1
|
Hazrati A, Mirarefin SMJ, Malekpour K, Rahimi A, Khosrojerdi A, Rasouli A, Akrami S, Soudi S. Mesenchymal stem cell application in pulmonary disease treatment with emphasis on their interaction with lung-resident immune cells. Front Immunol 2024; 15:1469696. [PMID: 39582867 PMCID: PMC11581898 DOI: 10.3389/fimmu.2024.1469696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/01/2024] [Indexed: 11/26/2024] Open
Abstract
Due to the vital importance of the lungs, lung-related diseases and their control are very important. Severe inflammatory responses mediated by immune cells were among the leading causes of lung tissue pathology and damage during the COVID-19 pandemic. In addition, uncontrolled immune cell responses can lead to lung tissue damage in other infectious and non-infectious diseases. It is essential to control immune responses in a way that leads to homeostasis. Immunosuppressive drugs only suppress inflammatory responses and do not affect the homeostasis of reactions. The therapeutic application of mesenchymal stem cells (MSCs), in addition to restoring immune homeostasis, can promote the regeneration of lung tissue through the production of growth factors and differentiation into lung-related cells. However, the communication between MSCs and immune cells after treatment of pulmonary diseases is essential, and investigating this can help develop a clinical perspective. Different studies in the clinical phase showed that MSCs can reverse fibrosis, increase regeneration, promote airway remodeling, and reduce damage to lung tissue. The proliferation and differentiation potential of MSCs is one of the mechanisms of their therapeutic effects. Furthermore, they can secrete exosomes that affect the function of lung cells and immune cells and change their function. Another important mechanism is that MSCs reduce harmful inflammatory responses through communication with innate and adaptive immune cells, which leads to a shift of the immune system toward regulatory and hemostatic responses.
Collapse
Affiliation(s)
- Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arezou Rahimi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Arezou Khosrojerdi
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Ashkan Rasouli
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Susan Akrami
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
2
|
Zeng Y, Gao Y, He L, Ge W, Wang X, Ma T, Xie X. Smart delivery vehicles for cancer: categories, unique roles and therapeutic strategies. NANOSCALE ADVANCES 2024; 6:4275-4308. [PMID: 39170969 PMCID: PMC11334973 DOI: 10.1039/d4na00285g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/19/2024] [Indexed: 08/23/2024]
Abstract
Chemotherapy and surgery remain the primary treatment modalities for cancers; however, these techniques have drawbacks, such as cancer recurrence and toxic side effects, necessitating more efficient cancer treatment strategies. Recent advancements in research and medical technology have provided novel insights and expanded our understanding of cancer development; consequently, scholars have investigated several delivery vehicles for cancer therapy to improve the efficiency of cancer treatment and patient outcomes. Herein, we summarize several types of smart therapeutic carriers and elaborate on the mechanism underlying drug delivery. We reveal the advantages of smart therapeutic carriers for cancer treatment, focus on their effectiveness in cancer immunotherapy, and discuss the application of smart cancer therapy vehicles in combination with other emerging therapeutic strategies for cancer treatment. Finally, we summarize the bottlenecks encountered in the development of smart cancer therapeutic vehicles and suggest directions for future research. This review will promote progress in smart cancer therapy and facilitate related research.
Collapse
Affiliation(s)
- Yiyu Zeng
- Department of Stomatology, The Second Xiangya Hospital, Central South University Changsha 410011 P. R. China
| | - Yijun Gao
- Department of Stomatology, The Second Xiangya Hospital, Central South University Changsha 410011 P. R. China
| | - Liming He
- Department of Stomatology, Changsha Stomatological Hospital Changsha 410004 P. R. China
| | - Wenhui Ge
- Department of Stomatology, The Second Xiangya Hospital, Central South University Changsha 410011 P. R. China
| | - Xinying Wang
- Department of Stomatology, The Second Xiangya Hospital, Central South University Changsha 410011 P. R. China
| | - Tao Ma
- Department of Stomatology, The Second Xiangya Hospital, Central South University Changsha 410011 P. R. China
| | - Xiaoyan Xie
- Department of Stomatology, The Second Xiangya Hospital, Central South University Changsha 410011 P. R. China
| |
Collapse
|
3
|
Qian G, Yu Y, Dong Y, Hong Y, Wang M. Exosomes derived from human urine-derived stem cells ameliorate IL-1β-induced intervertebral disk degeneration. BMC Musculoskelet Disord 2024; 25:537. [PMID: 38997667 PMCID: PMC11241922 DOI: 10.1186/s12891-024-07636-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Human intervertebral disk degeneration (IVDD) is a sophisticated degenerative pathological process. A key cause of IVDD progression is nucleus pulposus cell (NPC) degeneration, which contributes to excessive endoplasmic reticulum stress in the intervertebral disk. However, the mechanisms underlying IVDD and NPC degeneration remain unclear. METHODS We used interleukin (IL)-1β stimulation to establish an NPC-degenerated IVDD model and investigated whether human urine-derived stem cell (USC) exosomes could prevent IL-1β-induced NPC degeneration using western blotting, quantitative real-time polymerase chain reaction, flow cytometry, and transcriptome sequencing techniques. RESULTS We successfully extracted and identified USCs and exosomes from human urine. IL-1β substantially downregulated NPC viability and induced NPC degeneration while modulating the expression of SOX-9, collagen II, and aggrecan. Exosomes from USCs could rescue IL-1β-induced NPC degeneration and restore the expression levels of SOX-9, collagen II, and aggrecan. CONCLUSIONS USC-derived exosomes can prevent NPCs from degeneration following IL-1β stimulation. This finding can aid the development of a potential treatment strategy for IVDD.
Collapse
Grants
- 2020WYZT01 Scientific Research Project funded by Shanghai Fifth People 's Hospital, Fudan University
- 2020WYZT01 Scientific Research Project funded by Shanghai Fifth People 's Hospital, Fudan University
- 2020WYZT01 Scientific Research Project funded by Shanghai Fifth People 's Hospital, Fudan University
- 2020WYZT01 Scientific Research Project funded by Shanghai Fifth People 's Hospital, Fudan University
- 2020WYZT01 Scientific Research Project funded by Shanghai Fifth People 's Hospital, Fudan University
- 2022MHZ073 Natural Science Research Funds of Minhang District, Shanghai
- 2022MHZ073 Natural Science Research Funds of Minhang District, Shanghai
- 2022MHZ073 Natural Science Research Funds of Minhang District, Shanghai
- 2022MHZ073 Natural Science Research Funds of Minhang District, Shanghai
- 2022MHZ073 Natural Science Research Funds of Minhang District, Shanghai
Collapse
Affiliation(s)
- Guang Qian
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, China
| | - Yueming Yu
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, China
| | - Youhai Dong
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, China
| | - Yang Hong
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, China
| | - Minghai Wang
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, China.
| |
Collapse
|
4
|
Daskalakis E, Huang B, Hassan MH, Omar AM, Vyas C, Acar AA, Fallah A, Cooper G, Weightman A, Blunn G, Koç B, Bartolo P. In Vitro Evaluation of Pore Size Graded Bone Scaffolds with Different Material Composition. 3D PRINTING AND ADDITIVE MANUFACTURING 2024; 11:e718-e730. [PMID: 38689909 PMCID: PMC11057695 DOI: 10.1089/3dp.2022.0138] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The demand for biomimetic and biocompatible scaffolds in equivalence of structure and material composition for the regeneration of bone tissue is relevantly high. This article is investigating a novel three-dimensional (3D) printed porous structure called bone bricks with a gradient pore size mimicking the structure of the bone tissue. Poly-ɛ-caprolactone (PCL) combined with ceramics such as hydroxyapatite (HA), β-tricalcium phosphate (TCP), and bioglass 45S5 were successfully mixed using a melt blending method and fabricated with the use of screw-assisted extrusion-based additive manufacturing system. Bone bricks containing the same material concentration (20 wt%) were biologically characterized through proliferation and differentiation tests. Scanning electron microscopy (SEM) was used to investigate the morphology of cells on the surface of bone bricks, whereas energy dispersive X-ray (EDX) spectroscopy was used to investigate the element composition on the surface of the bone bricks. Confocal imaging was used to investigate the number of differentiated cells on the surface of bone bricks. Proliferation results showed that bone bricks containing PCL/HA content are presenting higher proliferation properties, whereas differentiation results showed that bone bricks containing PCL/Bioglass 45S5 are presenting higher differentiation properties. Confocal imaging results showed that bone bricks containing PCL/Bioglass 45S5 are presenting a higher number of differentiated cells on their surface compared with the other material contents.
Collapse
Affiliation(s)
- Evangelos Daskalakis
- Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester, United Kingdom
| | - Boyang Huang
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Mohamed H. Hassan
- Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester, United Kingdom
| | - Abdalla M. Omar
- Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester, United Kingdom
| | - Cian Vyas
- Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester, United Kingdom
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Anil A. Acar
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Istanbul, Turkey
- SUNUM Nanotechnology Research Center, Sabanci University, Istanbul, Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Ali Fallah
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Istanbul, Turkey
- SUNUM Nanotechnology Research Center, Sabanci University, Istanbul, Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Glen Cooper
- Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester, United Kingdom
| | - Andrew Weightman
- Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester, United Kingdom
| | - Gordon Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Bahattin Koç
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Istanbul, Turkey
- SUNUM Nanotechnology Research Center, Sabanci University, Istanbul, Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Paulo Bartolo
- Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester, United Kingdom
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
5
|
Zhang X, Cheng Z, Zeng M, He Z. The efficacy of extracellular vesicles for acute lung injury in preclinical animal models: a meta-analysis. BMC Pulm Med 2024; 24:128. [PMID: 38481171 PMCID: PMC10935944 DOI: 10.1186/s12890-024-02910-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 02/15/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND With the increasing research on extracellular vesicles (EVs), EVs have received widespread attention as biodiagnostic markers and therapeutic agents for a variety of diseases. Stem cell-derived EVs have also been recognized as a new viable therapy for acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). To assess their efficacy, we conducted a meta-analysis of existing preclinical experimental animal models of EVs for ALI treatment. METHODS The database was systematically interrogated for pertinent data encompassing the period from January 2010 to April 2022 concerning interventions involving extracellular vesicles (EVs) in animal models of acute lung injury (ALI). The lung injury score was selected as the primary outcome measure for statistical analysis. Meta-analyses were executed utilizing RevMan 5.3 and State15.1 software tools. RESULTS The meta-analyses comprised 31 studies, exclusively involving animal models of acute lung injury (ALI), categorized into two cohorts based on the presence or absence of extracellular vesicle (EV) intervention. The statistical outcomes from these two study groups revealed a significant reduction in lung injury scores with the administration of stem and progenitor cell-derived EVs (SMD = -3.63, 95% CI [-4.97, -2.30], P < 0.05). Conversely, non-stem cell-derived EVs were associated with an elevation in lung injury scores (SMD = -4.34, 95% CI [3.04, 5.63], P < 0.05). EVs originating from stem and progenitor cells demonstrated mitigating effects on alveolar neutrophil infiltration, white blood cell counts, total cell counts in bronchoalveolar lavage fluid (BALF), lung wet-to-dry weight ratios (W/D), and total protein in BALF. Furthermore, pro-inflammatory mediators exhibited down-regulation, while anti-inflammatory mediators demonstrated up-regulation. Conversely, non-stem cell-derived EVs exacerbated lung injury. CONCLUSION In preclinical animal models of acute lung injury (ALI), the administration of extracellular vesicles (EVs) originating from stem and progenitor cells demonstrably enhances pulmonary function. This ameliorative effect is attributed to the mitigation of pulmonary vascular permeability and the modulation of immune homeostasis, collectively impeding the progression of inflammation. In stark contrast, the utilization of EVs derived from non-stem progenitor cells exacerbates the extent of lung injury. These findings substantiate the potential utility of EVs as a novel therapeutic avenue for addressing acute lung injury.
Collapse
Affiliation(s)
- Xuefeng Zhang
- The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zongyong Cheng
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Menghao Zeng
- The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhihui He
- Department of Critical Care Medicine, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
- 138 Tongzibo Road, Yuelu District, Changsha, Hunan, 410013, China.
| |
Collapse
|
6
|
Yang B, Lin Y, Huang Y, Zhu N, Shen YQ. Extracellular vesicles modulate key signalling pathways in refractory wound healing. BURNS & TRAUMA 2023; 11:tkad039. [PMID: 38026441 PMCID: PMC10654481 DOI: 10.1093/burnst/tkad039] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/10/2023] [Accepted: 06/22/2023] [Indexed: 12/01/2023]
Abstract
Chronic wounds are wounds that cannot heal properly due to various factors, such as underlying diseases, infection or reinjury, and improper healing of skin wounds and ulcers can cause a serious economic burden. Numerous studies have shown that extracellular vesicles (EVs) derived from stem/progenitor cells promote wound healing, reduce scar formation and have significant advantages over traditional treatment methods. EVs are membranous particles that carry various bioactive molecules from their cellular origins, such as cytokines, nucleic acids, enzymes, lipids and proteins. EVs can mediate cell-to-cell communication and modulate various physiological processes, such as cell differentiation, angiogenesis, immune response and tissue remodelling. In this review, we summarize the recent advances in EV-based wound healing, focusing on the signalling pathways that are regulated by EVs and their cargos. We discuss how EVs derived from different types of stem/progenitor cells can promote wound healing and reduce scar formation by modulating the Wnt/β-catenin, phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin, vascular endothelial growth factor, transforming growth factor β and JAK-STAT pathways. Moreover, we also highlight the challenges and opportunities for engineering or modifying EVs to enhance their efficacy and specificity for wound healing.
