1
|
Wang Z, Kaplan RC, Burk RD, Qi Q. The Oral Microbiota, Microbial Metabolites, and Immuno-Inflammatory Mechanisms in Cardiovascular Disease. Int J Mol Sci 2024; 25:12337. [PMID: 39596404 PMCID: PMC11594421 DOI: 10.3390/ijms252212337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Cardiovascular diseases (CVDs) remain a leading cause of global morbidity and mortality. Recent advancements in high-throughput omics techniques have enhanced our understanding of the human microbiome's role in the development of CVDs. Although the relationship between the gut microbiome and CVDs has attracted considerable research attention and has been rapidly evolving in recent years, the role of the oral microbiome remains less understood, with most prior studies focusing on periodontitis-related pathogens. In this review, we summarized previously reported associations between the oral microbiome and CVD, highlighting known CVD-associated taxa such as Porphyromonas gingivalis, Fusobacterium nucleatum, and Aggregatibacter actinomycetemcomitans. We also discussed the interactions between the oral and gut microbes. The potential mechanisms by which the oral microbiota can influence CVD development include oral and systemic inflammation, immune responses, cytokine release, translocation of oral bacteria into the bloodstream, and the impact of microbial-related products such as microbial metabolites (e.g., short-chain fatty acids [SCFAs], trimethylamine oxide [TMAO], hydrogen sulfide [H2S], nitric oxide [NO]) and specific toxins (e.g., lipopolysaccharide [LPS], leukotoxin [LtxA]). The processes driven by these mechanisms may contribute to atherosclerosis, endothelial dysfunction, and other cardiovascular pathologies. Integrated multi-omics methodologies, along with large-scale longitudinal population studies and intervention studies, will facilitate a deeper understanding of the metabolic and functional roles of the oral microbiome in cardiovascular health. This fundamental knowledge will support the development of targeted interventions and effective therapies to prevent or reduce the progression from cardiovascular risk to clinical CVD events.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Robert C. Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Robert D. Burk
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Obstetrics & Gynecology and Women’s Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
2
|
Zecha JAEM, Raber-Durlacher JE, Brandt BW, Buijs MJ, Zaura E, de Lange J, Smeele LE, Laheij AMGA. Oral microbial changes, oral mucositis and febrile neutropenia during myelosuppressive chemotherapy in patients diagnosed with a solid tumor or lymphoma. FRONTIERS IN ORAL HEALTH 2024; 5:1461463. [PMID: 39610787 PMCID: PMC11602456 DOI: 10.3389/froh.2024.1461463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/24/2024] [Indexed: 11/30/2024] Open
Abstract
Objectives To evaluate the possible changes of the oral microbiome during myelosuppressive chemotherapy (CT) and to investigate the potential relationship between the oral microbiome, the presence of oral mucositis (OM) and febrile neutropenia (FN). Methods A prospective, longitudinal, observational study was conducted in patients receiving myelosuppressive CT for a solid tumor or lymphoma. Oral rinsing samples were retrieved before, during and after the start of CT, but also when OM or FN was present. The samples were analyzed using 16S rRNA gene amplicon sequencing and statistical analysis was performed using alpha (Shannon) and beta (PERMANOVA) diversity analyses. Furthermore, differential abundances were analyzed using ALDEx2v1.32.0. Differences between groups were calculated using the Mann Whitney U-test, Kruskal-Wallis test and Wilcoxon Signed Rank using R. Results Forty-six patients, with a mean follow up of 114 days, were included for analysis and a total of 138 oral rinsing samples were available in the CLR-transformed data for PERMANOVA and 137 samples-for alpha diversity calculation. Significant changes in alpha diversity were seen when OM or FN was present. Moreover, significant changes were seen in beta diversity during the course of the CT treatment and when OM was present. Genera showing substantial changes in relative abundance were Streptococcus during the course of CT treatment and Prevotella, Fusobacterium, Selenomonas, Actinomyces and Leptotrichia when OM was present. Conclusion Changes in the oral microbiome were observed during the CT-regimen and when OM was present. Furthermore, changes of the oral microbiota during FN episodes were observed; however, larger studies should be performed to substantiate our results.
