1
|
Dai Y, Zhao S, Chen H, Yu W, Fu Z, Cui Y, Xie H. RNA methylation and breast cancer: insights into m6A, m7G and m5C. Mol Biol Rep 2024; 52:27. [PMID: 39611867 DOI: 10.1007/s11033-024-10138-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Breast cancer remains the most commonly diagnosed cancer in female worldwide, marked by its molecular diversity and complex subtypes. Despite progress in targeted therapies, tumor heterogeneity and treatment resistance continue to present major challenges. Recent studies emphasize the crucial role of RNA modifications in cancer biology, with nearly 200 distinct modifications identified. Among these, methylation is particularly significant, with methylation-related factors emerging as key regulators of RNA metabolism, influencing cancer progression, metastasis, and treatment resistance. This review focuses on the roles of key RNA methylation in breast cancer, particularly N6-methyladenosine (m6A), N7-methylguanosine (m7G), 5-methylcytosine (m5C), N1-methyladenosine (m1A), and N3-methylcytidine (m3C). We examine the functions of m6A "writers" like METTL3 and METTL14, and "readers" such as the YTH domain family in modulating tumor behavior. Dysregulation of m6A "erasers" like FTO and ALKBH5 are noticed too, highlighting their impact on cancer stem cell phenotypes, chemoresistance, and immune evasion. Additionally, the role of m7G modifications in mRNA stability and translation, facilitated by METTL1/WDR4 and RNMT, is discussed as a potential therapeutic target. The involvement of m5C, m1A, and m3C modifications, particularly those mediated by NSUN2 and NSUN6, in breast cancer tumorigenesis and prognosis is also reviewed. Despite coding RNAs, the interplay between these RNA methylations and non-coding RNAs, such as lncRNAs and miRNAs, is explored, shedding light on their roles in cancer cell proliferation, invasion, and immune response modulation. This review highlights the potential of RNA methylations as novel therapeutic targets in breast cancer, offering insights for precision medicine and improved patient outcomes.
Collapse
Affiliation(s)
- Yuhan Dai
- Department of breast surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Shuhan Zhao
- Department of breast surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Huilin Chen
- Department of breast surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Wenxin Yu
- Department of breast surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Ziyi Fu
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Yangyang Cui
- Department of breast surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| | - Hui Xie
- Department of breast surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
2
|
Meng Y, Meng Y, Zheng H, Huo J, Li P, Shan Y, He J. METTL2B m3C RNA transferase: oncogenic role in ovarian cancer progression via regulation of the mTOR/AKT pathway and its link to the tumor immune microenvironment. BMC Cancer 2024; 24:1455. [PMID: 39592997 PMCID: PMC11600782 DOI: 10.1186/s12885-024-13225-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Aberrant expression of N3-methylcytidine methyltransferase 2B (METTL2B) has been observed in various human malignancies, including those of the prostate, liver, breasts, and bladder. However, its role in ovarian cancer (OC) remains largely unexplored. This research preliminarily investigated METTL2B expression in OC and elucidated the associated molecular mechanisms. METHODS We utilized three publicly available cancer-related databases (Genotype-Tissue Expression, Gene Expression Omnibus, and The Cancer Genome Atlas) to identify gene signatures in patients with OC and normal individuals with a specific focus on METTL2B. The role of METTL2B in OC was evaluated using patient survival data, and its impact on oncogenic behaviors in both cell and animal models, including growth potential, migration, invasion, and the tumor microenvironment, was examined. This assessment was conducted using bioinformatics tools such as Gene Set Cancer Analysis, GeneMANIA, and Tumor Immune Single-cell Hub 2. Additionally, the association between drug sensitivity and METTL2B expression was analyzed using CellMiner. RESULTS METTL2B expression was significantly elevated in OC, highlighting its potential clinical value in the diagnosis and prognosis of OC. Patients with lower METTL2B expression exhibited favorable survival. Furthermore, METTL2B knockdown significantly disrupted oncogenic behaviors in OC cell lines by suppressing the mTOR/AKT signaling pathway. Additionally, bioinformatics-based Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses suggested a close correlation between METTL2B and immune responses. CONCLUSIONS Our research confirmed the upregulation of METTL2B in OC, suggesting its oncogenic function. However, METTL2B expression was negatively correlated with the infiltration scores of multiple immune cells, including cytotoxic cells and T cells, indicating its complex role in the tumor immune microenvironment. These findings highlight the significant clinical value of METTL2B in the diagnosis and prognosis of OC.