Collapse
Affiliation(s)
- Bowen Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Yumeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Yibo Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Nanxi Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Wuhou District, Chengdu 610041, China
| |
Collapse
|
7
|
Wang Y, Jiang M, Zheng X, He Y, Ma X, Li J, Pu K. Application of exosome engineering modification in targeted delivery of therapeutic drugs. Biochem Pharmacol 2023; 215:115691. [PMID: 37481135 DOI: 10.1016/j.bcp.2023.115691] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
Cancer is the leading cause of premature death in humans. Scientists have developed several therapeutic drugs for cancer treatment. However, drug delivery faces many problems. First, traditional drugs do not target tumors and are prone to causing significant toxic side effects. Second, suitable drug carriers are essential for improving drug delivery to tumors or circulating cancer cells. Exosomes are natural extracellular vesicles with low immunogenicity and prolonged blood circulation in vivo. These characteristics render exosomes ideal drug carriers. This review highlights the properties of exosomes and mechanisms of exosome biogenesis. It also summarizes the engineering modification methods for enhancing exosome yield, targeting, and drug-loading capacity.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Nano-Bio-Chem Centre and Key Laboratory for Nano-Bio Interface Research, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Min Jiang
- Nano-Bio-Chem Centre and Key Laboratory for Nano-Bio Interface Research, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Xuewen Zheng
- Nano-Bio-Chem Centre and Key Laboratory for Nano-Bio Interface Research, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yiran He
- Nano-Bio-Chem Centre and Key Laboratory for Nano-Bio Interface Research, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Xiaochuan Ma
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) & Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Jiong Li
- Nano-Bio-Chem Centre and Key Laboratory for Nano-Bio Interface Research, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Kefeng Pu
- Nano-Bio-Chem Centre and Key Laboratory for Nano-Bio Interface Research, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| |
Collapse
|
8
|
Salybekov AA, Hassanpour M, Kobayashi S, Asahara T. Therapeutic application of regeneration-associated cells: a novel source of regenerative medicine. Stem Cell Res Ther 2023; 14:191. [PMID: 37533070 PMCID: PMC10394824 DOI: 10.1186/s13287-023-03428-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
Chronic diseases with comorbidities or associated risk factors may impair the function of regenerative cells and the regenerative microenvironment. Following this consideration, the vasculogenic conditioning culture (VCC) method was developed to boost the regenerative microenvironment to achieve regeneration-associated cells (RACs), which contain vasculogenic endothelial progenitor cells (EPCs) and anti-inflammatory/anti-immunity cells. Preclinical and clinical studies demonstrate that RAC transplantation is a safe and convenient cell population for promoting ischemic tissue recovery based on its strong vasculogenicity and functionality. The outputs of the scientific reports reviewed in the present study shed light on the fact that RAC transplantation is efficient in curing various diseases. Here, we compactly highlight the universal features of RACs and the latest progress in their translation toward clinics.
Collapse
Affiliation(s)
- Amankeldi A Salybekov
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, Kamakura, Japan.
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, Kamakura, Japan.
| | - Mehdi Hassanpour
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, Kamakura, Japan
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Shuzo Kobayashi
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, Kamakura, Japan
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Takayuki Asahara
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, Kamakura, Japan
| |
Collapse
|
9
|
He A, Wang M, Li X, Chen H, Lim K, Lu L, Zhang C. Role of Exosomes in the Pathogenesis and Theranostic of Alzheimer's Disease and Parkinson's Disease. Int J Mol Sci 2023; 24:11054. [PMID: 37446231 DOI: 10.3390/ijms241311054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative diseases (NDDs) threatening the lives of millions of people worldwide, including especially elderly people. Currently, due to the lack of a timely diagnosis and proper intervention strategy, AD and PD largely remain incurable. Innovative diagnosis and therapy are highly desired. Exosomes are small vesicles that are present in various bodily fluids, which contain proteins, nucleic acids, and active biomolecules, and which play a crucial role especially in intercellular communication. In recent years, the role of exosomes in the pathogenesis, early diagnosis, and treatment of diseases has attracted ascending attention. However, the exact role of exosomes in the pathogenesis and theragnostic of AD and PD has not been fully illustrated. In the present review, we first introduce the biogenesis, components, uptake, and function of exosomes. Then we elaborate on the involvement of exosomes in the pathogenesis of AD and PD. Moreover, the application of exosomes in the diagnosis and therapeutics of AD and PD is also summarized and discussed. Additionally, exosomes serving as drug carriers to deliver medications to the central nervous system are specifically addressed. The potential role of exosomes in AD and PD is explored, discussing their applications in diagnosis and treatment, as well as their current limitations. Given the limitation in the application of exosomes, we also propose future perspectives for better utilizing exosomes in NDDs. Hopefully, it would pave ways for expanding the biological applications of exosomes in fundamental research as well as theranostics of NDDs.
Collapse
Affiliation(s)
- Aojie He
- School of Basic Medical Sciences, Shanxi Medical University, 56 Xinjiannan Road, Taiyuan 030001, China
| | - Meiling Wang
- School of Basic Medical Sciences, Shanxi Medical University, 56 Xinjiannan Road, Taiyuan 030001, China
| | - Xiaowan Li
- School of Basic Medical Sciences, Shanxi Medical University, 56 Xinjiannan Road, Taiyuan 030001, China
| | - Hong Chen
- School of Basic Medical Sciences, Shanxi Medical University, 56 Xinjiannan Road, Taiyuan 030001, China
| | - Kahleong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232, Singapore
| | - Li Lu
- School of Basic Medical Sciences, Shanxi Medical University, 56 Xinjiannan Road, Taiyuan 030001, China
| | - Chengwu Zhang
- School of Basic Medical Sciences, Shanxi Medical University, 56 Xinjiannan Road, Taiyuan 030001, China
| |
Collapse
|
10
|
Semerci Sevimli T, Sevimli M, Qomi Ekenel E, Altuğ Tasa B, Nur Soykan M, Demir Güçlüer Z, İnan U, Uysal O, Güneş Bağış S, Çemrek F, Eker Sarıboyacı A. Comparison of exosomes secreted by synovial fluid-derived mesenchymal stem cells and adipose tissue-derived mesenchymal stem cells in culture for microRNA-127-5p expression during chondrogenesis. Gene 2023; 865:147337. [PMID: 36878417 DOI: 10.1016/j.gene.2023.147337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/14/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
This study aimed to investigate the differences between the exosomal microRNA-127-5p expression profiles of human adipose tissue-derived mesenchymal stem cells (hAT-MSCs) and human synovial fluid-derived mesenchymal stem cells (hSF-MSCs) during chondrogenesis in terms of regenerative treatment of cartilage. Synovial fluid-derived mesenchymal stem cells, adipose tissue-derived mesenchymal stem cells, and human fetal chondroblast cells (hfCCs) were directed to chondrogenic differentiation. Alcian Blue and Safranin O stainings were performed to detect chondrogenic differentiation histochemically. Exosomes derived from chondrogenic differentiated cells and their exosomes were isolated and characterized. microRNA-127-5p expressions were measured by Quantitative reverse transcription PCR (qRT-PCR). Significantly higher levels of microRNA-127-5p expression in differentiated hAT-MSCs exosomes, similar to human fetal chondroblast cells, which are the control group in the chondrogenic differentiation process, were observed. hAT-MSCs are better sources of microRNA-127-5p than hSF-MSCs for stimulating chondrogenesis or in the regenerative therapy of cartilage-related pathologies. hAT-MSCs exosomes are rich sources of microRNA-127-5p and can be an essential candidate for cartilage regeneration treatments.
Collapse
Affiliation(s)
- Tuğba Semerci Sevimli
- Department of Stem Cell, Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, 26040 Eskisehir, Turkey; Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey.
| | - Murat Sevimli
- Department of Histology and Embryology, Faculty of Medicine, Suleyman Demirel University, 32260 Isparta, Turkey.
| | - Emilia Qomi Ekenel
- Department of Stem Cell, Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, 26040 Eskisehir, Turkey; Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey.
| | - Burcugül Altuğ Tasa
- Department of Stem Cell, Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, 26040 Eskisehir, Turkey; Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey.
| | - Merve Nur Soykan
- Department of Stem Cell, Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, 26040 Eskisehir, Turkey; Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey.
| | - Zilif Demir Güçlüer
- Department of Stem Cell, Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, 26040 Eskisehir, Turkey; Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey.
| | - Ulukan İnan
- Department of Orthopedics and Traumatology, Faculty of Medicine, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey.
| | - Onur Uysal
- Department of Stem Cell, Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, 26040 Eskisehir, Turkey; Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey.
| | - Sibel Güneş Bağış
- Department of Stem Cell, Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, 26040 Eskisehir, Turkey; Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey.
| | - Fatih Çemrek
- Department of Statistics, Faculty of Science and Letters, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey.
| | - Ayla Eker Sarıboyacı
- Department of Stem Cell, Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, 26040 Eskisehir, Turkey; Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey.
| |
Collapse
|
11
|
Didamoony MA, Atwa AM, Ahmed LA. Modulatory effect of rupatadine on mesenchymal stem cell-derived exosomes in hepatic fibrosis in rats: A potential role for miR-200a. Life Sci 2023; 324:121710. [PMID: 37084952 DOI: 10.1016/j.lfs.2023.121710] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
AIMS Mesenchymal stem cell-derived exosomes (MSC-EXOs) have emerged as a promising approach in regenerative medicine for management of different diseases. However, the maintenance of their efficacy after in vivo transplantation is still a major concern. The present investigation aimed to assess the modulatory effect of rupatadine (RUP) on MSC-EXOs in diethylnitrosamine (DEN)-induced liver fibrosis (LF), and to explore the possible underlying mechanism. MAIN METHODS LF was induced in rats by i.p. injection of DEN (100 mg/kg) once per week for 6 successive weeks. Rats were then treated with RUP (4 mg/kg/day, p.o.) for 4 weeks with or without a single i.v. administration of MSC-EXOs. At the end of the experiment, animals were euthanized and serum and liver were separated for biochemical, and histological measurements. KEY FINDINGS The combined MSC-EXOs/RUP therapy provided an additional improvement towards inhibition of DEN-induced LF compared to MSC-EXOs group alone. These outcomes could be mediated through antioxidant, anti-inflammatory, and anti-fibrotic effects of RUP which created a more favorable environment for MSC-EXOs homing, and action. This in turn would enhance more effectively miR-200a expression which reduced oxidative stress, inflammation, necroptosis pathway, and subsequently fibrosis as revealed by turning off TGF-β1/α-SMA expression, and hedgehog axis. SIGNIFICANCE The present findings reveal that RUP enhanced the anti-fibrotic efficacy of MSC-EXOs when used as a combined therapy. This was revealed through attenuation of PAF/RIPK3/MLKL/HMGB1, and TGF-β1/hedgehog signaling pathways with a significant role for miR-200a.
Collapse
Affiliation(s)
- Manar A Didamoony
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt.
| | - Ahmed M Atwa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
| | - Lamiaa A Ahmed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| |
Collapse
|
12
|
Namjoo AR, Abrbekoh FN, Saghati S, Amini H, Saadatlou MAE, Rahbarghazi R. Tissue engineering modalities in skeletal muscles: focus on angiogenesis and immunomodulation properties. Stem Cell Res Ther 2023; 14:90. [PMID: 37061717 PMCID: PMC10105969 DOI: 10.1186/s13287-023-03310-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/28/2023] [Indexed: 04/17/2023] Open
Abstract
Muscular diseases and injuries are challenging issues in human medicine, resulting in physical disability. The advent of tissue engineering approaches has paved the way for the restoration and regeneration of injured muscle tissues along with available conventional therapies. Despite recent advances in the fabrication, synthesis, and application of hydrogels in terms of muscle tissue, there is a long way to find appropriate hydrogel types in patients with congenital and/or acquired musculoskeletal injuries. Regarding specific muscular tissue microenvironments, the applied hydrogels should provide a suitable platform for the activation of endogenous reparative mechanisms and concurrently deliver transplanting cells and therapeutics into the injured sites. Here, we aimed to highlight recent advances in muscle tissue engineering with a focus on recent strategies related to the regulation of vascularization and immune system response at the site of injury.