Collapse
Affiliation(s)
- Judith A. E. M. Zecha
- Department of Oral and Maxillofacial Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Judith E. Raber-Durlacher
- Department of Oral and Maxillofacial Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Oral Medicine, Academic Center for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Bernd W. Brandt
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Mark J. Buijs
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Egija Zaura
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jan de Lange
- Department of Oral and Maxillofacial Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Ludwig E. Smeele
- Department of Oral and Maxillofacial Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Head and Neck Oncology and Surgery, Netherlands Cancer Institute—Antoni van Leeuwenhoek, Amsterdam, Netherlands
| | - Alexa M. G. A. Laheij
- Department of Oral and Maxillofacial Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Oral Medicine, Academic Center for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
3
|
Ryu EP, Gautam Y, Proctor DM, Bhandari D, Tandukar S, Gupta M, Gautam GP, Relman DA, Shibl AA, Sherchand JB, Jha AR, Davenport ER. Nepali oral microbiomes reflect a gradient of lifestyles from traditional to industrialized. MICROBIOME 2024; 12:228. [PMID: 39497165 PMCID: PMC11533410 DOI: 10.1186/s40168-024-01941-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/27/2024] [Indexed: 11/06/2024]
Abstract
BACKGROUND Lifestyle plays an important role in shaping the gut microbiome. However, its contributions to the oral microbiome remain less clear, due to the confounding effects of geography and methodology in investigations of populations studied to date. Furthermore, while the oral microbiome seems to differ between foraging and industrialized populations, we lack insight into whether transitions to and away from agrarian lifestyles shape the oral microbiota. Given the growing interest in so-called "vanishing microbiomes" potentially being a risk factor for increased disease prevalence in industrialized populations, it is important that we distinguish lifestyle from geography in the study of microbiomes across populations. RESULTS Here, we investigate salivary microbiomes of 63 Nepali individuals representing a spectrum of lifestyles: foraging, subsistence farming (individuals that transitioned from foraging to farming within the last 50 years), agriculturalists (individuals that have transitioned to farming for at least 300 years), and industrialists (expatriates that immigrated to the USA within the last 20 years). We characterize the role of lifestyle in microbial diversity, identify microbes that differ between lifestyles, and pinpoint specific lifestyle factors that may be contributing to differences in the microbiomes across populations. Contrary to prevailing views, when geography is controlled for, oral microbiome alpha diversity does not differ significantly across lifestyles. Microbiome composition, however, follows the gradient of lifestyles from foraging through agrarianism to industrialism, supporting the notion that lifestyle indeed plays a role in the oral microbiome. Relative abundances of several individual taxa, including Streptobacillus and an unclassified Porphyromonadaceae genus, also mirror lifestyle. Finally, we identify specific lifestyle factors associated with microbiome composition across the gradient of lifestyles, including smoking and grain sources. CONCLUSION Our findings demonstrate that by studying populations within Nepal, we can isolate an important role of lifestyle in determining oral microbiome composition. In doing so, we highlight the potential contributions of several lifestyle factors, underlining the importance of carefully examining the oral microbiome across lifestyles to improve our understanding of global microbiomes. Video Abstract.
Collapse
Affiliation(s)
- Erica P Ryu
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Yoshina Gautam
- Genetic Heritage Group, Program in Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Diana M Proctor
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dinesh Bhandari
- Public Health Research Laboratory, Institute of Medicine, Maharajgunj, Kathmandu, Nepal
- School of Public Health, University of Adelaide, Adelaide, SA, Australia
| | - Sarmila Tandukar
- Public Health Research Laboratory, Institute of Medicine, Maharajgunj, Kathmandu, Nepal
- Organization for Public Health and Environment Management, Lalitpur, Bagmati, Nepal
| | - Meera Gupta
- Department of Biology, Pennsylvania State University, University Park, PA, USA
- Sidney Kimmel Medical College, Philadelphia, PA, UAE
| | | | - David A Relman
- Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Section of Infectious Diseases, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Ahmed A Shibl
- Genetic Heritage Group, Program in Biology, New York University Abu Dhabi, Abu Dhabi, UAE
- Center for Genomics and Systems Biology, and Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, UAE
| | | | - Aashish R Jha
- Genetic Heritage Group, Program in Biology, New York University Abu Dhabi, Abu Dhabi, UAE.