Collapse
Affiliation(s)
- Yizi Meng
- Department of Obstetrics, Obstetrics and Gynecology Center, The First Hospital of Jilin University, No. 1 Xinmin Road, Changchun, Jilin, 130000, China
| | - Yimei Meng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, No 246, Xuefu Road, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Hui Zheng
- Department of Obstetrics, Obstetrics and Gynecology Center, The First Hospital of Jilin University, No. 1 Xinmin Road, Changchun, Jilin, 130000, China
| | - Jinru Huo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, No 246, Xuefu Road, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Peiling Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, No 246, Xuefu Road, Nangang District, Harbin, 150001, Heilongjiang, China.
| | - Yanhong Shan
- Department of Obstetrics, Obstetrics and Gynecology Center, The First Hospital of Jilin University, No. 1 Xinmin Road, Changchun, Jilin, 130000, China.
| | - Jin He
- Department of Obstetrics, Obstetrics and Gynecology Center, The First Hospital of Jilin University, No. 1 Xinmin Road, Changchun, Jilin, 130000, China.
| |
Collapse
|
3
|
Tan L, Zhu C, Zhang X, Fu J, Huang T, Zhang W, Zhang W. Mitochondrial RNA methylation in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189213. [PMID: 39521292 DOI: 10.1016/j.bbcan.2024.189213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/08/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Mitochondria have a complete and independent genetic system with necessary biological energy for cancer occurrence and persistence. Mitochondrial RNA (mt-RNA) methylation, as a frontier in epigenetics, has linked to cancer progression with growing evidences. This review has comprehensively summarized detailed mechanisms of mt-RNA methylation in regulating cancer proliferation, metastasis, and immune infiltration from the mt-RNA methylation sites, biological significance, and its methyltransferases. The mt-RNA methylation also plays a very significant role via epigenetic crosstalk between nucleus and mitochondria. Importantly, the unique structures and functional characteristics of mt-RNA methyltransferases and the potential targeting treatment drugs for cancer are also analyzed. Revealing human mt-RNA methylation regulatory system and the relationship with cancer will contribute to identifying potential biomarkers and therapeutic targets for precise prevention, detection, intervention and treatment in the future.
Collapse
Affiliation(s)
- Luyi Tan
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Chenyu Zhu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Xinyu Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Jiaqi Fu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Tingting Huang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Wenji Zhang
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, PR China.
| | - Wenjuan Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China.
| |
Collapse
|
4
|
Tang L, Tian H, Min Q, You H, Yin M, Yang L, Zhao Y, Wu X, Li M, Du F, Chen Y, Deng S, Li X, Chen M, Gu L, Sun Y, Xiao Z, Li W, Shen J. Decoding the epitranscriptome: a new frontier for cancer therapy and drug resistance. Cell Commun Signal 2024; 22:513. [PMID: 39434167 PMCID: PMC11492518 DOI: 10.1186/s12964-024-01854-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/25/2024] [Indexed: 10/23/2024] Open
Abstract
As the role of RNA modification in gene expression regulation and human diseases, the "epitranscriptome" has been shown to be an important player in regulating many physiological and pathological processes. Meanwhile, the phenomenon of cancer drug resistance is becoming more and more frequent, especially in the case of cancer chemotherapy resistance. In recent years, research on relationship between post-transcriptional modification and cancer including drug resistance has become a hot topic, especially the methylation of the sixth nitrogen site of RNA adenosine-m6A (N6-methyladenosine). m6A modification is the most common post-transcriptional modification of eukaryotic mRNA, accounting for 80% of RNA methylation modifications. At the same time, several other modifications of RNA, such as N1-methyladenosine (m1A), 5-methylcytosine (m5C), 3-methylcytosine (m3C), pseudouridine (Ψ) and N7-methylguanosine (m7G) have also been demonstrated to be involved in cancer and drug resistance. This review mainly discusses the research progress of RNA modifications in the field of cancer and drug resistance and targeting of m6A regulators by small molecule modulators, providing reference for future study and development of combination therapy to reverse cancer drug resistance.