Collapse
Affiliation(s)
- Atieh Rezaei Namjoo
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Amini
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- General and Vascular Surgery Department, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
13
|
Tang L, Zhao C, Liu Y, Zhou J, Dong Y, Huang J, Yang T, Xiao H, Liu D, Wang S, Cai H. GelMA Hydrogel Loaded with Extracellular Vesicles Derived from Umbilical Cord Mesenchymal Stem Cells for Promoting Cutaneous Diabetic Wound Healing. ACS OMEGA 2023; 8:10030-10039. [PMID: 36969465 PMCID: PMC10034996 DOI: 10.1021/acsomega.2c07291] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Chronic diabetic wounds have become a significant cause of disability worldwide. It is highly desired to develop effective therapies that can promote the rapid healing of diabetic wounds. Owing to the outstanding hydrophilic and water-retaining properties, hydrogels could accelerate the healing process. Extracellular vesicles (EVs) have shown the ability to promote cell regeneration and angiogenesis. In this study, we chose a gelatin methacryloyl (GelMA) hydrogel, a kind of biomaterial characteristic of good biocompatibility, to load the EVs derived from umbilical cord mesenchymal stem cells (UCMSCs) in order to have a long-lasting effect by consistent release of EVs. Then, the hydrogel with EVs was used to treat diabetic wounds in rat models. Nuclear magnetic resonance spectroscopy and scanning electron microscopy were used to characterize the synthesis of the hydrogel; cell experiments, animal experiments, and histological staining were used to evaluate the function of the hydrogel with EVs. The results show that the GelMA hydrogel incorporated with the UCMSC-derived EVs exhibits unique physicochemical properties, excellent biocompatibility, and much enhanced therapeutic effects for diabetic wounds.
Collapse
Affiliation(s)
- Lizong Tang
- Key
Laboratory of Bioactive Materials for Ministry of Education, College
of Life Sciences, Nankai University, Tianjin 300071, China
| | - Congrui Zhao
- Key
Laboratory of Bioactive Materials for Ministry of Education, College
of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yufei Liu
- Key
Laboratory of Bioactive Materials for Ministry of Education, College
of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jie Zhou
- Key
Laboratory of Bioactive Materials for Ministry of Education, College
of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yunsheng Dong
- Key
Laboratory of Bioactive Materials for Ministry of Education, College
of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jiaxing Huang
- Key
Laboratory of Bioactive Materials for Ministry of Education, College
of Life Sciences, Nankai University, Tianjin 300071, China
| | - Tingting Yang
- Key
Laboratory of Bioactive Materials for Ministry of Education, College
of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hui Xiao
- Key
Laboratory of Bioactive Materials for Ministry of Education, College
of Life Sciences, Nankai University, Tianjin 300071, China
| | - Dingbin Liu
- Key
Laboratory of Medicinal Chemical Biology, Research Center for Analytical
Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing,
and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shufang Wang
- Key
Laboratory of Bioactive Materials for Ministry of Education, College
of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hong Cai
- Department
of Dermatology, Air Force Medical Center,
PLA, Beijing 100142, P. R. China
| |
Collapse
|
14
|
Zhang W, Wang L, Guo H, Chen L, Huang X. Dapagliflozin-Loaded Exosome Mimetics Facilitate Diabetic Wound Healing by HIF-1α-Mediated Enhancement of Angiogenesis. Adv Healthc Mater 2023; 12:e2202751. [PMID: 36442997 PMCID: PMC11469070 DOI: 10.1002/adhm.202202751] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Indexed: 11/30/2022]
Abstract
Angiogenesis plays a critical role in diabetic wound healing. However, no effective strategies have been developed to target endothelial cells (ECs) to facilitate diabetic wound healing. Dapagliflozin (DA) as a sodium-glucose linked transporter 2 (SGLT2) inhibitor, may promote neovascularization in diabetic mice via HIF-1α-mediated enhancement of angiogenesis. Here, the bioinspired nanovesicles (NVs) prepared from induced pluripotent stem cells-derived ECs through an extrusion approach are reported, which can function as exosome mimetics to achieve targeted deliver of DA. Abundant membrane C-X-C motif chemokine receptor 4 conferred the EC-targeting ability of these NVs and the endothelial homology facilitated the accumulation in ECs. Furthermore, these DA-loaded induced pluripotent stem cells (iPSC)-EC NVs can facilitate angiogenesis and diabetic wound healing by HIF-1α/VEGFA pathway. Taken together, this study indicated that targeting ECs and regulating angiogenesis may be a promising strategy for the treatment of diabetic wound healing.
Collapse
Affiliation(s)
- Weiyue Zhang
- Department of EndocrinologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Lutong Wang
- Department of OrthopaedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Haoyu Guo
- Department of OrthopaedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Lulu Chen
- Department of EndocrinologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Xin Huang
- Department of OrthopaedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| |
Collapse
|
15
|
Zakeri A, Khaseb S, Akhavan Rahnama M, Hajaliaskari A, Soufi Zomorrod M. Exosomes derived from mesenchymal stem cells: A promising cell-free therapeutic tool for cutaneous wound healing. Biochimie 2023; 209:73-84. [PMID: 36681232 DOI: 10.1016/j.biochi.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
Skin wound healing is a multifaceted process involving a cascade of molecular and cellular procedures that occur in four different phases: (a) hemostasis, (b) inflammation, (c) proliferation, and (d) tissue remodeling. Prolonged wound healing in skin is still a major challenge in treatment of wounds. Mesenchymal stem cells (MSCs) accelerate cutaneous wound healing through their paracrine activity. Exosomes are one of the key secretory products of MSCs, mimicking the effects of parental MSCs in skin wound healing process. Exosomes are small membrane vesicles (30-150 nm in diameter) that originate from endosomal pathways and transport numerous biomolecules, including DNAs, messenger RNAs, microRNAs, lipids, and proteins. They can be taken up by target cells and release their contents to modulate the activity of recipient cells. Exosomes derived from mesenchymal stem cells (MSC-Exo) reduce inflammation, promote proliferation, inhibit apoptosis, and enhance angiogenesis in skin wound healing process. Therefore, exosomes are emerging as novel cell-cell communication mediators and have opened a novel viewpoint for developing cell-free therapies. This review aims to demonstrate the roles of exosomes in each step of skin wound healing through a comprehensive literature search.
Collapse
Affiliation(s)
- Armin Zakeri
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University (TMU), Tehran, Iran.
| | - Sanaz Khaseb
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University (TMU), Tehran, Iran.
| | - Mahshid Akhavan Rahnama
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University (TMU), Tehran, Iran.
| | - Akram Hajaliaskari
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University (TMU), Tehran, Iran.
| | - Mina Soufi Zomorrod
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University (TMU), Tehran, Iran.
| |
Collapse
|
16
|
The Role of Extracellular Vesicles in Diseases of the Ear, Nose, and Throat. Med Sci (Basel) 2022; 11:medsci11010006. [PMID: 36649043 PMCID: PMC9844415 DOI: 10.3390/medsci11010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Extracellular vesicles (EVs) are membranous nanoparticles produced by most cell types into the extracellular space and play an important role in cell-to-cell communication. Historically, EVs were categorized based on their methods of biogenesis and size into three groups: exosomes, microvesicles, and apoptotic bodies. Most recently, EV nomenclature has evolved to categorize these nanoparticles based on their size, surface markers, and/or the cell type which secreted them. Many techniques have been adopted in recent years which leverage these characteristics to isolate them from cell culture media and biological fluids. EVs carry various "cargo", including DNA, RNA, proteins, and small signaling molecules. After isolation, EVs can be characterized by various methods to analyze their unique cargo profiles which define their role in cell-to-cell communication, normal physiology, and disease progression. The study of EV cargo has become more common recently as we continue to delineate their role in various human diseases. Further understanding these mechanisms may allow for the future use of EVs as novel biomarkers and therapeutic targets in diseases. Furthermore, their unique cargo delivery mechanisms may one day be exploited to selectively deliver therapeutic agents and drugs. Despite the growing research interest in EVs, limited studies have focused on the role of EVs in the diseases of the ear, nose, and throat. In this review, we will introduce EVs and their cargo, discuss methods of isolation and characterization, and summarize the most up-to-date literature thus far into the role of EVs in diseases of the ear, nose, and throat.
Collapse
|
17
|
Wu J, Chen LH, Sun SY, Li Y, Ran XW. Mesenchymal stem cell-derived exosomes: The dawn of diabetic wound healing. World J Diabetes 2022; 13:1066-1095. [PMID: 36578867 PMCID: PMC9791572 DOI: 10.4239/wjd.v13.i12.1066] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/04/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Chronic wound healing has long been an unmet medical need in the field of wound repair, with diabetes being one of the major etiologies. Diabetic chronic wounds (DCWs), especially diabetic foot ulcers, are one of the most threatening chronic complications of diabetes. Although the treatment strategies, drugs, and dressings for DCWs have made great progress, they remain ineffective in some patients with refractory wounds. Stem cell-based therapies have achieved specific efficacy in various fields, with mesenchymal stem cells (MSCs) being the most widely used. Although MSCs have achieved good feedback in preclinical studies and clinical trials in the treatment of cutaneous wounds or other situations, the potential safety concerns associated with allogeneic/autologous stem cells and unknown long-term health effects need further attention and supervision. Recent studies have reported that stem cells mainly exert their trauma repair effects through paracrine secretion, and exosomes play an important role in intercellular communication as their main bioactive component. MSC-derived exosomes (MSC-Exos) inherit the powerful inflammation and immune modulation, angiogenesis, cell proliferation and migration promotion, oxidative stress alleviation, collagen remodeling imbalances regulation of their parental cells, and can avoid the potential risks of direct stem cell transplantation to a large extent, thus demonstrating promising performance as novel "cell-free" therapies in chronic wounds. This review aimed to elucidate the potential mechanism and update the progress of MSC-Exos in DCW healing, thereby providing new therapeutic directions for DCWs that are difficult to be cured using conventional therapy.
Collapse
Affiliation(s)
- Jing Wu
- Innovation Center for Wound Repair, Diabetic Foot Care Center, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Li-Hong Chen
- Innovation Center for Wound Repair, Diabetic Foot Care Center, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Shi-Yi Sun
- Innovation Center for Wound Repair, Diabetic Foot Care Center, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yan Li
- Innovation Center for Wound Repair, Diabetic Foot Care Center, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xing-Wu Ran
- Innovation Center for Wound Repair, Diabetic Foot Care Center, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
18
|
Ebrahimi N, Faghihkhorasani F, Fakhr SS, Moghaddam PR, Yazdani E, Kheradmand Z, Rezaei-Tazangi F, Adelian S, Mobarak H, Hamblin MR, Aref AR. Tumor-derived exosomal non-coding RNAs as diagnostic biomarkers in cancer. Cell Mol Life Sci 2022; 79:572. [DOI: 10.1007/s00018-022-04552-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 12/24/2022]
|
19
|
Ma H, Peng Y, Zhang S, Zhang Y, Min P. Effects and Progress of Photo-Crosslinking Hydrogels in Wound Healing Improvement. Gels 2022; 8:609. [PMID: 36286110 PMCID: PMC9601727 DOI: 10.3390/gels8100609] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 09/18/2023] Open
Abstract
Wound healing is a dynamic physiological process, including three stages: inflammation, tissue formation, and remodeling. The quality of wound healing is affected by many topical and systemic factors, while any small factor may affect the process. Therefore, improving the quality of wound healing is a complex and arduous challenge. Photo-crosslinking reaction using visible light irradiation is a novel method for hydrogel preparation. Photo-crosslinking hydrogels can be controlled in time and space, and are not interfered by temperature conditions, which have been widely used in the fields of medicine and engineering. This review aims to summarize the application of photo-crosslinking hydrogels in improving the quality of wound healing, mainly including the material design, application mechanism, and effect of photo-crosslinking hydrogels applied in wound healing, followed by the applicable animal models for experimental research. Finally, this review analyzes the clinical application prospects of photo-crosslinking hydrogels in the field of wound healing.
