1
|
Xu H, Qu X, Wang X. CircPCNXL2 promotes preeclampsia progression by suppressing trophoblast cell proliferation and invasion via miR-487a-3p/interferon regulatory factor 2 axis. J Hypertens 2024:00004872-990000000-00575. [PMID: 39466687 DOI: 10.1097/hjh.0000000000003887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/19/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Preeclampsia (PE) has culminated in maternal and perinatal sickness and death across the world, affecting approximately 4.6% of pregnancies. Circular RNAs (circRNAs) have been linked to the biology of numerous pathologies, including PE. Here, we investigated the functional role of circPCNXL2 in the progression of PE. METHODS We employed the GEO database to get the expression profile of circPCNXL2 in patients with PE. This was followed by the detection of the expression of circPCNXL2 and miR-326 by qRT-PCR. The role of circPCNXL2 on trophoblast cell proliferation, migration, and invasion was confirmed with cell viability assays, the transwell assay, and the colony formation assay. Further, we employed dual luciferase, FISH, RNA pull-down assay and Western blot analysis to determine the interaction between the expression of circPCNXL2, miR-487a-3p, and IRF2. RESULT Findings from this study revealed that proliferation and migration of trophoblast cells were significantly increased in the HTR-8/SVneo cells after silencing circPCNXL2. Additionally, knockdown of circPCNXL2 remarkably increased miR-487a-3p expression, while IRF2 expression was remarkably reduced (P < 0.05), indicating the presence of complementary binding sequence on miR-487a-3p with which they sequester circPCNXL2. Rescue experiments revealed that interaction occurs between circPCNXL2, miR-487a-3p, and the IRF2 protein, indicating that circPCNXL2 expression elicits suppression of migration and proliferation of trophoblast cells via the miR-487a-3p/IRF2 pathway. CONCLUSIONS We demonstrated that circPCNXL2 upregulation promotes pre-eclampsia by inhibiting proliferation and migration of trophoblast cells via the miR-487a-3p/IRF2 pathway or axis.
Collapse
Affiliation(s)
- Hua Xu
- Department of Obstetrics and Gynecology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | | | | |
Collapse
|
2
|
Wang L, Zhu Y, Zhang N, Xian Y, Tang Y, Ye J, Reza F, He G, Wen X, Jiang X. The multiple roles of interferon regulatory factor family in health and disease. Signal Transduct Target Ther 2024; 9:282. [PMID: 39384770 PMCID: PMC11486635 DOI: 10.1038/s41392-024-01980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024] Open
Abstract
Interferon Regulatory Factors (IRFs), a family of transcription factors, profoundly influence the immune system, impacting both physiological and pathological processes. This review explores the diverse functions of nine mammalian IRF members, each featuring conserved domains essential for interactions with other transcription factors and cofactors. These interactions allow IRFs to modulate a broad spectrum of physiological processes, encompassing host defense, immune response, and cell development. Conversely, their pivotal role in immune regulation implicates them in the pathophysiology of various diseases, such as infectious diseases, autoimmune disorders, metabolic diseases, and cancers. In this context, IRFs display a dichotomous nature, functioning as both tumor suppressors and promoters, contingent upon the specific disease milieu. Post-translational modifications of IRFs, including phosphorylation and ubiquitination, play a crucial role in modulating their function, stability, and activation. As prospective biomarkers and therapeutic targets, IRFs present promising opportunities for disease intervention. Further research is needed to elucidate the precise mechanisms governing IRF regulation, potentially pioneering innovative therapeutic strategies, particularly in cancer treatment, where the equilibrium of IRF activities is of paramount importance.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanghui Zhu
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yali Xian
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Tang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Ye
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fekrazad Reza
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gu He
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Wen
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xian Jiang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Ikhlef L, Ratti N, Durand S, Formento R, Daverat H, Boutaud M, Guillou C, Dmytruk N, Gachard N, Cosette P, Jauberteau MO, Gallet PF. Extracellular vesicles from type-2 macrophages increase the survival of chronic lymphocytic leukemia cells ex vivo. Cancer Gene Ther 2024; 31:1164-1176. [PMID: 38918490 PMCID: PMC11327105 DOI: 10.1038/s41417-024-00802-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