- Center for Genomics and Systems Biology, and Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, UAE.
| | - Emily R Davenport
- Department of Biology, Pennsylvania State University, University Park, PA, USA.
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
4
|
Mirhosseini SM, Mahdavi A, Yarmohammadi H, Razavi A, Rezaei M, Soltanipur M, Karimi Nemch M, Jafari Naeini S, Siadat SD. What is the link between the dietary inflammatory index and the gut microbiome? A systematic review. Eur J Nutr 2024; 63:2407-2419. [PMID: 39069586 DOI: 10.1007/s00394-024-03470-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/14/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE One highlighted pathogenesis mechanism of diseases is the negative impact of pro-inflammatory diets (PD) on the gut microbiome. This systematic review aimed to study the link between dietary inflammatory index (DII), as an indicator of PD, and gut microbiome. METHODS A systematic search was done in PubMed and Scopus, adhering to the guidelines of Preferred Reporting Items for Systematic Reviews and Meta-Analysis. The assessment of the included studies' quality was performed using the critical appraisal checklist from the Joanna Briggs Institute. RESULTS Ten articles were included eight cross-sectional, one case-control, and, one cohort study. Seven and three included articles reported a weak and moderate relationship between gut microbiome and DII scores, respectively. DII scores were linked to variety in microbiome composition and diversity/richness. More importantly, anti-inflammatory diets as measured by lower DII scores were linked to a more desirable gut microbiome profile. Prevotella stercorea, Veillonella rogosae, Morganella morganii, Ruminococcus torques, Eubacterium nodatum, Alistipes intestine, Clostridium leptum, Morganellaceae family, Enterobacteriaceae family, and, Bacteroides thetaiotaomicron were related to higher DII scores. While, Butyrate-producing bacteria such as Ruminococcaceae and Lachnospiraceae families, Faecalibacterium prausnitzii, and Akkermansia muciniphila were related to lower DII scores. CONCLUSION An anti-inflammatory diet, as measured by a lower DII score, might be linked to variations in the composition and variety of the microbiome. Therefore, the DII score could be useful in microbiota research, however, this possibility needs to be investigated more precisely in future studies.
Collapse
Affiliation(s)
| | - Azamalsadat Mahdavi
- Avicenna Fertility Center, Avicenna Research Institute (ARI), ACECR, Tehran, Iran
| | - Hossein Yarmohammadi
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Quality of Life Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Alireza Razavi
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Rezaei
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Masood Soltanipur
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Quality of Life Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammadreza Karimi Nemch
- Student Research Committee, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
- Oral and Dental Diseases Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Sepideh Jafari Naeini
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
5
|
Wang XH, Yang YN, Li YH, Cheng JL, Yan L, Liang Y, Zeng Q, Zhan T, Wang DW, Yu RH, Wu CM. Oral bacteriome and mycobiome of patients with idiopathic membranous nephropathy with different tongue coatings treated with a Chinese herbal formula. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118233. [PMID: 38685365 DOI: 10.1016/j.jep.2024.118233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 02/25/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Moshen Fuyuan Formula (MSFY) is one of the representative Chinese medicine compound for Idiopathic membranous nephropathy (IMN), that originate from Fang Ji Huang Qi decoction in the Han dynasty. IMN is usually accompanied by different tongue coatings in traditional Chinese medicine (TCM), and tongue microorganisms are important factors affecting the formation of the tongue coating. Recently, oral microbiomes, including bacteria and fungi, have been identified as pivotal factors that contribute to disease development. However, the regulation of oral microbiomes by MSFY has not been defined. AIM OF THE STUDY In this work, we explore the characteristics of oral bacteria and fungi in IMN patients with different tongue coatings, and clarify the therapeutic effect of MSFY based on oral microbiome. MATERIALS AND METHODS We enrolled 24 patients with IMN, including 11 with white tongue (IMN-W) and 13 with yellow tongue (IMN-Y), and recruited an additional 10 healthy individuals. Patients with IMN were treated with the MSFY. The oral bacteriome and fungi before and after treatment were detected using full-length 16S rRNA and internal transcribed spacer gene sequencing. RESULTS The therapeutic effect of MSFY on patients with yellow tongue coating was more significant than that on patients with white tongue coating. In terms of oral bacteriome, Campylobacter bacteria were enriched in patients with yellow tongue and could be a promising biomarker for yellow coating. Enrichment of Veillonella parvula_A may partially account for the therapeutic effect of MSFY. As for oral fungi, Malassezia globosa was enhanced in patients with IMN-W and reduced in patients with IMN-Y. Notably, it was reduced by MSFY. We also found that mycobiome-bacteriome interactions were highly complex and dynamic in patients with IMN. CONCLUSION The regulation of the dynamic balance between oral fungi and bacteria by MSFY contributes to the treatment of IMN. This study determined the oral bacteriome and mycobiome of patients with IMN with different tongue coatings before and after MSFY treatment, which aids in promoting personalized treatment in clinical TCM and provides direction for investigating the mechanism of Chinese herbal medicines.