Collapse
Affiliation(s)
- Lu Tang
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Scientific Research and Experimental Training Center, Sichuan College of Traditional Chinese Medicine, Mianyang, China
| | - Hua Tian
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- School of Nursing, Chongqing College of Humanities, Science & Technology, Chongqing, 401520, China
| | - Qi Min
- Department of Pharmacy, Mianyang Hospital of TCM, Sichuan Mianyang, 621000, China
| | - Huili You
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Mengshuang Yin
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Liqiong Yang
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Yueshui Zhao
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Xu Wu
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Mingxing Li
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Fukuan Du
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Yu Chen
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Shuai Deng
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Xiaobing Li
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Meijuan Chen
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Li Gu
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yuhong Sun
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Zhangang Xiao
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| | - Wanping Li
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| | - Jing Shen
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| |
Collapse
|
5
|
Hughes RO, Davis HJ, Nease LA, Piskounova E. Decoding the role of tRNA modifications in cancer progression. Curr Opin Genet Dev 2024; 88:102238. [PMID: 39088870 DOI: 10.1016/j.gde.2024.102238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 08/03/2024]
Abstract
Epitranscriptomic modification of tRNA has recently gained traction in the field of cancer biology. The presence of such modifications on tRNA appears to allow for translational control of processes central to progression and malignant transformation. Methyltransferase Like 1 protein (METTL1), along with other epitranscriptomic writers (e.g. NSUN3, NAT10, ELP3, etc.), has recently been investigated in multiple cancer types. Here, we review the impact of such tRNA modifications in tumorigenesis and the progression of cancer toward drug resistance and metastasis. Regulation of central cellular processes relied upon by malignant cancer cells through modulation of the tRNA epitranscriptome represents an area with great potential to bring novel first-in-class therapies to the clinic.
Collapse
Affiliation(s)
- Riley O Hughes
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Hannah J Davis
- Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Dermatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Leona A Nease
- Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Dermatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Elena Piskounova
- Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Dermatology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
6
|
Throll P, G Dolce L, Rico-Lastres P, Arnold K, Tengo L, Basu S, Kaiser S, Schneider R, Kowalinski E. Structural basis of tRNA recognition by the m 3C RNA methyltransferase METTL6 in complex with SerRS seryl-tRNA synthetase. Nat Struct Mol Biol 2024; 31:1614-1624. [PMID: 38918637 PMCID: PMC11479938 DOI: 10.1038/s41594-024-01341-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 05/29/2024] [Indexed: 06/27/2024]
Abstract
Methylation of cytosine 32 in the anticodon loop of tRNAs to 3-methylcytosine (m3C) is crucial for cellular translation fidelity. Misregulation of the RNA methyltransferases setting this modification can cause aggressive cancers and metabolic disturbances. Here, we report the cryo-electron microscopy structure of the human m3C tRNA methyltransferase METTL6 in complex with seryl-tRNA synthetase (SerRS) and their common substrate tRNASer. Through the complex structure, we identify the tRNA-binding domain of METTL6. We show that SerRS acts as the tRNASer substrate selection factor for METTL6. We demonstrate that SerRS augments the methylation activity of METTL6 and that direct contacts between METTL6 and SerRS are necessary for efficient tRNASer methylation. Finally, on the basis of the structure of METTL6 in complex with SerRS and tRNASer, we postulate a universal tRNA-binding mode for m3C RNA methyltransferases, including METTL2 and METTL8, suggesting that these mammalian paralogs use similar ways to engage their respective tRNA substrates and cofactors.
Collapse
Affiliation(s)
| | | | - Palma Rico-Lastres
- Institute of Functional Epigenetics, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Katharina Arnold
- Institute of Functional Epigenetics, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Laura Tengo
- European Molecular Biology Laboratory, Grenoble, France
| | - Shibom Basu
- European Molecular Biology Laboratory, Grenoble, France
| | - Stefanie Kaiser
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
| | - Robert Schneider
- Institute of Functional Epigenetics, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Eva Kowalinski
- European Molecular Biology Laboratory, Grenoble, France.
