medicine, Albuquerque, NM, United States
| |
Collapse
|
8
|
Ertuglu LA, Elijovich F, Laffer CL, Kirabo A. Salt-Sensitivity of Blood Pressure and Insulin Resistance. Front Physiol 2021; 12:793924. [PMID: 34966295 PMCID: PMC8711096 DOI: 10.3389/fphys.2021.793924] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022] Open
Abstract
Salt sensitivity of blood pressure (SSBP) is an independent risk factor for cardiovascular morbidity and mortality that is seen in both hypertensive and normotensive populations. Insulin resistance (IR) strongly correlates with SSBP and affects nearly 50% of salt sensitive people. While the precise mechanism by which IR and SSBP relate remains elusive, several common pathways are involved in the genesis of both processes, including vascular dysfunction and immune activation. Vascular dysfunction associated with insulin resistance is characterized by loss of nitric oxide (NO)-mediated vasodilation and heightened endothelin-1 induced vasoconstriction, as well as capillary rarefaction. It manifests with increased blood pressure (BP) in salt sensitive murine models. Another common denominator in the pathogenesis of insulin resistance, hypertension, and salt sensitivity (SS) is immune activation involving pro-inflammatory cytokines like tumor necrosis factor (TNF)-α, IL-1β, and IL-6. In the last decade, a new understanding of interstitial sodium storage in tissues such as skin and muscle has revolutionized traditional concepts of body sodium handling and pathogenesis of SS. We have shown that interstitial Na+ can trigger a T cell mediated inflammatory response through formation of isolevuglandin protein adducts in antigen presenting cells (APCs), and that this response is implicated in salt sensitive hypertension. The peroxisome proliferator-activated receptor γ (PPARγ) is a transcription factor that modulates both insulin sensitivity and BP. PPARγ agonists increase insulin sensitivity and ameliorate salt sensitivity, whereas deficiency of PPARγ results in severe insulin resistance and hypertension. These findings suggest that PPARγ plays a role in the common pathogenesis of insulin sensitivity and salt sensitivity, perhaps via effects on the immune system and vascular function. The goal of this review is to discuss those mechanisms that may play a role in both SSBP and in insulin resistance.
Collapse
Affiliation(s)
- Lale A Ertuglu
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Fernando Elijovich
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Cheryl L Laffer
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
9
|
Oppelaar JJ, Rorije NMG, Olde Engberink RHG, Chahid Y, van Vlies N, Verberne HJ, van den Born BJH, Vogt L. Perturbed body fluid distribution and osmoregulation in response to high salt intake in patients with hereditary multiple exostoses. Mol Genet Metab Rep 2021; 29:100797. [PMID: 34815940 PMCID: PMC8591465 DOI: 10.1016/j.ymgmr.2021.100797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 11/26/2022] Open
Abstract
Background Hereditary Multiple Exostoses (HME) is a rare autosomal disorder characterized by the presence of multiple exostoses (osteochondromas) caused by a heterozygous loss of function mutation in EXT1 or EXT2; genes involved in heparan sulfate (HS) chain elongation. Considering that HS and other glycosaminoglycans play an important role in sodium and water homeostasis, we hypothesized that HME patients have perturbed whole body volume regulation and osmolality in response to high sodium conditions. Methods We performed a randomized cross-over study in 7 male HME patients and 12 healthy controls, matched for age, BMI, blood pressure and renal function. All subjects followed both an 8-day low sodium diet (LSD, <50 mmol/d) and high sodium diet (HSD, >200 mmol/d) in randomized order. After each diet, blood and urine samples were collected. Body fluid compartment measurements were performed by using the distribution curve of iohexol and 125I-albumin. Results In HME patients, HSD resulted in significant increase of intracellular fluid volume (ICFV) (1.2 L, p = 0.01). In this group, solute-mediated water clearance was significantly lower after HSD, and no changes in interstitial fluid volume (IFV), plasma sodium, and effective osmolality were observed. In healthy controls, HSD did not influence ICFV, but expanded IFV (1.8 L, p = 0.058) and increased plasma sodium and effective osmolality. Conclusion HME patients show altered body fluid distribution and osmoregulation after HSD compared to controls. Our results might indicate reduced interstitial sodium accumulation capacity in HME, leading to ICFV increase. Therefore, this study provides additional support that HS is crucial for maintaining constancy of the internal environment.
Collapse
Key Words
- BMI, Body mass index
- BP, Blood pressure
- ECFV, Extracellular fluid volume
- EXT1/EXT2, Extosin-1 / Extosin-2
- GAG, Glycosaminoglycan
- Glycosaminoglycans
- HME, Hereditary Multiple Exostoses
- HSD, High sodium diet
- Heparan sulfate
- Hereditary Multiple Exostoses
- ICFV, Intracellular fluid volume
- IFV, Interstital fluid volume
- LSD, Low sodium diet
- Osmoregulation
- PV, Plasma volume
- Sodium
- TBW, Total body water
- Water balance
Collapse
Affiliation(s)
- Jetta J Oppelaar
- Amsterdam UMC, University of Amsterdam, Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam, the Netherlands
| | - Nienke M G Rorije
- Amsterdam UMC, University of Amsterdam, Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam, the Netherlands
| | - Rik H G Olde Engberink
- Amsterdam UMC, University of Amsterdam, Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam, the Netherlands
| | - Youssef Chahid
- Amsterdam UMC, University of Amsterdam, Department of Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, the Netherlands
| | - Naomi van Vlies
- Amsterdam UMC, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Meibergdreef 9, Amsterdam, the Netherlands
| | - Hein J Verberne
- Amsterdam UMC, University of Amsterdam, Department of Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, the Netherlands
| | - Bert-Jan H van den Born
- Amsterdam UMC, University of Amsterdam, Department of Internal Medicine, Section of Vascular Medicine, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam, the Netherlands
| | - Liffert Vogt
- Amsterdam UMC, University of Amsterdam, Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam, the Netherlands
| |
Collapse
|