Collapse
Affiliation(s)
- Xin-Hui Wang
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Ya-Nan Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yi-Han Li
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Jia-Le Cheng
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Lei Yan
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Ying Liang
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Qin Zeng
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Tian Zhan
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Dian-Wen Wang
- Guang'anmen Hospital South Campus of China Academy of Chinese Medical Sciences, Beijing, 102611, China.
| | - Ren-Huan Yu
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Chong-Ming Wu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
6
|
Leonov G, Salikhova D, Starodubova A, Vasilyev A, Makhnach O, Fatkhudinov T, Goldshtein D. Oral Microbiome Dysbiosis as a Risk Factor for Stroke: A Comprehensive Review. Microorganisms 2024; 12:1732. [PMID: 39203574 PMCID: PMC11357103 DOI: 10.3390/microorganisms12081732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Stroke represents a significant global health burden, with a substantial impact on mortality, morbidity, and long-term disability. The examination of stroke biomarkers, particularly the oral microbiome, offers a promising avenue for advancing our understanding of the factors that contribute to stroke risk and for developing strategies to mitigate that risk. This review highlights the significant correlations between oral diseases, such as periodontitis and caries, and the onset of stroke. Periodontal pathogens within the oral microbiome have been identified as a contributing factor in the exacerbation of risk factors for stroke, including obesity, dyslipidemia, atherosclerosis, hypertension, and endothelial dysfunction. The alteration of the oral microbiome may contribute to these conditions, emphasizing the vital role of oral health in the prevention of cardiovascular disease. The integration of dental and medical health practices represents a promising avenue for enhancing stroke prevention efforts and improving patient outcomes.
Collapse
Affiliation(s)
- Georgy Leonov
- Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia;
| | - Diana Salikhova
- Institute of Molecular and Cellular Medicine, RUDN University, 117198 Moscow, Russia; (D.S.); (A.V.); (T.F.)
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (O.M.); (D.G.)
| | - Antonina Starodubova
- Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia;
- Therapy Faculty, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Andrey Vasilyev
- Institute of Molecular and Cellular Medicine, RUDN University, 117198 Moscow, Russia; (D.S.); (A.V.); (T.F.)
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (O.M.); (D.G.)
- E.V. Borovsky Institute of Dentistry, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
- Central Research Institute of Dental and Maxillofacial Surgery, 119021 Moscow, Russia
| | - Oleg Makhnach
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (O.M.); (D.G.)
| | - Timur Fatkhudinov
- Institute of Molecular and Cellular Medicine, RUDN University, 117198 Moscow, Russia; (D.S.); (A.V.); (T.F.)
| | - Dmitry Goldshtein
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (O.M.); (D.G.)