| |
Collapse
|
7
|
Zhang H, Sun F, Jiang S, Yang F, Dong X, Liu G, Wang M, Li Y, Su M, Wen Z, Yu C, Fan C, Li X, Zhang Z, Yang L, Li B. METTL protein family: focusing on the occurrence, progression and treatment of cancer. Biomark Res 2024; 12:105. [PMID: 39289775 PMCID: PMC11409517 DOI: 10.1186/s40364-024-00652-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024] Open
Abstract
Methyltransferase-like protein is a ubiquitous enzyme-like protein in the human body, with binding domains for nucleic acids, proteins and other small molecules, and plays an important role in a variety of biological behaviours in normal organisms and diseases, characterised by the presence of a methyltransferase-like structural domain and a structurally conserved SAM-binding domain formed by the seven-stranded β-fold structure in the center of the protein. With the deepening of research, the METTL protein family has been found to be abnormally expressed in a variety of tumor diseases, and the clarification of its relationship with tumor diseases can be used as a molecular therapeutic target and has an important role in the prognosis of tumors. In this paper, we review the structure, biological process, immunotherapy, drug-targeted therapy, and markers of the METTL protein family to provide new ideas for the diagnosis and treatment of tumors.
Collapse
Affiliation(s)
- Huhu Zhang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Fulin Sun
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
- Health Science Center, Qingdao University, Qingdao, 266071, China
| | - Shuyao Jiang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
- Health Science Center, Qingdao University, Qingdao, 266071, China
| | - Fanghao Yang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xiaolei Dong
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Guoxiang Liu
- Department of Clinical Laboratory, Weifang People's Hospital, 151, Guangwen Streer, Weifang, 261041, China
| | - Mengjun Wang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Ya Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Mohan Su
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Ziyuan Wen
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Chunjuan Yu
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Chenkai Fan
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
- Health Science Center, Qingdao University, Qingdao, 266071, China
| | - Xiaoxia Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Zhe Zhang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Lina Yang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| | - Bing Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
- Department of Dermatology, The Affiliated Haici Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
8
|
Wu Z, Zhou R, Li B, Cao M, Wang W, Li X. Methylation modifications in tRNA and associated disorders: Current research and potential therapeutic targets. Cell Prolif 2024; 57:e13692. [PMID: 38943267 PMCID: PMC11503269 DOI: 10.1111/cpr.13692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/14/2024] [Accepted: 06/03/2024] [Indexed: 07/01/2024] Open
Abstract
High-throughput sequencing has sparked increased research interest in RNA modifications, particularly tRNA methylation, and its connection to various diseases. However, the precise mechanisms underpinning the development of these diseases remain largely elusive. This review sheds light on the roles of several tRNA methylations (m1A, m3C, m5C, m1G, m2G, m7G, m5U, and Nm) in diverse biological functions, including metabolic processing, stability, protein interactions, and mitochondrial activities. It further outlines diseases linked to aberrant tRNA modifications, related enzymes, and potential underlying mechanisms. Moreover, disruptions in tRNA regulation and abnormalities in tRNA-derived small RNAs (tsRNAs) contribute to disease pathogenesis, highlighting their potential as biomarkers for disease diagnosis. The review also delves into the exploration of drugs development targeting tRNA methylation enzymes, emphasizing the therapeutic prospects of modulating these processes. Continued research is imperative for a comprehensive comprehension and integration of these molecular mechanisms in disease diagnosis and treatment.
Collapse
Affiliation(s)
- Zhijing Wu
- Department of General Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Ruixin Zhou
- Department of General Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Baizao Li
- Department of General Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Mingyu Cao
- Department of General Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Wenlong Wang
- Department of Breast Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Clinical Research Center for Breast Cancer in Hunan ProvinceChangshaHunanChina
| | - Xinying Li
- Department of General Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
9
|
Yuan W, Zhang R, Lyu H, Xiao S, Guo D, Zhang Q, Ali DW, Michalak M, Chen XZ, Zhou C, Tang J. Dysregulation of tRNA methylation in cancer: Mechanisms and targeting therapeutic strategies. Cell Death Discov 2024; 10:327. [PMID: 39019857 PMCID: PMC11254935 DOI: 10.1038/s41420-024-02097-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
tRNA is the RNA type that undergoes the most modifications among known RNA, and in recent years, tRNA methylation has emerged as a crucial process in regulating gene translation. Dysregulation of tRNA abundance occurs in cancer cells, along with increased expression and activity of tRNA methyltransferases to raise the level of tRNA modification and stability. This leads to hijacking of translation and synthesis of multiple proteins associated with tumor proliferation, metastasis, invasion, autophagy, chemotherapy resistance, and metabolic reprogramming. In this review, we provide an overview of current research on tRNA methylation in cancer to clarify its involvement in human malignancies and establish a theoretical framework for future therapeutic interventions targeting tRNA methylation processes.