Collapse
Affiliation(s)
| | | | | | - Yixin Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Peiru Min
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| |
Collapse
|
20
|
Dai X, Ye Y, He F. Emerging innovations on exosome-based onco-therapeutics. Front Immunol 2022; 13:865245. [PMID: 36119094 PMCID: PMC9473149 DOI: 10.3389/fimmu.2022.865245] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 07/29/2022] [Indexed: 01/30/2023] Open
Abstract
Exosomes, nano-sized extracellular vesicles for intercellular communications, are gaining rapid momentum as a novel strategy for the diagnosis and therapeutics of a spectrum of diseases including cancers. Secreted by various cell sources, exosomes pertain numerous functionalities from their parental cells and have enhanced stability that enable them with many features favorable for clinical use and commercialization. This paper focuses on the possible roles of exosomes in cancer therapeutics and reviews current exosome-based innovations toward enhanced cancer management and challenges that limit their clinical translation. Importantly, this paper casts insights on how cold atmospheric plasma, an emerging anticancer strategy, may aid in innovations on exosome-based onco-therapeutics toward improved control over cancers.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- CAPsoul Medical Biotechnology Company, Ltd., Beijing, China
- *Correspondence: Fule He, ; Yongju Ye,
| | - Yongju Ye
- Department of Gynaecology, Lishui Hospital of Traditional Chinese Medicine, Lishui, China
- *Correspondence: Fule He, ; Yongju Ye,
| | - Fule He
- Department of Gynaecology, Lishui Hospital of Traditional Chinese Medicine, Lishui, China
- *Correspondence: Fule He, ; Yongju Ye,
| |
Collapse
|
21
|
Ahmed L, Al-Massri K. New Approaches for Enhancement of the Efficacy of Mesenchymal Stem Cell-Derived Exosomes in Cardiovascular Diseases. Tissue Eng Regen Med 2022; 19:1129-1146. [PMID: 35867309 DOI: 10.1007/s13770-022-00469-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 11/28/2022] Open
Abstract
Cardiovascular diseases (CVDs) remain a major health concern worldwide, where mesenchymal stem cells (MSCs) therapy gives great promise in their management through their regenerative and paracrine actions. In recent years, many studies have shifted from the use of transplanted stem cells to their secreted exosomes for the management of various CVDs and cardiovascular-related diseases including atherosclerosis, stroke, myocardial infarction, heart failure, peripheral arterial diseases, and pulmonary hypertension. In different models, MSC-derived exosomes have shown beneficial outcomes similar to cell therapy concerning regenerative and neovascular actions in addition to their anti-apoptotic, anti-remodeling, and anti-inflammatory actions. Compared with their parent cells, exosomes have also demonstrated several advantages, including lower immunogenicity and no risk of tumor formation. However, the maintenance of stability and efficacy of exosomes after in vivo transplantation is still a major concern in their clinical application. Recently, new approaches have been developed to enhance their efficacy and stability including their preconditioning before transplantation, use of genetically modified MSC-derived exosomes, or their utilization as a targeted drug delivery system. Herein, we summarized the use of MSC-derived exosomes as therapies in different CVDs in addition to recent advances for the enhancement of their efficacy in these conditions.
Collapse
Affiliation(s)
- Lamiaa Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt.
| | - Khaled Al-Massri
- Department of Pharmacy and Biotechnology, Faculty of Medicine and Health Sciences, University of Palestine, Gaza, Palestine
| |
Collapse
|
22
|
Bhujel B, Shin HE, Choi DJ, Han I. Mesenchymal Stem Cell-Derived Exosomes and Intervertebral Disc Regeneration: Review. Int J Mol Sci 2022; 23:7306. [PMID: 35806304 PMCID: PMC9267028 DOI: 10.3390/ijms23137306] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 02/07/2023] Open
Abstract
Intervertebral disc degeneration (IVDD) is a common cause of lower back pain (LBP), which burdens individuals and society as a whole. IVDD occurs as a result of aging, mechanical trauma, lifestyle factors, and certain genetic abnormalities, leads to loss of nucleus pulposus, alteration in the composition of the extracellular matrix, excessive oxidative stress, and inflammation in the intervertebral disc. Pharmacological and surgical interventions are considered a boon for the treatment of IVDD, but the effectiveness of those strategies is limited. Mesenchymal stem cells (MSCs) have recently emerged as a possible promising regenerative therapy for IVDD due to their paracrine effect, restoration of the degenerated cells, and capacity for differentiation into disc cells. Recent investigations have shown that the pleiotropic effect of MSCs is not related to differentiation capacity but is mediated by the secretion of soluble paracrine factors. Early studies have demonstrated that MSC-derived exosomes have therapeutic potential for treating IVDD by promoting cell proliferation, tissue regeneration, modulation of the inflammatory response, and reduced apoptosis. This paper highlights the current state of MSC-derived exosomes in the field of treatment of IVDD with further possible future developments, applications, and challenges.
Collapse
Affiliation(s)
- Basanta Bhujel
- Department of Biomedical Science, College of Life Sciences, CHA University, Seongnam-si 13496, Korea; (B.B.); (H.-E.S.)
| | - Hae-Eun Shin
- Department of Biomedical Science, College of Life Sciences, CHA University, Seongnam-si 13496, Korea; (B.B.); (H.-E.S.)
| | - Dong-Jun Choi
- Department of Medicine, CHA Univerity School of Medicine, Seongnam-si 13496, Korea;
| | - Inbo Han
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Korea
| |
Collapse
|
23
|
Sipos F, Műzes G. Disagreements in the therapeutic use of mesenchymal stem cell-derived secretome. World J Stem Cells 2022; 14:365-371. [PMID: 35949398 PMCID: PMC9244954 DOI: 10.4252/wjsc.v14.i6.365] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/15/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
In a recent article, the authors provide a detailed summary of the characteristics and biological functions of mesenchymal stem cells (MSCs), as well as a discussion on the potential mechanisms of action of MSC-based therapies. They describe the morphology, biogenesis, and current isolation techniques of exosomes, one of the most important fractions of the MSC-derived secretome. They also summarize the characteristics of MSC-derived exosomes and highlight their functions and therapeutic potential for tissue/organ regeneration and for kidney, liver, cardiovascular, neurological, and musculoskeletal diseases, as well as cutaneous wound healing. Despite the fact that MSCs are regarded as an important pillar of regenerative medicine, their regenerative potential has been demonstrated to be limited in a number of pathological conditions. The negative effects of MSC-based cell therapy have heightened interest in the therapeutic use of MSC-derived secretome. On the other hand, MSC-derived exosomes and microvesicles possess the potential to have a significant impact on disease development, including cancer. MSCs can interact with tumor cells and promote mutual exchange and induction of cellular markers by exchanging secretome. Furthermore, enzymes secreted into and activated within exosomes can result in tumor cells acquiring new properties. As a result, therapeutic applications of MSC-derived secretomes must be approached with extreme caution.
Collapse
Affiliation(s)
- Ferenc Sipos
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest 1088, Hungary
| | - Györgyi Műzes
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest 1088, Hungary
| |
Collapse
|
24
|
S S, Dahal S, Bastola S, Dayal S, Yau J, Ramamurthi A. Stem Cell Based Approaches to Modulate the Matrix Milieu in Vascular Disorders. Front Cardiovasc Med 2022; 9:879977. [PMID: 35783852 PMCID: PMC9242410 DOI: 10.3389/fcvm.2022.879977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/20/2022] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) represents a complex and dynamic framework for cells, characterized by tissue-specific biophysical, mechanical, and biochemical properties. ECM components in vascular tissues provide structural support to vascular cells and modulate their function through interaction with specific cell-surface receptors. ECM–cell interactions, together with neurotransmitters, cytokines, hormones and mechanical forces imposed by blood flow, modulate the structural organization of the vascular wall. Changes in the ECM microenvironment, as in post-injury degradation or remodeling, lead to both altered tissue function and exacerbation of vascular pathologies. Regeneration and repair of the ECM are thus critical toward reinstating vascular homeostasis. The self-renewal and transdifferentiating potential of stem cells (SCs) into other cell lineages represents a potentially useful approach in regenerative medicine, and SC-based approaches hold great promise in the development of novel therapeutics toward ECM repair. Certain adult SCs, including mesenchymal stem cells (MSCs), possess a broader plasticity and differentiation potential, and thus represent a viable option for SC-based therapeutics. However, there are significant challenges to SC therapies including, but not limited to cell processing and scaleup, quality control, phenotypic integrity in a disease milieu in vivo, and inefficient delivery to the site of tissue injury. SC-derived or -inspired strategies as a putative surrogate for conventional cell therapy are thus gaining momentum. In this article, we review current knowledge on the patho-mechanistic roles of ECM components in common vascular disorders and the prospects of developing adult SC based/inspired therapies to modulate the vascular tissue environment and reinstate vessel homeostasis in these disorders.
Collapse
|
25
|
Autocrine Activity of Extracellular Vesicles Induced by Icariin and Its Effectiveness in Glucocorticoid-Induced Injury of Bone Microvascular Endothelial Cells. Cells 2022; 11:cells11121921. [PMID: 35741052 PMCID: PMC9221798 DOI: 10.3390/cells11121921] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 02/07/2023] Open
Abstract
Glucocorticoids could induce injury and apoptosis of bone microvascular endothelial cells (BMECs) in the femoral head, which is associated with the development of osteonecrosis and osteoporosis. Icariin is a prenylated flavonol glycoside isolated from Epimedium brevicornum, serving as the main active pharmaceutical constituent to treat bone loss. Currently, the impact of the autocrine activity of extracellular vesicles (EVs) induced by icariin on the glucocorticoid-induced injury of BMECs is still to be confirmed. In this study, EVs were isolated from BMECs treated with and without icariin by super-speed centrifugation. Although icariin treatment would not significantly change the size and total protein content of BMECs-derived EVs, expression of EVs-carried vascular endothelial growth factor (VEGF) and transforming growth factor β1 (TGF-β1) was enhanced and numerous miRNAs involved in cell proliferation and apoptosis were upregulated (e.g., hsa-miR-1469 and hsa-miR-133a-5p) or downregulated (e.g., hsa-miR-10b-5p) (p < 0.05). A total of 29 differentially expressed inflammatory factors were detected between the EVs secreted by BMECs from the Icariin-treated group and the Model group. The EVs secreted by BMECs could improve cell viability, decrease cell apoptosis, and promote cell migration and angiogenesis under the intervention of glucocorticoids. Meanwhile, icariin intervention could reinforce these protective effects of BMECs-derived EVs. To sum up, the present study indicates that icariin acts as a promising candidate for treating glucocorticoid-induced injury of BMECs and bone diseases, partially through the autocrine activity of EVs. In vivo or animal studies are still required to better understand the function of BMECs-derived EVs.
Collapse
|
26
|
Tumor Cells-derived exosomal CircRNAs: Novel cancer drivers, molecular mechanisms, and clinical opportunities. Biochem Pharmacol 2022; 200:115038. [DOI: 10.1016/j.bcp.2022.115038] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022]
|
27
|
Mahbubfam S, Rezaie J, Nejati V. Crosstalk between exosomes signaling pathway and autophagy flux in senescent human endothelial cells. Tissue Cell 2022; 76:101803. [DOI: 10.1016/j.tice.2022.101803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/31/2022] [Accepted: 04/19/2022] [Indexed: 12/19/2022]
|
28
|
Wang Y, Cao Z, Wei Q, Ma K, Hu W, Huang Q, Su J, Li H, Zhang C, Fu X. VH298-loaded extracellular vesicles released from gelatin methacryloyl hydrogel facilitate diabetic wound healing by HIF-1α-mediated enhancement of angiogenesis. Acta Biomater 2022; 147:342-355. [PMID: 35580827 DOI: 10.1016/j.actbio.2022.05.018] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/30/2022] [Accepted: 05/10/2022] [Indexed: 02/07/2023]
Abstract
Endothelial malfunction is responsible for impaired angiogenesis in diabetic patients, thereby causing the delayed healing progress of diabetic wounds. Exosomes or extracellular vesicles (EVs) have emerged as potential therapeutic vectors carrying drug cargoes to diseased cells. In the present study, EVs were reported as a new treatment for diabetic wounds by delivering VH298 into endothelial cells. Firstly, EVs derived from epidermal stem cells (ESCs) were loaded with VH298 (VH-EVs), and the characteristics of VH-EVs were identified. VH-EVs showed promotive action on the function of human umbilical vein endothelial cells (HUVECs) in vitro by activating HIF-1α signaling pathway. VH-EVs were also found to have a therapeutic effect on wound healing and angiogenesis in vivo. We further fabricated gelatin methacryloyl (GelMA) hydrogel for sustained release of VH-EVs, which possessed high biocompatibility and proper mechanical properties. In diabetic mice, GelMA hydrogel containing VH-EVs (Gel-VH-EVs) effectively promoted wound healing by locally enhancing blood supply and angiogenesis. The underlying mechanism for enhanced angiogenesis was possibly associated with the activation of HIF-1α/VEGFA signaling pathway. Collectively, our findings suggest a promising EV-based strategy for the VH298 delivery to endothelial cells and provide a new bioactive dressing for diabetic wound treatment. STATEMENT OF SIGNIFICANCE: The angiogenic dysfunction is the main cause of diabetic wound unhealing. Extracellular vesicles (EVs) have been reported to be helpful but their efficacy is limited for angiogenesis in cutaneous regeneration. VH298 holds great promise to improve angiogenesis by stabilizing HIF-1α which is reported at low level in diabetic wounds. Here, we loaded EVs with VH298 (VH-EVs) to exert an on-target enhancement of proangiogenic capacity in diabetic wound. Then, we applied a photo-crosslinkable hydrogel, gelatin methacryloyl (GelMA) containing VH-EVs (Gel-VH-EVs) as a convenient biomaterial and an adaptable scaffold for sustained releasing VH-EVs. The results showed significant therapeutic effect of Gel-VH-EVs on skin defect repair. Our findings suggest a promising EVs-based drug delivery strategy and a new functional wound dressing for patients.