| |
Collapse
|
7
|
Zaparte A, Christopher CJ, Arnold C, Richey L, Castille A, Mistretta K, Taylor CM, Lin H, Nelson S, Kirwan JP, Apolzan JW, Campagna SR, Welsh DA. Effects of E-Cigarettes on the Lung and Systemic Metabolome in People with HIV. Metabolites 2024; 14:434. [PMID: 39195530 DOI: 10.3390/metabo14080434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
The popularity of e-cigarettes (vaping) has soared, creating a public health crisis among teens and young adults. Chronic vaping can induce gut inflammation and reduce intestinal barrier function through the production of the proinflammatory molecule hydrogen sulfide (H2S). This is particularly concerning for people with HIV (PWH) as they already face impaired immune function and are at a higher risk for metabolic dysregulation, diabetes, and chronic liver disease. Furthermore, PWH experience unhealthy behaviors, making it crucial to understand the systemic metabolic dysregulation and pathophysiological mechanisms associated with vaping in this population. Here, we employed liquid chromatography-mass spectrometry (LC-MS)-based metabolomics to investigate the upper respiratory, circulation, and gut metabolic profiles of PWH who vape (n = 7) and smoke combustible tobacco/marijuana (n = 6) compared to control participants who did not vape or smoke (n = 10). This hypothesis-generating exploratory study revealed systemic alterations in purine, neurotransmitter, and vitamin B metabolisms and tissue-specific changes in inflammatory pathways and cryptic sulfur cycling associated with vaping and combustible tobacco/marijuana smoking in PWH. In addition, this study provides the first link between microbial-derived metabolite 2,3-dihydroxypropane-1-sulfonate (DHPS) and vaping/smoking (tobacco and marijuana)-induced metabolic dyshomeostasis in the gut. These findings highlight the importance of identifying the full biological and clinical significance of the physiological changes and risks associated with vaping.
Collapse
Affiliation(s)
- Aline Zaparte
- Department of Internal Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Courtney J Christopher
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN 37996, USA
| | - Connie Arnold
- Department of Medicine, Louisiana State University Health Sciences, Shreveport, LA 71103, USA
| | - Lauren Richey
- Department of Internal Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Adairre Castille
- Department of Internal Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Kyle Mistretta
- Department of Internal Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Christopher M Taylor
- Department of Microbiology, Immunology, & Parasitology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Huiyi Lin
- School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Steve Nelson
- Department of Internal Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - John P Kirwan
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - John W Apolzan
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Shawn R Campagna
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN 37996, USA
- Biological and Small Molecule Mass Spectrometry Core, University of Tennessee, 1420 Circle Drive, Knoxville, TN 37996, USA
| | - David A Welsh
- Department of Internal Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
8
|
Christian N, Burden D, Emam A, Brenk A, Sperber S, Kalu M, Cuadra G, Palazzolo D. Effects of E-Liquids and Their Aerosols on Biofilm Formation and Growth of Oral Commensal Streptococcal Communities: Effect of Cinnamon and Menthol Flavors. Dent J (Basel) 2024; 12:232. [PMID: 39195076 DOI: 10.3390/dj12080232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024] Open
Abstract
(1) Background: The rise in electronic cigarette (E-cigarette) popularity, especially among adolescents, has prompted research to investigate potential effects on health. Although much research has been carried out on the effect on lung health, the first site exposed to vaping-the oral cavity-has received relatively little attention. The aims of this study were twofold: to examine the effects of E-liquids on the viability and hydrophobicity of oral commensal streptococci, and the effects of E-cigarette-generated aerosols on the biomass and viability of oral commensal streptococci. (2) Methods: Quantitative and confocal biofilm analysis, live-dead staining, and hydrophobicity assays were used to determine the effect on oral commensal streptococci after exposure to E-liquids and/or E-cigarette-generated aerosols. (3) Results: E-liquids and flavors have a bactericidal effect on multispecies oral commensal biofilms and increase the hydrophobicity of oral commensal streptococci. Flavorless and some flavored E-liquid aerosols have a bactericidal effect on oral commensal biofilms while having no effect on overall biomass. (4) Conclusions: These results indicate that E-liquids/E-cigarette-generated aerosols alter the chemical interactions and viability of oral commensal streptococci. Consequently, the use of E-cigarettes has the potential to alter the status of disease and health in the oral cavity and, by extension, affect systemic health.