Collapse
Affiliation(s)
- Wenbin Yuan
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Rui Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Hao Lyu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Shuai Xiao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Dong Guo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Qi Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Declan William Ali
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Cefan Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China.
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China.
| |
Collapse
|
10
|
Cui J, Sendinc E, Liu Q, Kim S, Fang JY, Gregory RI. m 3C32 tRNA modification controls serine codon-biased mRNA translation, cell cycle, and DNA-damage response. Nat Commun 2024; 15:5775. [PMID: 38982125 PMCID: PMC11233606 DOI: 10.1038/s41467-024-50161-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 06/25/2024] [Indexed: 07/11/2024] Open
Abstract
The epitranscriptome includes a diversity of RNA modifications that influence gene expression. N3-methylcytidine (m3C) mainly occurs in the anticodon loop (position C32) of certain tRNAs yet its role is poorly understood. Here, using HAC-Seq, we report comprehensive METTL2A/2B-, METTL6-, and METTL2A/2B/6-dependent m3C profiles in human cells. METTL2A/2B modifies tRNA-arginine and tRNA-threonine members, whereas METTL6 modifies the tRNA-serine family. However, decreased m3C32 on tRNA-Ser-GCT isodecoders is only observed with combined METTL2A/2B/6 deletion. Ribo-Seq reveals altered translation of genes related to cell cycle and DNA repair pathways in METTL2A/2B/6-deficient cells, and these mRNAs are enriched in AGU codons that require tRNA-Ser-GCT for translation. These results, supported by reporter assays, help explain the observed altered cell cycle, slowed proliferation, and increased cisplatin sensitivity phenotypes of METTL2A/2B/6-deficient cells. Thus, we define METTL2A/2B/6-dependent methylomes and uncover a particular requirement of m3C32 tRNA modification for serine codon-biased mRNA translation of cell cycle, and DNA repair genes.
Collapse
Affiliation(s)
- Jia Cui
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Erdem Sendinc
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Qi Liu
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, 510640, Guangzhou, Guangdong Province, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, 510640, Guangzhou, Guangdong Province, China
| | - Sujin Kim
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Jaden Y Fang
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Richard I Gregory
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
- Harvard Initiative for RNA Medicine, Boston, MA, 02115, USA.
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
| |
Collapse
|
11
|
Luo Y, Tian W, Kang D, Wu L, Tang H, Wang S, Zhang C, Xie Y, Zhang Y, Xie J, Deng X, Zou H, Wu H, Lin H, Wei W. RNA modification gene WDR4 facilitates tumor progression and immunotherapy resistance in breast cancer. J Adv Res 2024:S2090-1232(24)00266-2. [PMID: 38960276 DOI: 10.1016/j.jare.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/30/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024] Open
Abstract
INTRODUCTION Growing interest toward RNA modification in cancer has inspired the exploration of gene sets related to multiple RNA modifications. However, a comprehensive elucidation of the clinical value of various RNA modifications in breast cancer is still lacking. OBJECTIVES This study aimed to provide a strategy based on RNA modification-related genes for predicting therapy response and survival outcomes in breast cancer patients. METHODS Genes related to thirteen RNA modification patterns were integrated for establishing a nine-gene-containing signature-RMscore. Alterations of tumor immune microenvironment and therapy response featured by different RMscore levels were assessed by bulk transcriptome, single-cell transcriptome and genomics analyses. The biological function of key RMscore-related molecules was investigated by cellular experiments in vitro and in vivo, using flow cytometry, immunohistochemistry and immunofluorescence staining. RESULTS This study has raised an effective therapy strategy for breast cancer patients after a well-rounded investigation of RNA modification-related genes. With a great performance of predicting patient prognosis, high levels of the RMscore proposed in this study represented suppressive immune microenvironment and therapy resistance, including adjuvant chemotherapy and PD-L1 blockade treatment. As the key contributor of the RMscore, inhibition of WDR4 impaired breast cancer progression significantly in vitro and in vivo, as well as participated in regulating cell cycle and mTORC1 signaling pathway via m7G modification. CONCLUSION Briefly, this study has developed promising and effective tactics to achieve the prediction of survival probabilities and treatment response in breast cancer patients.