Collapse
Affiliation(s)
- Yaxi Wang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, 100048, China; Chinese PLA Medical School, Beijing, 100853, China
| | - Zhen Cao
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Qian Wei
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Kui Ma
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, China
| | - Wenzhi Hu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Qilin Huang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Jianlong Su
- School of Medicine, NanKai University, Tianjin, 300074, China
| | - Haihong Li
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.
| | - Cuiping Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, China.
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, 100048, China; Chinese PLA Medical School, Beijing, 100853, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, China.
| |
Collapse
|
29
|
Xia C, Xu W, Ai X, Zhu Y, Geng P, Niu Y, Zhu H, Zhou W, Huang H, Shi X. Autophagy and Exosome Coordinately Enhance Macrophage M1 Polarization and Recruitment in Influenza A Virus Infection. Front Immunol 2022; 13:722053. [PMID: 35371077 PMCID: PMC8967985 DOI: 10.3389/fimmu.2022.722053] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 02/24/2022] [Indexed: 12/04/2022] Open
Abstract
Background Influenza A virus infection results in viral pneumonia, which is often accompanied by the infiltration and recruitment of macrophages, overactivation of inflammatory responses, and obvious cell autophagy and exosome production. However, little is known about the roles of autophagy and exosome production in these inflammatory responses. Methods In this study, multiple methods, such as flow cytometry, real-time quantitative reverse transcription-polymerase chain reaction, immune–fluorescence technology, and western blot, were applied to explore the possible effects of autophagy and exosome production by H1N1-infected host cells. Results It was observed that a high number of polarized macrophages (CD11b+/F4/80+/CD86+) were recruited to the lung tissues of infected mice, which could be mimicked by tracking the movement of macrophages to H1N1-infected cells in vitro (transwell assays). Furthermore, there was some coordinated upregulation of M1 polarization signs (iNOS/Arg-1 bias) as well as autophagy (LC3) and exosome (CD63) biomarkers in the infected macrophages and epithelial cells. Moreover, exosomes extracted from the supernatant of virus-infected cells were shown to promote the recruitment and polarization of more peritoneal macrophages than the normal group. The fluorescence colocalization of LC3-CD63 and the inhibition of autophagy and exosome signaling pathway further revealed that H1N1 infection seemed to sequentially activate the M1 polarization and recruitment of macrophages via autophagy–exosome dependent pathway. Conclusion Autophagy and exosome production coordinately enhance the M1 polarization and recruitment of macrophages in influenza virus infection, which also provides potential therapeutic targets.
Collapse
Affiliation(s)
- Chengjie Xia
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Weiming Xu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Xin Ai
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Yingqi Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Ping Geng
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Yijun Niu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Haiyan Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Wei Zhou
- Department of Chemistry, Fudan University, Shanghai, China
| | - Hai Huang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Xunlong Shi
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| |
Collapse
|
30
|
Germena G, Zelarayán LC, Hinkel R. Cellular Chitchatting: Exploring the Role of Exosomes as Cardiovascular Risk Factors. Front Cell Dev Biol 2022; 10:860005. [PMID: 35433670 PMCID: PMC9008366 DOI: 10.3389/fcell.2022.860005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/16/2022] [Indexed: 11/24/2022] Open
Abstract
Exosomes are small bi-lipid membranous vesicles (30–150 nm) containing different biological material such as proteins, lipids and nucleic acid. These small vesicles, inducing a cell to cell signaling pathway, are able to mediate multidirectional crosstalk to maintain homeostasis or modulate disease processes. With their various contents, exosomes sort and transfer specific information from their origin to a recipient cell, from a tissue or organ in the close proximity or at distance, generating an intra-inter tissue or organ communication. In the last decade exosomes have been identified in multiple organs and fluids under different pathological conditions. In particular, while the content and the abundance of exosome is now a diagnostic marker for cardiovascular diseases, their role in context-specific physiological and pathophysiological conditions in the cardiovascular system remains largely unknown. We summarize here the current knowledge on the role of exosomes as mediators of cardiovascular diseases in several pathophysiological conditions such as atherosclerosis and diabetes. In addition, we describe evidence of intercellular connection among multiple cell type (cardiac, vasculature, immune cells) as well as the challenge of their in vivo analysis.
Collapse
Affiliation(s)
- Giulia Germena
- Laboratory Animal Science Unit, Leibniz-Institut für Primatenforschung, Deutsches Primatenzentrum GmbH, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
- *Correspondence: Giulia Germena, ; Rabea Hinkel,
| | - Laura Cecilia Zelarayán
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
| | - Rabea Hinkel
- Laboratory Animal Science Unit, Leibniz-Institut für Primatenforschung, Deutsches Primatenzentrum GmbH, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour (ITTN), Stiftung Tierärztliche Hochschule Hannover, University of Veterinary Medicine, Hannover, Germany
- *Correspondence: Giulia Germena, ; Rabea Hinkel,
| |
Collapse
|
31
|
Huo J, Zhou W, Liu Y, Yang S, Li J, Wang C. Potential Resistance to Antineoplastic Aminated Fullerenes Mediated by M2-Like Monocyte-Derived Exosomes. Front Oncol 2022; 12:779939. [PMID: 35433481 PMCID: PMC9009388 DOI: 10.3389/fonc.2022.779939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Exosomes are small extracellular vesicles critical for intercellular signaling via their delivery of cargoes, including proteins, DNA, RNA, lipids, and metabolites. Exosomes play essential roles in remodeling the tumor microenvironment (TME) for tumor growth, metastasis, and drug resistance. Aminated fullerenes (e.g., C70-ethylenediamine [EDA]) exhibit antineoplastic effects by targeting multiple functional proteins. Nanosized C70-EDA with positive surface charges tends to be taken up by monocytes in the bloodstream and monocyte-derived macrophages in the TME. Herein, the alterations of monocytes and monocyte-derived exosomes by C70-EDA have been investigated. C70-EDA reprogramed THP-1 monocyte to an M2-like state and substantially increased the protein content in exosomes secreted by M2-like monocytes. Notably, C70-EDA-induced M2-like monocytes released exosomes that triggered the proliferation of recipient tumor cells, which may alleviate the antineoplastic efficacy of C70-EDA. As revealed by proteomic profiling of exosomes, this outcome is probably a result of Rho GTPase/p21-activated kinase (PAK) pathway activation in recipient tumor cells induced by upregulated exosomal proteins. This work indicates a promising strategy in which aminated fullerenes can be combined with PAK inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Jiawei Huo
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Zhou
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing, China
| | - Yang Liu
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sifen Yang
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing, China
| | - Jie Li
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing, China
- *Correspondence: Chunru Wang, ; Jie Li,
| | - Chunru Wang
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Chunru Wang, ; Jie Li,
| |
Collapse
|
32
|
Ashrafizadeh M, Kumar AP, Aref AR, Zarrabi A, Mostafavi E. Exosomes as Promising Nanostructures in Diabetes Mellitus: From Insulin Sensitivity to Ameliorating Diabetic Complications. Int J Nanomedicine 2022; 17:1229-1253. [PMID: 35340823 PMCID: PMC8943613 DOI: 10.2147/ijn.s350250] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/07/2022] [Indexed: 12/11/2022] Open
Abstract
Diabetes mellitus (DM) is among the chronic metabolic disorders that its incidence rate has shown an increase in developed and wealthy countries due to lifestyle and obesity. The treatment of DM has always been of interest, and significant effort has been made in this field. Exosomes belong to extracellular vesicles with nanosized features (30-150 nm) that are involved in cell-to-cell communication and preserving homeostasis. The function of exosomes is different based on their cargo, and they may contain lipids, proteins, and nucleic acids. The present review focuses on the application of exosomes in the treatment of DM; both glucose and lipid levels are significantly affected by exosomes, and these nanostructures enhance lipid metabolism and decrease its deposition. Furthermore, exosomes promote glucose metabolism and affect the level of glycolytic enzymes and glucose transporters in DM. Type I DM results from the destruction of β cells in the pancreas, and exosomes can be employed to ameliorate apoptosis and endoplasmic reticulum (ER) stress in these cells. The exosomes have dual functions in mediating insulin resistance/sensitivity, and M1 macrophage-derived exosomes inhibit insulin secretion. The exosomes may contain miRNAs, and by transferring among cells, they can regulate various molecular pathways such as AMPK, PI3K/Akt, and β-catenin to affect DM progression. Noteworthy, exosomes are present in different body fluids such as blood circulation, and they can be employed as biomarkers for the diagnosis of diabetic patients. Future studies should focus on engineering exosomes derived from sources such as mesenchymal stem cells to treat DM as a novel strategy.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, 34956, Istanbul, Turkey
| | - Alan Prem Kumar
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Translational Sciences, Xsphera Biosciences Inc., Boston, MA, 02210, USA
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
33
|
Choi H, Choi K, Kim DH, Oh BK, Yim H, Jo S, Choi C. Strategies for Targeted Delivery of Exosomes to the Brain: Advantages and Challenges. Pharmaceutics 2022; 14:672. [PMID: 35336049 PMCID: PMC8948948 DOI: 10.3390/pharmaceutics14030672] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 02/08/2023] Open
Abstract
Delivering therapeutics to the central nervous system (CNS) is difficult because of the blood-brain barrier (BBB). Therapeutic delivery across the tight junctions of the BBB can be achieved through various endogenous transportation mechanisms. Receptor-mediated transcytosis (RMT) is one of the most widely investigated and used methods. Drugs can hijack RMT by expressing specific ligands that bind to receptors mediating transcytosis, such as the transferrin receptor (TfR), low-density lipoprotein receptor (LDLR), and insulin receptor (INSR). Cell-penetrating peptides and viral components originating from neurotropic viruses can also be utilized for the efficient BBB crossing of therapeutics. Exosomes, or small extracellular vesicles, have gained attention as natural nanoparticles for treating CNS diseases, owing to their potential for natural BBB crossing and broad surface engineering capability. RMT-mediated transport of exosomes expressing ligands such as LDLR-targeting apolipoprotein B has shown promising results. Although surface-modified exosomes possessing brain targetability have shown enhanced CNS delivery in preclinical studies, the successful development of clinically approved exosome therapeutics for CNS diseases requires the establishment of quantitative and qualitative methods for monitoring exosomal delivery to the brain parenchyma in vivo as well as elucidation of the mechanisms underlying the BBB crossing of surface-modified exosomes.
Collapse
Affiliation(s)
- Hojun Choi
- ILIAS Biologics Inc., Daejeon 34014, Korea; (H.C.); (K.C.); (D.-H.K.); (B.-K.O.); (H.Y.); (S.J.)
| | - Kyungsun Choi
- ILIAS Biologics Inc., Daejeon 34014, Korea; (H.C.); (K.C.); (D.-H.K.); (B.-K.O.); (H.Y.); (S.J.)
| | - Dae-Hwan Kim
- ILIAS Biologics Inc., Daejeon 34014, Korea; (H.C.); (K.C.); (D.-H.K.); (B.-K.O.); (H.Y.); (S.J.)
| | - Byung-Koo Oh
- ILIAS Biologics Inc., Daejeon 34014, Korea; (H.C.); (K.C.); (D.-H.K.); (B.-K.O.); (H.Y.); (S.J.)
| | - Hwayoung Yim
- ILIAS Biologics Inc., Daejeon 34014, Korea; (H.C.); (K.C.); (D.-H.K.); (B.-K.O.); (H.Y.); (S.J.)
| | - Soojin Jo
- ILIAS Biologics Inc., Daejeon 34014, Korea; (H.C.); (K.C.); (D.-H.K.); (B.-K.O.); (H.Y.); (S.J.)
| | - Chulhee Choi
- ILIAS Biologics Inc., Daejeon 34014, Korea; (H.C.); (K.C.); (D.-H.K.); (B.-K.O.); (H.Y.); (S.J.)