Collapse
Affiliation(s)
- Nicole Christian
- Biology Department, Muhlenberg College, Allentown, PA 18104, USA
- School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel Burden
- Biology Department, Muhlenberg College, Allentown, PA 18104, USA
- School of Dental Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Alexander Emam
- Biology Department, Muhlenberg College, Allentown, PA 18104, USA
| | - Alvin Brenk
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
- Yale New Haven Hospital, New Haven, CT 06510, USA
| | - Sarah Sperber
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
| | - Michael Kalu
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
| | - Giancarlo Cuadra
- Biology Department, Muhlenberg College, Allentown, PA 18104, USA
| | - Dominic Palazzolo
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
| |
Collapse
|
9
|
Ryu EP, Gautam Y, Proctor DM, Bhandari D, Tandukar S, Gupta M, Gautam GP, Relman DA, Shibl AA, Sherchand JB, Jha AR, Davenport ER. Nepali oral microbiomes reflect a gradient of lifestyles from traditional to industrialized. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601557. [PMID: 39005279 PMCID: PMC11244963 DOI: 10.1101/2024.07.01.601557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Background Lifestyle plays an important role in shaping the gut microbiome. However, its contributions to the oral microbiome remains less clear, due to the confounding effects of geography and methodology in investigations of populations studied to date. Furthermore, while the oral microbiome seems to differ between foraging and industrialized populations, we lack insight into whether transitions to and away from agrarian lifestyles shape the oral microbiota. Given the growing interest in so-called 'vanishing microbiomes' potentially being a risk factor for increased disease prevalence in industrialized populations, it is important that we distinguish lifestyle from geography in the study of microbiomes across populations. Results Here, we investigate salivary microbiomes of 63 Nepali individuals representing a spectrum of lifestyles: foraging, subsistence farming (individuals that transitioned from foraging to farming within the last 50 years), agriculturalists (individuals that have transitioned to farming for at least 300 years), and industrialists (expatriates that immigrated to the United States within the last 20 years). We characterize the role of lifestyle in microbial diversity, identify microbes that differ between lifestyles, and pinpoint specific lifestyle factors that may be contributing to differences in the microbiomes across populations. Contrary to prevailing views, when geography is controlled for, oral microbiome alpha diversity does not differ significantly across lifestyles. Microbiome composition, however, follows the gradient of lifestyles from foraging through agrarianism to industrialism, supporting the notion that lifestyle indeed plays a role in the oral microbiome. Relative abundances of several individual taxa, including Streptobacillus and an unclassified Porphyromonadaceae genus, also mirror lifestyle. Finally, we identify specific lifestyle factors associated with microbiome composition across the gradient of lifestyles, including smoking and grain source. Conclusion Our findings demonstrate that by controlling for geography, we can isolate an important role for lifestyle in determining oral microbiome composition. In doing so, we highlight the potential contributions of several lifestyle factors, underlining the importance of carefully examining the oral microbiome across lifestyles to improve our understanding of global microbiomes.
Collapse
Affiliation(s)
- Erica P. Ryu
- Department of Biology, Pennsylvania State University, University Park, PA
| | - Yoshina Gautam
- Genetic Heritage Group, Program in Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Diana M. Proctor
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Dinesh Bhandari
- Public Health Research Laboratory, Institute of Medicine, Maharajgunj, Kathmandu, Nepal
- School of Public Health, University of Adelaide, South Australia, Australia
| | - Sarmila Tandukar
- Public Health Research Laboratory, Institute of Medicine, Maharajgunj, Kathmandu, Nepal
- Organization for Public Health and Environment Management, Lalitpur, Bagmati, Nepal
| | - Meera Gupta
- Department of Biology, Pennsylvania State University, University Park, PA
| | | | - David A. Relman
- Departments of Medicine, and of Microbiology & Immunology, Stanford University, Stanford, CA
- Section of Infectious Diseases, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA
| | - Ahmed A. Shibl
- Genetic Heritage Group, Program in Biology, New York University Abu Dhabi, Abu Dhabi, UAE
- Center for Genomics and Systems Biology, and Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, UAE
| | | | - Aashish R. Jha
- Genetic Heritage Group, Program in Biology, New York University Abu Dhabi, Abu Dhabi, UAE
- Center for Genomics and Systems Biology, and Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Emily R. Davenport
- Department of Biology, Pennsylvania State University, University Park, PA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA
| |
Collapse
|
10
|