Collapse
Affiliation(s)
- Yongzhou Luo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651, East Dongfeng Road, Guangzhou 510060, China
| | - Wenwen Tian
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, No.78, Hengzhigang Road, Guangzhou 510095, China
| | - Da Kang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651, East Dongfeng Road, Guangzhou 510060, China
| | - Linyu Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651, East Dongfeng Road, Guangzhou 510060, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651, East Dongfeng Road, Guangzhou 510060, China
| | - Sifen Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651, East Dongfeng Road, Guangzhou 510060, China
| | - Chao Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651, East Dongfeng Road, Guangzhou 510060, China
| | - Yi Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651, East Dongfeng Road, Guangzhou 510060, China
| | - Yue Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651, East Dongfeng Road, Guangzhou 510060, China
| | - Jindong Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651, East Dongfeng Road, Guangzhou 510060, China
| | - Xinpei Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651, East Dongfeng Road, Guangzhou 510060, China
| | - Hao Zou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651, East Dongfeng Road, Guangzhou 510060, China
| | - Hao Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651, East Dongfeng Road, Guangzhou 510060, China.
| | - Huan Lin
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Weidong Wei
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651, East Dongfeng Road, Guangzhou 510060, China.
| |
Collapse
|
12
|
Chen X, Zhang MY, Ji XL, Li R, Wang QX, Qu YQ. A novel nomogram model for lung adenocarcinoma subtypes based on RNA-modification regulatory genes. Heliyon 2024; 10:e33106. [PMID: 39022104 PMCID: PMC11252981 DOI: 10.1016/j.heliyon.2024.e33106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
Background In non-small cell lung cancer (NSCLC), lung adenocarcinoma (LUAD) is the most common subtype. RNA modification has become the frontier and hotspot of current tumor research. Results In this study, 109 genes that regulate RNA modifications were identified according to The Cancer Genome Atlas (TCGA). A differential gene expression analysis identified 46 differentially expressed RNA modification regulatory genes (DERRGs). LUAD samples were stratified into two distinct clusters based on the expression of these DERRGs. A significant correlation was observed between these clusters and patient survival rates, as well as clinical features. Furthermore, a four-DERRG signature (EIF3B, HNRNPC, IGF2BP1, and METTL3) developed using LASSO regression. According to the calculated risk scores from this signature, LUAD patients were categorized into high-risk and low-risk groups. Patients in the low-risk group exhibited a more favorable prognosis. A prognostic nomogram was crafted, integrating the four-DERRGs signature with clinical parameters. The nomogram was revealed that OS, age, clinical stage, immune cell infiltration, and immune checkpoint molecule expression were significantly linked to the OS of LUAD. GSEA analysis found that the DERRGs were primarily regulated immune pathways. Conclusions This study developed four DERRGs signatures and formulated a nomogram model for precise prognosis estimation in LUAD patients. The study's insights are instrumental for advancing diagnosis, prognosis, and therapeutic strategies for LUAD.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Pulmonary and Critical Care Medicine, Tai'an City Central Hospital, Tai'an, China
| | - Meng-Yu Zhang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xiu-Li Ji
- Department of Pulmonary Disease, Jinan Traditional Chinese Medicine Hospital, Jinan, China
| | - Rui Li
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Qing-Xiang Wang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yi-Qing Qu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
13
|
Lv M, Zhou W, Hao Y, Li F, Zhang H, Yao X, Shi Y, Zhang L. Structural insights into the specific recognition of mitochondrial ribosome-binding factor hsRBFA and 12 S rRNA by methyltransferase METTL15. Cell Discov 2024; 10:11. [PMID: 38291322 PMCID: PMC10828496 DOI: 10.1038/s41421-023-00634-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 12/02/2023] [Indexed: 02/01/2024] Open
Abstract
Mitochondrial rRNA modifications are essential for mitoribosome assembly and its proper function. The m4C methyltransferase METTL15 maintains mitochondrial homeostasis by catalyzing m4C839 located in 12 S rRNA helix 44 (h44). This modification is essential to fine-tuning the ribosomal decoding center and increasing decoding fidelity according to studies of a conserved site in Escherichia coli. Here, we reported a series of crystal structures of human METTL15-hsRBFA-h44-SAM analog, METTL15-hsRBFA-SAM, METTL15-SAM and apo METTL15. The structures presented specific interactions of METTL15 with different substrates and revealed that hsRBFA recruits METTL15 to mitochondrial small subunit for further modification instead of 12 S rRNA. Finally, we found that METTL15 deficiency caused increased reactive oxygen species, decreased membrane potential and altered cellular metabolic state. Knocking down METTL15 caused an elevated lactate secretion and increased levels of histone H4K12-lactylation and H3K9-lactylation. METTL15 might be a suitable model to study the regulation between mitochondrial metabolism and histone lactylation.