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
34
|
Rezaie J, Akbari A, Rahbarghazi R. Inhibition of extracellular vesicle biogenesis in tumor cells: A possible way to reduce tumorigenesis. Cell Biochem Funct 2022; 40:248-262. [PMID: 35285964 DOI: 10.1002/cbf.3695] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 12/17/2022]
Abstract
Most eukaryotic cells secrete extracellular vesicles (EVs), which contribute to intracellular communication through transferring different biomolecules such as proteins, RNAs, and lipids to cells. Two main types of EVs are exosomes and microvesicles. Exosomes originate from multivesicular bodies, while microvesicles are shed from the plasma membrane. Mechanisms of exosomes and microvesicle biogenesis/trafficking are complex and many molecules are involved in their biogenesis and secretion. Tumor-derived EVs contain oncogenic molecules that promote tumor growth, metastasis, immune surveillance, angiogenesis, and chemoresistance. A growing body of evidence indicates various compounds can inhibit biogenesis and secretion of EVs from cells and several experiments were conducted to use EVs-inhibitors for understanding the biology of the cells or for understanding the pathology of several diseases like cancer. However, the nontargeting effects of drugs/inhibitors remain a concern. Our current knowledge of EVs biogenesis and their inhibition from tumor cells may provide an avenue for cancer management. In this review, we shed light on exosomes and microvesicles biogenesis, key roles of tumor-derived EVs, and discuss methods used to inhibition of EVs by different inhibitors.
Collapse
Affiliation(s)
- Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Akbari
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
35
|
Liu P, Zhang Q, Mi J, Wang S, Xu Q, Zhuang D, Chen W, Liu C, Zhang L, Guo J, Wu X. Exosomes derived from stem cells of human deciduous exfoliated teeth inhibit angiogenesis in vivo and in vitro via the transfer of miR-100-5p and miR-1246. Stem Cell Res Ther 2022; 13:89. [PMID: 35241153 PMCID: PMC8895508 DOI: 10.1186/s13287-022-02764-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/29/2021] [Indexed: 12/14/2022] Open
Abstract
Background Anti-angiogenic therapy has been shown to be a promising strategy for anti-tumor treatment. Increasing evidence indicates that tumor angiogenesis is affected by exosomes that are secreted by mesenchymal stem cells (MSCs), but whether exosomes derived from MSCs suppress or promote angiogenesis remain paradoxical. The purpose of this study focused on understanding the potential role of exosomes derived from stem cells of human deciduous exfoliated teeth (SHED-Exos) in regulating angiogenesis and the underlying molecular mechanism. Methods Exosomes were isolated from supernatants of SHED cells using an exosome purification kit and were characterized by transmission electron microscopy, nanoparticle tracking analysis and western blot analysis. Cell Counting Kit-8, flow cytometric assays, western blots, wound healing and transwell migration assays were performed to characterize the roles of SHED-Exos on cell proliferation, apoptosis and migration of human umbilical vein endothelial cells (HUVECs). The anti-angiogenic activity of SHED-Exos was assessed via a tube formation assay of endothelial cells and angiogenesis-related factors were analyzed by western blotting. In vivo, we used the chick chorioallantoic membrane (CAM) assay and an oral squamous cell carcinoma (OSCC) xenograft transplantation model with nude mice that received multi-point injections at three-day intervals to evaluate the effects on angiogenesis. Furthermore, the sequencing of microRNAs (miRNAs) in SHED-Exos was performed to investigate the underlying anti-angiogenic mechanism. Results The results showed that SHED-Exos inhibit cell proliferation and migration and induce apoptosis in HUVECs. SHED-Exos suppress the tube-like structure formation of HUVECs in vitro. SHED-Exos downregulate several angiogenesis-related factors, including VEGFA, MMP-9 and ANGPT1. In vivo, the chick CAM assay verified that treatment with SHED-Exos inhibits micro-vascular formation, and importantly, significantly reduces the micro-vascular formation of tumors generated from xenografted OSCC cells, which was associated with the inhibition of tumor growth in vivo. Mechanistically, our data suggested that SHED-Exos are enriched with miR-100-5p and miR-1246 and are transferred to endothelial cells, which results in decreased tube formation via the down-regulation of VEGFA expression. Conclusions These results demonstrate that SHED-Exos inhibit angiogenesis in vitro and in vivo, which suggests that SHED-Exos could potentially serve as a novel and effective therapeutic approach for anti-angiogenic treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02764-9.
Collapse
Affiliation(s)
- Panpan Liu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China.,Department of Pediatrics Dentistry and Preventive Dentistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China
| | - Qun Zhang
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China
| | - Jun Mi
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China
| | - Shuangshuang Wang
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China
| | - Qiuping Xu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China.,Savaid Stomatology School of Hangzhou Medical College, Ningbo Stomatology Hospital, Ningbo, China
| | - Dexuan Zhuang
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China
| | - Wenqian Chen
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China.,Savaid Stomatology School of Hangzhou Medical College, Ningbo Stomatology Hospital, Ningbo, China
| | - Chang Liu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China.,Savaid Stomatology School of Hangzhou Medical College, Ningbo Stomatology Hospital, Ningbo, China
| | - Liwei Zhang
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China.,Savaid Stomatology School of Hangzhou Medical College, Ningbo Stomatology Hospital, Ningbo, China
| | - Jing Guo
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China. .,Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China. .,Savaid Stomatology School of Hangzhou Medical College, Ningbo Stomatology Hospital, Ningbo, China.
| | - Xunwei Wu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China. .,Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Savaid Stomatology School of Hangzhou Medical College, Ningbo Stomatology Hospital, Ningbo, China.
| |
Collapse
|
36
|
Peng L, Wang D, Han Y, Huang T, He X, Wang J, Ou C. Emerging Role of Cancer-Associated Fibroblasts-Derived Exosomes in Tumorigenesis. Front Immunol 2022; 12:795372. [PMID: 35058933 PMCID: PMC8764452 DOI: 10.3389/fimmu.2021.795372] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are the most important component of the stromal cell population in the tumor microenvironment and play an irreplaceable role in oncogenesis and cancer progression. Exosomes, a class of small extracellular vesicles, can transfer biological information (e.g., proteins, nucleic acids, and metabolites as messengers) from secreting cells to target recipient cells, thereby affecting the progression of human diseases, including cancers. Recent studies revealed that CAF-derived exosomes play a crucial part in tumorigenesis, tumor cell proliferation, metastasis, drug resistance, and the immune response. Moreover, aberrant expression of CAF-derived exosomal noncoding RNAs and proteins strongly correlates with clinical pathological characterizations of cancer patients. Gaining deeper insight into the participation of CAF-derived exosomes in tumorigenesis may lead to novel diagnostic biomarkers and therapeutic targets in human cancers.
Collapse
Affiliation(s)
- Lushan Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Dan Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Yingying Han
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Tao Huang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyun He
- Department of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha, China
| | - Junpu Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,Department of Pathology, School of Basic Medicine, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
37
|
Taghvimi S, Vakili O, Soltani Fard E, Khatami SH, Karami N, Taheri‐Anganeh M, Salehi M, Negahdari B, Ghasemi H, Movahedpour A. Exosomal microRNAs and long noncoding RNAs: Novel mediators of drug resistance in lung cancer. J Cell Physiol 2022; 237:2095-2106. [DOI: 10.1002/jcp.30697] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Sina Taghvimi
- Department of Biology, Faculty of Sciences Shahid Chamran University of Ahvaz Ahvaz Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences Isfahan University of Medical Sciences Isfahan Iran
| | - Elahe Soltani Fard
- Department of Molecular Medicine, School of Advanced Technologies Shahrekord University of Medical Sciences Shahrekord Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Neda Karami
- Epilepsy Research Center Shiraz University of Medical Sciences Shiraz Iran
| | - Mortaza Taheri‐Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute Urmia University of Medical Sciences Urmia Iran
| | - Mahsa Salehi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine Tehran University of Medical Sciences Tehran Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine Tehran University of Medical Sciences Tehran Iran
| | | | | |
Collapse
|
38
|
Qiu G, Fan J, Zheng G, He J, Lin F, Ge M, Huang L, Wang J, Xia J, Huang R, Shu Q, Xu J. Diagnostic Potential of Plasma Extracellular Vesicle miR-483-3p and Let-7d-3p for Sepsis. Front Mol Biosci 2022; 9:814240. [PMID: 35187084 PMCID: PMC8847446 DOI: 10.3389/fmolb.2022.814240] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background: microRNAs (miRNAs) from circulating extracellular vesicles (EVs) have been reported as disease biomarkers. This study aimed to identify the diagnostic value of plasma EV-miRNAs in sepsis.Methods: EVs were separated from the plasma of sepsis patients at admission and healthy controls. The expression of EV-miRNAs was evaluated by microarray and qRT-PCR.Results: A preliminary miRNA microarray of plasma EVs from a discovery cohort of 3 sepsis patients at admission and three healthy controls identified 11 miRNAs with over 2-fold upregulation in sepsis group. Based on this finding, EV samples from a validation cohort of 37 sepsis patients at admission and 25 healthy controls were evaluated for the expression of the 6 miRNAs relating injury and inflammation via qRT-PCR. Elevated expression of miR-483-3p and let-7d-3p was validated in sepsis patients and corroborated in a mouse model of sepsis. miR-483-3p and let-7d-3p levels positively correlated with the disease severity. Additionally, a combination of miR-483-3p and let-7d-3p had diagnostic value for sepsis. Furthermore, bioinformatic analysis and experimental validation showed that miR-483-3p and let-7d-3p target pathways regulating immune response and endothelial function.Conclusion: The present study reveals the potential role of plasma EV-miRNAs in the pathogenesis of sepsis and the utility of combining miR-483-3p and let-7d-3p as biomarkers for early sepsis diagnosis.
Collapse
Affiliation(s)
| | - Jiajie Fan
- Department of Thoracic and Cardiovascular Surgery, Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | | | | | | | - Menghua Ge
- Shaoxing Second Hospital, Shaoxing, China
| | | | - Jiangmei Wang
- Department of Thoracic and Cardiovascular Surgery, Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Jie Xia
- Department of Thoracic and Cardiovascular Surgery, Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Ruoqiong Huang
- Department of Thoracic and Cardiovascular Surgery, Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Qiang Shu
- Department of Thoracic and Cardiovascular Surgery, Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
- *Correspondence: Qiang Shu, ; Jianguo Xu,
| | - Jianguo Xu
- Department of Thoracic and Cardiovascular Surgery, Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
- *Correspondence: Qiang Shu, ; Jianguo Xu,
| |
Collapse
|
39
|
Wang N, Yuan S, Fang C, Hu X, Zhang YS, Zhang LL, Zeng XT. Nanomaterials-Based Urinary Extracellular Vesicles Isolation and Detection for Non-invasive Auxiliary Diagnosis of Prostate Cancer. Front Med (Lausanne) 2022; 8:800889. [PMID: 35096890 PMCID: PMC8795515 DOI: 10.3389/fmed.2021.800889] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are natural nanoparticles secreted by cells in the body and released into the extracellular environment. They are associated with various physiological or pathological processes, and considered as carriers in intercellular information transmission, so that EVs can be used as an important marker of liquid biopsy for disease diagnosis and prognosis. EVs are widely present in various body fluids, among which, urine is easy to obtain in large amount through non-invasive methods and has a small dynamic range of proteins, so it is a good object for studying EVs. However, most of the current isolation and detection of EVs still use traditional methods, which are of low purity, time consuming, and poor efficiency; therefore, more efficient and highly selective techniques are urgently needed. Recently, inspired by the nanoscale of EVs, platforms based on nanomaterials have been innovatively explored for isolation and detection of EVs from body fluids. These newly developed nanotechnologies, with higher selectivity and sensitivity, greatly improve the precision of isolation target EVs from urine. This review focuses on the nanomaterials used in isolation and detection of urinary EVs, discusses the advantages and disadvantages between traditional methods and nanomaterials-based platforms, and presents urinary EV-derived biomarkers for prostate cancer (PCa) diagnosis. We aim to provide a reference for researchers who want to carry out studies about nanomaterial-based platforms to identify urinary EVs, and we hope to summarize the biomarkers in downstream analysis of urinary EVs for auxiliary diagnosis of PCa disease in detail.