The resistance of Chronic Lymphocytic Leukemia (CLL) B-cells to cell death is mainly attributed to interactions within their microenvironment, where they interact with various types of cells. Within this microenvironment, CLL-B-cells produce and bind cytokines, growth factors, and extracellular vesicles (EVs). In the present study, EVs purified from nurse-like cells and M2-polarized THP1 cell (M2-THP1) cultures were added to CLL-B-cells cultures. EVs were rapidly internalized by B-cells, leading to a decrease in apoptosis (P = 0.0162 and 0.0469, respectively) and an increased proliferation (P = 0.0335 and 0.0109). Additionally, they induced an increase in the resistance of CLL-B-cells to Ibrutinib, the Bruton kinase inhibitor in vitro (P = 0.0344). A transcriptomic analysis showed an increase in the expression of anti-apoptotic gene BCL-2 (P = 0.0286) but not MCL-1 and an increase in the expression of proliferation-inducing gene APRIL (P = 0.0286) following treatment with EVs. Meanwhile, an analysis of apoptotic protein markers revealed increased amounts of IGFBP-2 (P = 0.0338), CD40 (P = 0.0338), p53 (P = 0.0219) and BCL-2 (P = 0.0338). Finally, exploration of EVs protein content by mass spectrometry revealed they carry various proteins involved in known oncogenic pathways and the RNAseq analysis of CLL-B-cells treated or not with NLCs EVs show various differentially expressed genes.
Collapse
Affiliation(s)
- Léa Ikhlef
- University of Limoges, UMR INSERM 1308, CAPTuR, Limoges, France
| | - Nina Ratti
- University of Limoges, UMR INSERM 1308, CAPTuR, Limoges, France
| | | | - Rémy Formento
- University of Limoges, UMR INSERM 1308, CAPTuR, Limoges, France
| | - Héloïse Daverat
- University of Limoges, UMR INSERM 1308, CAPTuR, Limoges, France
| | - Marie Boutaud
- University of Limoges, UMR INSERM 1308, CAPTuR, Limoges, France
| | - Clément Guillou
- PISSARO Proteomics Platform, Mont-Saint-Aignan Campus, Mont-Saint-Aignan, France
| | - Natalya Dmytruk
- Department of Clinical Hematology, University Hospital of Limoges, Limoges, France
| | - Nathalie Gachard
- Hematology laboratory, UMR CNRS7276/ INSERM 1262, University Hospital of Limoges, Limoges, France
| | - Pascal Cosette
- Polymers, Biopolymers, Surface Laboratory, UMR 6270 CNRS, Normandie University, UNIROUEN, INSA Rouen, Mont-Saint-Aignan, France
- HeRacLeS-PISSARO, INSERM US 51, CNRS UAR 2026, Normandie University, Mont-Saint-Aignan, France
| | - Marie-Odile Jauberteau
- University of Limoges, UMR INSERM 1308, CAPTuR, Limoges, France
- Immunology laboratory, University Hospital of Limoges, Limoges, France
| | | |
Collapse
|
4
|
Jiao B, Zhang Q, Jin C, Yu H, Wu Q. IRF4 Participates in Pulmonary Fibrosis Induced by Silica Particles through Regulating Macrophage Polarization and Fibroblast Activation. Inflammation 2024; 47:45-59. [PMID: 37938462 DOI: 10.1007/s10753-023-01890-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/16/2023] [Accepted: 08/15/2023] [Indexed: 11/09/2023]
Abstract
Long-term exposure to silica dust can cause silicosis, which is characterized by chronic progressive inflammatory injury, fibroblast activation, and the deposition of extracellular matrix. IRF4 is involved in immune response. However, the potential regulation of IRF4 in silicosis and pulmonary fibrosis remains largely unexplored. In this study, RNA-seq analysis identified the upregulated expression of IRF4 in fibrotic lung tissues of mice exposed to silica particles. And we verified the increased expression of IRF4 in SiO2-treated macrophages and TGF-β1-treated fibroblasts. We further found that the down-regulation of IRF4 impeded the macrophage polarization and the release of pro-fibrotic factors. Moreover, the down-regulation of IRF4 alleviated the migration, invasion, and the expression of fibrotic molecules in fibroblasts. Using ChIP-qPCR assay, we confirmed that IRF4 regulated the transcriptional activity of the IL-17A promoter, thus stimulated fibroblast activation, migration and invasion. In vivo experiment, the AAV-siIRF4 was designed to interfere with the expression of IRF4 in lung tissues of mice exposed to silica particles. Whole blood, bronchoalveolar lavage fluid and lung tissues were obtained from mice at 7, 14, 28 and 56 days after silica exposure. The results showed that the leukocyte content and inflammatory factors reached a peak at day 14 and remained peak for a long time after IRF4 knockdown. Furthermore, the fibrotic responses of mouse lung tissues were alleviated after IRF4 knockdown. Our study explored the important roles of IRF4 in inflammatory and fibrotic responses, which provided a new target for the treatment of silicosis and pulmonary fibrosis.