Collapse
Affiliation(s)
- Mengqi Lv
- Hefei National Research Center for Cross Disciplinary Science, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei, Anhui, China.
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Wanwan Zhou
- Hefei National Research Center for Cross Disciplinary Science, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei, Anhui, China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yijie Hao
- Hefei National Research Center for Cross Disciplinary Science, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei, Anhui, China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Fudong Li
- Hefei National Research Center for Cross Disciplinary Science, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei, Anhui, China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Huafeng Zhang
- Hefei National Research Center for Cross Disciplinary Science, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei, Anhui, China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xuebiao Yao
- Hefei National Research Center for Cross Disciplinary Science, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei, Anhui, China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yunyu Shi
- Hefei National Research Center for Cross Disciplinary Science, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei, Anhui, China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Liang Zhang
- Hefei National Research Center for Cross Disciplinary Science, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei, Anhui, China.
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
14
|
Jia W, Yuan J, Li S, Cheng B. The role of dysregulated mRNA translation machinery in cancer pathogenesis and therapeutic value of ribosome-inactivating proteins. Biochim Biophys Acta Rev Cancer 2023; 1878:189018. [PMID: 37944831 DOI: 10.1016/j.bbcan.2023.189018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/17/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Dysregulated protein synthesis is a hallmark of tumors. mRNA translation reprogramming contributes to tumorigenesis, which is fueled by abnormalities in ribosome formation, tRNA abundance and modification, and translation factors. Not only malignant cells but also stromal cells within tumor microenvironment can undergo transformation toward tumorigenic phenotypes during translational reprogramming. Ribosome-inactivating proteins (RIPs) have garnered interests for their ability to selectively inhibit protein synthesis and suppress tumor growth. This review summarizes the role of dysregulated translation machinery in tumor development and explores the potential of RIPs in cancer treatment.
Collapse
Affiliation(s)
- Wentao Jia
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China
| | - Jiaying Yuan
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Shu Li
- Department of Gastroenterology, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201900, China.
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| |
Collapse
|
15
|
Wang H, Hu S, Nie J, Qin X, Zhang X, Wang Q, Li JZ. Comprehensive Analysis of METTLs (METTL1/13/18/21A/23/25/2A/2B/5/6/9) and Associated mRNA Risk Signature in Hepatocellular Carcinoma. Anal Cell Pathol (Amst) 2023; 2023:6007431. [PMID: 38130905 PMCID: PMC10735724 DOI: 10.1155/2023/6007431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 12/23/2023] Open
Abstract
Currently, 80%-90% of liver cancers are hepatocellular carcinomas (HCC). HCC patients develop insidiously and have an inferior prognosis. The methyltransferase-like (METTL) family principal members are strongly associated with epigenetic and tumor progression. The present study mainly analyzed the value of METTLs (METTL1/13/18/21A/23/25/2A/2B/5/6/9) and associated mRNA risk signature for HCC. METTLs expression is upregulated in HCC and is a poor prognostic factor in HCC. METTLs were upregulated in patients older than 60 and associated with grade. Except for METTL25, the remaining 10 genes were associated with the HCC stage, invasion depth (T). In addition, METTLs showed an overall alteration rate of 50%. Except for METTL13/2A/25/9, the expression of the other seven genes was significantly associated with overall survival, disease-specific survival, and progression-free survival. Multivariate studies have shown that METTL21A/6 can be an independent prognostic marker in HCC. A total of 664 mRNAs were selected based on Pearson correlation coefficient (R > 0.5), unsupervised consensus clustering, weighted coexpression network analysis, and univariate Cox analysis. These mRNAs were significantly associated with METTLs and were poor prognostic factors in HCC patients. The least absolute shrinkage and selection operator (lasso) was used to construct the best METTLs associated with mRNA risk signature. The mRNA risk signature was significantly associated with age, stage, and t grade. The mRNA high-risk group had higher TP53 and RB1 mutations. This study constructed a nomogram with the mRNA risk profile and clinicopathological features, which could better predict the OS of individuals with HCC. We also analyzed associations between METTLs and mRNA risk signatures in epithelial-mesenchymal transition, immune checkpoints, immune cell infiltration, tumor mutational burden, microsatellite instability, cancer stem cells, tumor pathways, and drug sensitivity. In addition, this study constructed a protein interaction network network including METTLs and mRNA risk signature genes related to tumor microenvironment remodeling based on single-cell sequencing. In conclusion, this study provides a theoretical basis for the mechanism, biomarker screening, and treatment of HCC.