Collapse
Affiliation(s)
- Na Wang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuai Yuan
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Cheng Fang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiao Hu
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu-Sen Zhang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ling-Ling Zhang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xian-Tao Zeng
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
40
|
Bala S, Babuta M, Catalano D, Saiju A, Szabo G. Alcohol Promotes Exosome Biogenesis and Release via Modulating Rabs and miR-192 Expression in Human Hepatocytes. Front Cell Dev Biol 2022; 9:787356. [PMID: 35096820 PMCID: PMC8795686 DOI: 10.3389/fcell.2021.787356] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are membrane vesicles released by various cell types into the extracellular space under different conditions including alcohol exposure. Exosomes are involved in intercellular communication and as mediators of various diseases. Alcohol use causes oxidative stress that promotes exosome secretion. Here, we elucidated the effects of alcohol on exosome biogenesis and secretion using human hepatocytes. We found that alcohol treatment induces the expression of genes involved in various steps of exosome formation. Expression of Rab proteins such as Rab1a, Rab5c, Rab6, Rab10, Rab11, Rab27a and Rab35 were increased at the mRNA level in primary human hepatocytes after alcohol treatment. Rab5, Rab6 and Rab11 showed significant induction in the livers of patients with alcohol-associated liver disease. Further, alcohol treatment also led to the induction of syntenin, vesicle-associated membrane proteins (VAMPs), and syntaxin that all play various roles in exosome biogenesis and secretion. VAMP3, VAMP5, VAPb, and syntaxin16 mRNA transcripts were increased in alcohol treated cells and in the livers of alcohol-associated liver disease (ALD) patients. Induction in these genes was associated with increases in exosome secretion in alcohol treated hepatocytes. We found that hepatocyte enriched miR-192 and miR-122 levels were significantly decreased in alcohol treated hepatocytes whereas their levels were increased in the cell-free supernatant. The primary transcripts of miR-192 and miR-122 were reduced in alcohol treated hepatocytes, suggesting alcohol partially affects these miRNAs at the transcriptional level. We found that miR-192 has putative binding sites for genes involved in exosome secretion. Inhibition of miR-192 in human hepatoma cells caused a significant increase in Rab27a, Rab35, syntaxin7 and syntaxin16 and a concurrent increase in exosome secretion, suggesting miR-192 regulates exosomes release in hepatocytes. Collectively, our results reveal that alcohol modulates Rabs, VAMPs and syntaxins directly and partly via miR-192 to induce exosome machinery and release.
Collapse
Affiliation(s)
- Shashi Bala
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Mrigya Babuta
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Donna Catalano
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Aman Saiju
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Gyongyi Szabo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
41
|
Zohrabi M, Dehghan Marvast L, Izadi M, Mousavi SA, Aflatoonian B. Potential of Mesenchymal Stem Cell-Derived Exosomes as a Novel Treatment for Female Infertility Caused by Bacterial Infections. Front Microbiol 2022; 12:785649. [PMID: 35154028 PMCID: PMC8834364 DOI: 10.3389/fmicb.2021.785649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/08/2021] [Indexed: 12/29/2022] Open
Abstract
Neisseria gonorrhoeae and Chlamydia trachomatis are the most common causes of bacterial sexually transmitted diseases (STDs) with complications in women, including pelvic inflammatory disease (PID), ectopic pregnancy, and infertility. The main concern with these infections is that 70% of infected women are asymptomatic and these infections ascend to the upper female reproductive tract (FRT). Primary infection in epithelial cells creates a cascade of events that leads to secretion of pro-inflammatory cytokines that stimulate innate immunity. Production of various cytokines is damaging to mucosal barriers, and tissue destruction leads to ciliated epithelial destruction that is associated with tubal scarring and ultimately provides the conditions for infertility. Mesenchymal stem cells (MSCs) are known as tissue specific stem cells with limited self-renewal capacity and the ability to repair damaged tissues in a variety of pathological conditions due to their multipotential differentiation capacity. Moreover, MSCs secrete exosomes that contain bioactive factors such as proteins, lipids, chemokines, enzymes, cytokines, and immunomodulatory factors which have therapeutic properties to enhance recovery activity and modulate immune responses. Experimental studies have shown that local and systemic treatment of MSC-derived exosomes (MSC-Exos) suppresses the destructive immune response due to the delivery of immunomodulatory proteins. Interestingly, some recent data have indicated that MSC-Exos display strong antimicrobial effects, by the secretion of antimicrobial peptides and proteins (AMPs), and increase bacterial clearance by enhancing the phagocytic activity of host immune cells. Considering MSC-Exos can secrete different bioactive factors that can modulate the immune system and prevent infection, exosome therapy is considered as a new therapeutic method in the treatment of inflammatory and microbial diseases. Here we intend to review the possible application of MSC-Exos in female reproductive system bacterial diseases.
Collapse
Affiliation(s)
- Marzieh Zohrabi
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Laleh Dehghan Marvast
- Andrology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahin Izadi
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Alireza Mousavi
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Behrouz Aflatoonian
- Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- *Correspondence: Behrouz Aflatoonian,
| |
Collapse
|
42
|
Lu L, Xu A, Gao F, Tian C, Wang H, Zhang J, Xie Y, Liu P, Liu S, Yang C, Ye Z, Wu X. Mesenchymal Stem Cell-Derived Exosomes as a Novel Strategy for the Treatment of Intervertebral Disc Degeneration. Front Cell Dev Biol 2022; 9:770510. [PMID: 35141231 PMCID: PMC8818990 DOI: 10.3389/fcell.2021.770510] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/31/2021] [Indexed: 12/15/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) has been reported to be the most prevalent contributor to low back pain, posing a significant strain on the healthcare systems on a global scale. Currently, there are no approved therapies available for the prevention of the progressive degeneration of intervertebral disc (IVD); however, emerging regenerative strategies that aim to restore the normal structure of the disc have been fundamentally promising. In the last decade, mesenchymal stem cells (MSCs) have received a significant deal of interest for the treatment of IVDD due to their differentiation potential, immunoregulatory capabilities, and capability to be cultured and regulated in a favorable environment. Recent investigations show that the pleiotropic impacts of MSCs are regulated by the production of soluble paracrine factors. Exosomes play an important role in regulating such effects. In this review, we have summarized the current treatments for disc degenerative diseases and their limitations and highlighted the therapeutic role and its underlying mechanism of MSC-derived exosomes in IVDD, as well as the possible future developments for exosomes.
Collapse
Affiliation(s)
- Lin Lu
- Department of Orthopaedics Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aoshuang Xu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Gao
- Department of Orthopaedics Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenjun Tian
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- The First Hospital of Lanzhou University, Lanzhou, China
| | - Honglin Wang
- Department of Orthopaedics Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiayao Zhang
- Department of Orthopaedics Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Xie
- Department of Orthopaedics Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengran Liu
- Department of Orthopaedics Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Songxiang Liu
- Department of Orthopaedics Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cao Yang
- Department of Orthopaedics Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhewei Ye
- Department of Orthopaedics Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zhewei Ye, ; Xinghuo Wu,
| | - Xinghuo Wu
- Department of Orthopaedics Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zhewei Ye, ; Xinghuo Wu,
| |
Collapse
|
43
|
Tian T, Li F, Chen R, Wang Z, Su X, Yang C. Therapeutic Potential of Exosomes Derived From circRNA_0002113 Lacking Mesenchymal Stem Cells in Myocardial Infarction. Front Cell Dev Biol 2022; 9:779524. [PMID: 35127703 PMCID: PMC8807507 DOI: 10.3389/fcell.2021.779524] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/23/2021] [Indexed: 12/27/2022] Open
Abstract
Exosomes are participated in the pathogenesis of cardiovascular diseases and can be secreted by mesenchymal stem cells (MSCs). However, the effects of circRNA, delivered by exosomes derived from MSCs, on myocardial injury remain unclear. Hence, this study aims to explore the therapeutic potential of exosomes derived from circRNA_0002113 lacking MSCs in the treatment of myocardial injury in vitro and in vivo. Our results reveal that exosomes derived from circRNA_0002113 lacking MSCs decreased cell apoptosis in anoxia-reoxygenation (A/R) model cells, and reduced myocardial injury by inhibiting nuclear translocation of RUNX1 in vitro and in vivo. Moreover, miR-188-3p, which targets RUNX1 in cardiomyocytes was also found to interact with circRNA_0002113. In conclusion, exosomes derived from circRNA_0002113 lacking MSCs could suppress myocardial infarction by sponging miR-188-3p to regulate RUNX1 nuclear translocation. The circRNA_0002113/miR-188-3p/RUNX1 axis mediated alleviation of apoptosis serves as a novel strategy to treat myocardial I/R injury.
Collapse
Affiliation(s)
- Tiantian Tian
- Hainan Yiling Medical Industry Development Company Ltd., Qionghai, China
- Center for Biological Science and Technology, Beijing Normal University, Zhuhai, China
| | - Feng Li
- Hainan Yiling Medical Industry Development Company Ltd., Qionghai, China
| | - Ruihua Chen
- Hainan Yiling Medical Industry Development Company Ltd., Qionghai, China
| | - Zhiwei Wang
- Hainan Yiling Medical Industry Development Company Ltd., Qionghai, China
| | - Xueming Su
- Hainan Yiling Medical Industry Development Company Ltd., Qionghai, China
- *Correspondence: Chao Yang, ; Xueming Su,
| | - Chao Yang
- Hainan Yiling Medical Industry Development Company Ltd., Qionghai, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, China
- *Correspondence: Chao Yang, ; Xueming Su,
| |
Collapse
|
44
|
Jafari N, Khoradmehr A, Moghiminasr R, Seyed Habashi M. Mesenchymal Stromal/Stem Cells-Derived Exosomes as an Antimicrobial Weapon for Orodental Infections. Front Microbiol 2022; 12:795682. [PMID: 35058912 PMCID: PMC8764367 DOI: 10.3389/fmicb.2021.795682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/08/2021] [Indexed: 11/14/2022] Open
Abstract
The oral cavity as the second most various microbial community in the body contains a broad spectrum of microorganisms which are known as the oral microbiome. The oral microbiome includes different types of microbes such as bacteria, fungi, viruses, and protozoa. Numerous factors can affect the equilibrium of the oral microbiome community which can eventually lead to orodental infectious diseases. Periodontitis, dental caries, oral leukoplakia, oral squamous cell carcinoma are some multifactorial infectious diseases in the oral cavity. In defending against infection, the immune system has an essential role. Depending on the speed and specificity of the reaction, immunity is divided into two different types which are named the innate and the adaptive responses but also there is much interaction between them. In these responses, different types of immune cells are present and recent evidence demonstrates that these cell types both within the innate and adaptive immune systems are capable of secreting some extracellular vesicles named exosomes which are involved in the response to infection. Exosomes are 30-150 nm lipid bilayer vesicles that consist of variant molecules, including proteins, lipids, and genetic materials and they have been associated with cell-to-cell communications. However, some kinds of exosomes can be effective on the pathogenicity of various microorganisms and promoting infections, and some other ones have antimicrobial and anti-infective functions in microbial diseases. These discrepancies in performance are due to the origin of the exosome. Exosomes can modulate the innate and specific immune responses of host cells by participating in antigen presentation for activation of immune cells and stimulating the release of inflammatory factors and the expression of immune molecules. Also, mesenchymal stromal/stem cells (MSCs)-derived exosomes participate in immunomodulation by different mechanisms. Ease of expansion and immunotherapeutic capabilities of MSCs, develop their applications in hundreds of clinical trials. Recently, it has been shown that cell-free therapies, like exosome therapies, by having more advantages than previous treatment methods are emerging as a promising strategy for the treatment of several diseases, in particular inflammatory conditions. In orodental infectious disease, exosomes can also play an important role by modulating immunoinflammatory responses. Therefore, MSCs-derived exosomes may have potential therapeutic effects to be a choice for controlling and treatment of orodental infectious diseases.