Collapse
Affiliation(s)
- Biyang Jiao
- School of Public Health, Xuzhou Medical University, Xuzhou, 221004, China
| | - Qianyi Zhang
- School of Public Health, Xuzhou Medical University, Xuzhou, 221004, China
| | - Chunmeng Jin
- School of Public Health, Xuzhou Medical University, Xuzhou, 221004, China
| | - Hongmin Yu
- School of Public Health, Xuzhou Medical University, Xuzhou, 221004, China
| | - Qiuyun Wu
- School of Public Health, Xuzhou Medical University, Xuzhou, 221004, China.
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
5
|
Sun S, Zhi Z, Su Y, Sun J, Li Q. A CD8+ T cell-associated immune gene panel for prediction of the prognosis and immunotherapeutic effect of melanoma. Front Immunol 2022; 13:1039565. [PMID: 36341357 PMCID: PMC9633226 DOI: 10.3389/fimmu.2022.1039565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/05/2022] [Indexed: 11/25/2022] Open
Abstract
Background Skin cutaneous melanoma (SKCM) is the most frequently encountered tumor of the skin. Immunotherapy has opened a new horizon in melanoma treatment. We aimed to construct a CD8+ T cell-associated immune gene prognostic model (CDIGPM) for SKCM and unravel the immunologic features and the benefits of immunotherapy in CDIGPM-defined SKCM groups. Method Single-cell SKCM transcriptomes were utilized in conjunction with immune genes for the screening of CD8+ T cell-associated immune genes (CDIGs) for succeeding assessment. Thereafter, through protein-protein interaction (PPI) networks analysis, univariate COX analysis, and multivariate Cox analysis, six genes (MX1, RSAD2, IRF2, GBP2, IFITM1, and OAS2) were identified to construct a CDIGPM. We detected cell proliferation of SKCM cells transfected with IRF2 siRNA. Then, we analyzed the immunologic features and the benefits of immunotherapy in CDIGPM-defined groups. Results The overall survival (OS) was much better in low-CDIGPM group versus high CDIGPM group in TCGA dataset and GSE65904 dataset. On the whole, the results unfolded that a low CDIGPM showed relevance to immune response-correlated pathways, high expressions of CTLA4 and PD-L1, a high infiltration rate of CD8+ T cells, and more benefits from immunotherapy. Conclusion CDIGPM is an good model to predict the prognosis, the potential immune escape from immunotherapy for SKCM, and define immunologic and molecular features.