Collapse
Affiliation(s)
- Haoyu Wang
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, The Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Shangshang Hu
- Department of Clinical Laboratory Diagnostics, School of Medicine, Southeast University, Nanjing 210009, China
| | - Junjie Nie
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Xiaodan Qin
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Xu Zhang
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, The Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Qian Wang
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, The Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - John Zhong Li
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, The Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
16
|
Qi YN, Liu Z, Hong LL, Li P, Ling ZQ. Methyltransferase-like proteins in cancer biology and potential therapeutic targeting. J Hematol Oncol 2023; 16:89. [PMID: 37533128 PMCID: PMC10394802 DOI: 10.1186/s13045-023-01477-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/10/2023] [Indexed: 08/04/2023] Open
Abstract
RNA modification has recently become a significant process of gene regulation, and the methyltransferase-like (METTL) family of proteins plays a critical role in RNA modification, methylating various types of RNAs, including mRNA, tRNA, microRNA, rRNA, and mitochondrial RNAs. METTL proteins consist of a unique seven-beta-strand domain, which binds to the methyl donor SAM to catalyze methyl transfer. The most typical family member METTL3/METTL14 forms a methyltransferase complex involved in N6-methyladenosine (m6A) modification of RNA, regulating tumor proliferation, metastasis and invasion, immunotherapy resistance, and metabolic reprogramming of tumor cells. METTL1, METTL4, METTL5, and METTL16 have also been recently identified to have some regulatory ability in tumorigenesis, and the rest of the METTL family members rely on their methyltransferase activity for methylation of different nucleotides, proteins, and small molecules, which regulate translation and affect processes such as cell differentiation and development. Herein, we summarize the literature on METTLs in the last three years to elucidate their roles in human cancers and provide a theoretical basis for their future use as potential therapeutic targets.
Collapse
Affiliation(s)
- Ya-Nan Qi
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, P.R. China
| | - Zhu Liu
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, No.1 Banshan East Rd., Gongshu District, Hangzhou, 310022, Zhejiang, P.R. China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, P.R. China
| | - Lian-Lian Hong
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, No.1 Banshan East Rd., Gongshu District, Hangzhou, 310022, Zhejiang, P.R. China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, P.R. China
| | - Pei Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, P.R. China.
| | - Zhi-Qiang Ling
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, No.1 Banshan East Rd., Gongshu District, Hangzhou, 310022, Zhejiang, P.R. China.
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, P.R. China.
| |
Collapse
|
17
|
The Repertoire of RNA Modifications Orchestrates a Plethora of Cellular Responses. Int J Mol Sci 2023; 24:ijms24032387. [PMID: 36768716 PMCID: PMC9916637 DOI: 10.3390/ijms24032387] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Although a plethora of DNA modifications have been extensively investigated in the last decade, recent breakthroughs in molecular biology, including high throughput sequencing techniques, have enabled the identification of post-transcriptional marks that decorate RNAs; hence, epitranscriptomics has arisen. This recent scientific field aims to decode the regulatory layer of the transcriptome and set the ground for the detection of modifications in ribose nucleotides. Until now, more than 170 RNA modifications have been reported in diverse types of RNA that contribute to various biological processes, such as RNA biogenesis, stability, and transcriptional and translational accuracy. However, dysfunctions in the RNA-modifying enzymes that regulate their dynamic level can lead to human diseases and cancer. The present review aims to highlight the epitranscriptomic landscape in human RNAs and match the catalytic proteins with the deposition or deletion of a specific mark. In the current review, the most abundant RNA modifications, such as N6-methyladenosine (m6A), N5-methylcytosine (m5C), pseudouridine (Ψ) and inosine (I), are thoroughly described, their functional and regulatory roles are discussed and their contributions to cellular homeostasis are stated. Ultimately, the involvement of the RNA modifications and their writers, erasers, and readers in human diseases and cancer is also discussed.
Collapse
|