Collapse
Affiliation(s)
- Nazanin Jafari
- Department of Endodontics, School of Dentistry, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Arezoo Khoradmehr
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Reza Moghiminasr
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mina Seyed Habashi
- Department of Endodontics, School of Dentistry, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
45
|
Wu X, Jin S, Ding C, Wang Y, He D, Liu Y. Mesenchymal Stem Cell-Derived Exosome Therapy of Microbial Diseases: From Bench to Bed. Front Microbiol 2022; 12:804813. [PMID: 35046923 PMCID: PMC8761948 DOI: 10.3389/fmicb.2021.804813] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
Microbial diseases are a global health threat, leading to tremendous casualties and economic losses. The strategy to treat microbial diseases falls into two broad categories: pathogen-directed therapy (PDT) and host-directed therapy (HDT). As the typical PDT, antibiotics or antiviral drugs directly attack bacteria or viruses through discerning specific molecules. However, drug abuse could result in antimicrobial resistance and increase infectious disease morbidity. Recently, the exosome therapy, as a HDT, has attracted extensive attentions for its potential in limiting infectious complications and targeted drug delivery. Mesenchymal stem cell-derived exosomes (MSC-Exos) are the most broadly investigated. In this review, we mainly focus on the development and recent advances of the application of MSC-Exos on microbial diseases. The review starts with the difficulties and current strategies in antimicrobial treatments, followed by a comprehensive overview of exosomes in aspect of isolation, identification, contents, and applications. Then, the underlying mechanisms of the MSC-Exo therapy in microbial diseases are discussed in depth, mainly including immunomodulation, repression of excessive inflammation, and promotion of tissue regeneration. In addition, we highlight the latest progress in the clinical translation of the MSC-Exo therapy, by summarizing related clinical trials, routes of administration, and exosome modifications. This review will provide fundamental insights and future perspectives on MSC-Exo therapy in microbial diseases from bench to bedside.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan Liu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology and National Center of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology and Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health and NMPA Key Laboratory for Dental Materials, Beijing, China
| |
Collapse
|
46
|
Xiao Y, Zhang Y, Li Y, Peng N, Liu Q, Qiu D, Cho J, Borlongan CV, Yu G. Exosomes Derived From Mesenchymal Stem Cells Pretreated With Ischemic Rat Heart Extracts Promote Angiogenesis via the Delivery of DMBT1. Cell Transplant 2022; 31:9636897221102898. [PMID: 35726847 PMCID: PMC9218457 DOI: 10.1177/09636897221102898] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/26/2022] [Accepted: 05/09/2022] [Indexed: 12/02/2022] Open
Abstract
Mesenchymal stem cell-derived exosomes (MSC-Exos) have been shown to promote angiogenesis. Treating MSCs with ischemic rat brain extracts was sufficient to augment their benefits in stroke. However, no similar analyses of ischemic heart extracts have been performed to date. We aim to determine whether MSC-Exos derived from MSCs pretreated with ischemic rat heart extract were able to promote angiogenesis and to clarify underlying mechanisms. ELISA (enzyme-linked immunosorbent assay) of heart extracts revealed a significant increase of vascular endothelial growth factor (VEGF) at 24 h post-MI (myocardial infarction) modeling, and time-dependent decreases in hypoxia inducible factor-1α (HIF-1α). MTT and wound healing assays revealed human umbilical vein endothelial cells (HUVECs) migration and proliferation increased following MSCE-Exo treatment (exosomes derived from MSC pretreated with ischemic heart extracts of 24 h post-MI) relative to MSCN-Exo treatment (exosomes derived from MSC pretreated with normal heart extracts). Proteomic analyses of MSCE-Exo and MSCN-Exo were conducted to screen for cargo proteins promoting angiogenesis. Result revealed several angiogenesis-related proteins were upregulated in MSCE-Exo, including DMBT1 (deleted in malignant brain tumors 1). When DMBT1 was silenced in MSCs, HUVECs with MSCDMBT1 RNAi-Exo treatment exhibited impaired proliferative and migratory activity and reductions of DMBT1, p-Akt, β-catenin, and VEGF. To explore how ischemic heart extracts took effects, ELISA was conducted showing a significant increase of IL-22 at 24 h post-MI modeling. P-STAT3, IL22RA1, DMBT1, and VEGF proteins were increased in MSCE relative to MSCN, and VEGF and DMBT1 were increased in MSCE-Exos. Together, these suggest that IL-22 upregulation in ischemic heart extracts can increase DMBT1 in MSCs. Exosomes derived from those MSCs deliver DMBT1 to HUVECs, thereby enhancing their migratory and proliferative activity.
Collapse
Affiliation(s)
- Yi Xiao
- Division of Cardiovascular, Xiangya Hospital, Central South University, Changsha, China
| | - Ye Zhang
- Division of Cardiovascular, Xiangya Hospital, Central South University, Changsha, China
| | - Yuzhang Li
- Division of Cardiovascular, Xiangya Hospital, Central South University, Changsha, China
| | - Nanyin Peng
- Division of Cardiovascular, Xiangya Hospital, Central South University, Changsha, China
| | - Qin Liu
- Division of Cardiovascular, Xiangya Hospital, Central South University, Changsha, China
| | - Danyang Qiu
- Division of Cardiovascular, Xiangya Hospital, Central South University, Changsha, China
| | - Justin Cho
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Cesario V. Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Guolong Yu
- Division of Cardiovascular, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
47
|
Kang SY, Lee EJ, Byun JW, Han D, Choi Y, Hwang DW, Lee DS. Extracellular Vesicles Induce an Aggressive Phenotype in Luminal Breast Cancer Cells Via PKM2 Phosphorylation. Front Oncol 2021; 11:785450. [PMID: 34966685 PMCID: PMC8710663 DOI: 10.3389/fonc.2021.785450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/24/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Aerobic glycolysis is a hallmark of glucose metabolism in cancer. Previous studies have suggested that cancer cell-derived extracellular vesicles (EVs) can modulate glucose metabolism in adjacent cells and promote disease progression. We hypothesized that EVs originating from cancer cells can modulate glucose metabolism in recipient cancer cells to induce cell proliferation and an aggressive cancer phenotype. METHODS Two breast cancer cell lines with different levels of glycolytic activity, MDA-MB-231 cells of the claudin-low subtype and MCF7 cells of the luminal type, were selected and cocultured as the originating and recipient cells, respectively, using an indirect coculture system, such as a Transwell system or a microfluidic system. The [18F]fluorodeoxyglucose (FDG) uptake by the recipient MCF7 cells was assessed before and after coculture with MDA-MB-231 cells. Proteomic and transcriptomic analyses were performed to investigate the changes in gene expression patterns in the recipient MCF7 cells and MDA-MB-231 cell-derived EVs. RESULTS FDG uptake by the recipient MCF7 cells significantly increased after coculture with MDA-MB-231 cells. In addition, phosphorylation of PKM2 at tyrosine-105 and serine-37, which is necessary for tumorigenesis and aerobic glycolysis, was highly activated in cocultured MCF7 cells. Proteomic profiling revealed the proliferation and dedifferentiation of MCF7 cells following coculture with MDA-MB-231 cells. Transcriptomic analysis demonstrated an increase in glycolysis in cocultured MCF7 cells, and the component analysis of glycolysis-related genes revealed that the second most abundant component after the cytoplasm was extracellular exosomes. In addition, proteomic analysis of EVs showed that the key proteins capable of phosphorylating PKM2 were present as cargo inside MDA-MB-231 cell-derived EVs. CONCLUSIONS The phenomena observed in this study suggest that cancer cells can induce a phenotype transition of other subtypes to an aggressive phenotype to consequently activate glucose metabolism via EVs. Therefore, this study could serve as a cornerstone for further research on interactions between cancer cells.
Collapse
Affiliation(s)
- Seo Young Kang
- Department of Nuclear Medicine, Ewha Womans University College of Medicine, Seoul, South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Eun Ji Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Jung Woo Byun
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea
| | - Dohyun Han
- Transdisciplinary Department of Medicine & Advanced Technology, Seoul National University Hospital, Seoul, South Korea
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Yoori Choi
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Do Won Hwang
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
- THERABEST, Co. Inc., Seoul, South Korea
| | - Dong Soo Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
48
|
Xin W, Qiang S, Jianing D, Jiaming L, Fangqi L, Bin C, Yuanyuan C, Guowang Z, Jianguang X, Xiaofeng L. Human Bone Marrow Mesenchymal Stem Cell-Derived Exosomes Attenuate Blood-Spinal Cord Barrier Disruption via the TIMP2/MMP Pathway After Acute Spinal Cord Injury. Mol Neurobiol 2021; 58:6490-6504. [PMID: 34554399 DOI: 10.1007/s12035-021-02565-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/13/2021] [Indexed: 11/24/2022]
Abstract
After spinal cord injury (SCI), destruction of the blood-spinal cord barrier (BSCB) results in infiltration of blood cells, such as neutrophils and macrophages, leading to permanent neurological dysfunction. Previous studies have shown that human bone marrow mesenchymal stem cell (BMSC)-derived exosomes have a beneficial neuroprotective effect in SCI models. However, whether BMSC-Exos contribute to the integrity of the BSCB has not been clarified. The purpose of this study was to investigate the mechanism of BMSC-Exo-induced changes in the permeability of the BSCB after SCI. Here, we first used BMSC-Exos to treat an SCI rat model, showing that BMSC-Exos can inhibit BSCB permeability damage and improve spontaneous repair. Next, we found that tissue inhibitors of matrix metalloproteinase 2 (TIMP2) have been shown to play an important role in the function of BMSC-Exos by inhibiting the matrix metalloproteinase (MMP) pathway, thereby reducing the reduction of cell junction proteins. Therefore, we constructed siTIMP2 to knock out TIMP2 in BMSC-Exos, which caused the activity of BMSC-Exos to be significantly weakened. Finally, we constructed an in vitro model of BSCB with HBMECs and verified that TIMP2 in BMSC-Exos in vitro can also alleviate BSCB damage. This proof-of-principle study demonstrates that BMSC-Exos can preserve the integrity of the BSCB and improve functional recovery after SCI through the TIMP2/MMP signaling pathway.
Collapse
Affiliation(s)
- Wang Xin
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Shi Qiang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Ding Jianing
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Liang Jiaming
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Lin Fangqi
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Cai Bin
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Chen Yuanyuan
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Zhang Guowang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Xu Jianguang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Lian Xiaofeng
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
49
|
Keshavarz Alikhani H, Shokoohian B, Rezasoltani S, Hossein-khannazer N, Yadegar A, Hassan M, Vosough M. Application of Stem Cell-Derived Extracellular Vesicles as an Innovative Theranostics in Microbial Diseases. Front Microbiol 2021; 12:785856. [PMID: 34917064 PMCID: PMC8669997 DOI: 10.3389/fmicb.2021.785856] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs), as nano-/micro-scale vehicles, are membranous particles containing various cargoes including peptides, proteins, different types of RNAs and other nucleic acids, and lipids. These vesicles are produced by all cell types, in which stem cells are a potent source for them. Stem cell-derived EVs could be promising platforms for treatment of infectious diseases and early diagnosis. Infectious diseases are responsible for more than 11 million deaths annually. Highly transmissible nature of some microbes, such as newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), drives researcher's interest to set up different strategies to develop novel therapeutic strategies. Recently, EVs-based diagnostic and therapeutic approaches have been launched and gaining momentum very fast. The efficiency of stem cell-derived EVs on treatment of clinical complications of different viruses and bacteria, such as SARS-CoV-2, hepatitis B virus (HBV), hepatitis C virus (HCV), human immunodeficiency virus (HIV), Staphylococcus aureus, Escherichia coli has been demonstrated. On the other hand, microbial pathogens are able to incorporate their components into their EVs. The microbe-derived EVs have different physiological and pathological impacts on the other organisms. In this review, we briefly discussed biogenesis and the fate of EVs. Then, EV-based therapy was described and recent developments in understanding the potential application of stem cell-derived EVs on pathogenic microorganisms were recapitulated. Furthermore, the mechanisms by which EVs were exploited to fight against infectious diseases were highlighted. Finally, the deriver challenges in translation of stem cell-derived EVs into the clinical arena were explored.
Collapse
Affiliation(s)
- Hani Keshavarz Alikhani
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran, Iran
| | - Bahare Shokoohian
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran, Iran
| | - Sama Rezasoltani
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nikoo Hossein-khannazer
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
50
|
Huang Y, Xu M, Jing C, Wu X, Chen X, Zhang W. Extracellular vesicle-derived miR-320a targets ZC3H12B to inhibit tumorigenesis, invasion, and angiogenesis in ovarian cancer. Discov Oncol 2021; 12:51. [PMID: 35201481 PMCID: PMC8777536 DOI: 10.1007/s12672-021-00437-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 09/22/2021] [Indexed: 12/17/2022] Open
Abstract
Extracellular vesicles (EVs) play crucial roles in intercellular communication. miRNAs derived from EVs emerge as promising diagnostic indicators and therapeutic targets in a variety of malignancies. Tremendous studies have revealed the function of miRNAs derived from EVs in tumorigenesis, metastasis and other aspects. The mechanism of action of EV-derived miRNAs, however, in ovarian cancer remains largely unknown. In this study, EVs were enriched from the ovarian cancer cell lines. EVs as a whole could promote cell proliferation, invasion and new vasculature formation. However, the down-regulated EV-derived miR-320a was demonstrated to potentially suppress tumorigenesis, metastasis and angiogenesis. Moreover, EV-derived miR-320a has been proved to directly regulate a previously unknown target, ZC3H12B. An unreported role of ZC3H12B in promoting ovarian cancer cell proliferation has been elucidated and miR-320a could mediate the expression of ZC3H12B, thereby inhibiting the downstream response. As for the practical clinic values, lower expression of EV-derived miR-320a correlates with shorter survival period, indicating that EV-derived miR-320a may also serve as a prognostic biomarker in ovarian cancer. This research provides new insight into the molecular mechanism of EV-derived miR-320a in ovarian cancer and may provide new therapeutic and prognostic strategies for ovarian cancer treatment.
Collapse
Affiliation(s)
- Yan Huang
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, 270 Dong‑an Road, Shanghai, 200032, China
| | - Midie Xu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Chuyu Jing
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, 270 Dong‑an Road, Shanghai, 200032, China
| | - Xiaohua Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, 270 Dong‑an Road, Shanghai, 200032, China
| | - Xiaojun Chen
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, 270 Dong‑an Road, Shanghai, 200032, China.
| | - Wei Zhang
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, 270 Dong‑an Road, Shanghai, 200032, China.
| |
Collapse
|