Collapse
Affiliation(s)
- Shanwen Sun
- Department of Medical Oncology, The Affiliated Huai’an Hospital of Xuzhou Medical University and The Second People’s Hospital of Huai’an, Huaian, China
| | - Zhengke Zhi
- Department of Pediatric Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Su
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Jingxian Sun
- Hypertension Research Institute of Geriatric Hospital of Nanjing Medical University, Jiangsu Province Official Hospital, Nanjing, China
- *Correspondence: Qianjun Li, ; Jingxian Sun,
| | - Qianjun Li
- Department of Gastroenterology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, China
- *Correspondence: Qianjun Li, ; Jingxian Sun,
| |
Collapse
|
6
|
Guo L, Liu D. Identification of RFX5 as prognostic biomarker and associated with immune infiltration in stomach adenocarcinoma. Eur J Med Res 2022; 27:164. [PMID: 36045400 PMCID: PMC9429337 DOI: 10.1186/s40001-022-00794-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/16/2022] [Indexed: 11/10/2022] Open
Abstract
Background Regulatory factor X (RFX) gene family is a series of encodes transcription factors with a highly conserved DNA binding domain. RFXs played a vital role in the development and progression of cancer. However, the significance of RFXs in stomach adenocarcinoma (STAD) has not been fully clarified. Methods Online bioinformatics tools such as GSCALite, Kaplan–Meier Plotter, TIMER, LinkedOmics were used to explore the immunomodulatory function and clinical value of RFXs in STAD. Results The mRNA level of RFX1, RFX3, RFX4, RFX5, RFX7 and RFX8 was significantly elevated in STAD tissue versus adjacent normal tissue. We also summarize the copy number variation, single nucleotide variants and drug sensitivity of RFXs in STAD. Prognostic analysis indicated that STAD patients with high RFX5 and RFX7 expression had a better overall survival, first progression, and post-progression survival. Moreover, RFX5 expression was significantly associated with the abundance of immune cells, the expression of immune biomarkers and tumor mutational burden score in STAD. Functional enrichment analysis revealed that RFX5 and its related genes were mainly involved in T cell activation, antigen receptor-mediated signaling pathway, cell adhesion molecules, and Th17 cell differentiation. Validation study further verified the expression and prognosis of RFX5 in STAD. Further univariate and multivariate analyses suggested that pathological stage and RFX5 could be a potential independent prognostic factor for STAD. Conclusions RFX5 was a candidate prognostic biomarker and associated with immune infiltration in STAD. Supplementary Information The online version contains supplementary material available at 10.1186/s40001-022-00794-w.
Collapse
Affiliation(s)
- Lili Guo
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Dingsheng Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
7
|
Coley AB, DeMeis JD, Chaudhary NY, Borchert GM. Small Nucleolar Derived RNAs as Regulators of Human Cancer. Biomedicines 2022; 10:1819. [PMID: 36009366 PMCID: PMC9404758 DOI: 10.3390/biomedicines10081819] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022] Open
Abstract
In the past decade, RNA fragments derived from full-length small nucleolar RNAs (snoRNAs) have been shown to be specifically excised and functional. These sno-derived RNAs (sdRNAs) have been implicated as gene regulators in a multitude of cancers, controlling a variety of genes post-transcriptionally via association with the RNA-induced silencing complex (RISC). In this review, we have summarized the literature connecting sdRNAs to cancer gene regulation. SdRNAs possess miRNA-like functions and are able to fill the role of tumor-suppressing or tumor-promoting RNAs in a tissue context-dependent manner. Indeed, there are many miRNAs that are actually derived from snoRNA transcripts, meaning that they are truly sdRNAs and as such are included in this review. As sdRNAs are frequently discarded from ncRNA analyses, we emphasize that sdRNAs are functionally relevant gene regulators and likely represent an overlooked subclass of miRNAs. Based on the evidence provided by the papers reviewed here, we propose that sdRNAs deserve more extensive study to better understand their underlying biology and to identify previously overlooked biomarkers and therapeutic targets for a multitude of human cancers.
Collapse
Affiliation(s)
- Alexander Bishop Coley
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (A.B.C.); (J.D.D.); (N.Y.C.)
| | - Jeffrey David DeMeis
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (A.B.C.); (J.D.D.); (N.Y.C.)
| | - Neil Yash Chaudhary
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (A.B.C.); (J.D.D.); (N.Y.C.)
| | - Glen Mark Borchert
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (A.B.C.); (J.D.D.); (N.Y.C.)
- School of Computing, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|