Wang D, Feng Y, Yang M, Sun H, Zhang Q, Wang R, Tong S, Su R, Jin Y, Wang Y, Lu Z, Han L, Sun Y. Variations in the oral microbiome and metabolome of methamphetamine users. mSystems 2024; 9:e0099123. [PMID: 38112416 PMCID: PMC10804968 DOI: 10.1128/msystems.00991-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/09/2023] [Indexed: 12/21/2023] Open
Abstract
Drug addiction can seriously damage human physical and mental health, while detoxification is a long and difficult process. Although studies have reported changes in the oral microbiome of methamphetamine (METH) users, the role that the microbiome plays in the process of drug addiction is still unknown. This study aims to explore the function of the microbiome based on analysis of the variations in the oral microbiome and metabolome of METH users. We performed the 16S rRNA sequencing analysis based on the oral saliva samples collected from 278 METH users and 105 healthy controls (CTL). In addition, the untargeted metabolomic profiling was conducted based on 220 samples. Compared to the CTL group, alpha diversity was reduced in the group of METH users and the relative abundances of Peptostreptococcus and Gemella were significantly increased, while the relative abundances of Campylobacter and Aggregatibacter were significantly decreased. Variations were also detected in oral metabolic pathways, including enhanced tryptophan metabolism, lysine biosynthesis, purine metabolism, and steroid biosynthesis. Conversely, the metabolic pathways of porphyrin metabolism, glutathione metabolism, and pentose phosphate were significantly reduced. It was speculated that four key microbial taxa, i.e., Peptostreptococcus, Gemella, Campylobacter, and Aggregatibacter, could be involved in the toxicity and addiction mechanisms of METH by affecting the above metabolic pathways. It was found that with the increase of drug use years, the content of tryptamine associated with neuropsychiatric disorders was gradually increased. Our study provides novel insights into exploring the toxic damage and addiction mechanisms underlying the METH addiction.IMPORTANCEIt was found that with the increase of drug use years, the content of tryptamine associated with neuropsychiatric disorders gradually increased. The prediction models based on oral microbiome and metabolome could effectively predict the methamphetamine (METH) smoking. Our study provides novel insights into the exploration of the molecular mechanisms regulating the toxic damage and addiction of METH as well as new ideas for early prevention and treatment strategies of METH addiction.
Collapse
Affiliation(s)
- Dawei Wang
- Department of Orthopedic, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yu Feng
- Department of Orthopedic, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Min Yang
- Department of Immunology, Shandong Provincial Key Laboratory of Infection and Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Haihui Sun
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qingchen Zhang
- Department of Orthopedics, Central hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Rongrong Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Shuqing Tong
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Rui Su
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yan Jin
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhiming Lu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Lihui Han
- Department of Immunology, Shandong Provincial Key Laboratory of Infection and Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yundong Sun
- Department of Microbiology, Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
11
|
Antonello G, Blostein F, Bhaumik D, Davis E, Gögele M, Melotti R, Pramstaller P, Pattaro C, Segata N, Foxman B, Fuchsberger C. Smoking and salivary microbiota: a cross-sectional analysis of an Italian alpine population. Sci Rep 2023; 13:18904. [PMID: 37919319 PMCID: PMC10622503 DOI: 10.1038/s41598-023-42474-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/11/2023] [Indexed: 11/04/2023] Open
Abstract
The oral microbiota plays an important role in the exogenous nitrate reduction pathway and is associated with heart and periodontal disease and cigarette smoking. We describe smoking-related changes in oral microbiota composition and resulting potential metabolic pathway changes that may explain smoking-related changes in disease risk. We analyzed health information and salivary microbiota composition among 1601 Cooperative Health Research in South Tyrol participants collected 2017-2018. Salivary microbiota taxa were assigned from amplicon sequences of the 16S-V4 rRNA and used to describe microbiota composition and predict metabolic pathways. Aerobic taxa relative abundance decreased with daily smoking intensity and increased with years since cessation, as did inferred nitrate reduction. Former smokers tended to be more similar to Never smokers than to Current smokers, especially those who had quit for longer than 5 years. Cigarette smoking has a consistent, generalizable association on oral microbiota composition and predicted metabolic pathways, some of which associate in a dose-dependent fashion. Smokers who quit for longer than 5 years tend to have salivary microbiota profiles comparable to never smokers.
Collapse
Affiliation(s)
- Giacomo Antonello
- Institute for Biomedicine, Eurac Research - Affiliated Institute of the University of Lübeck, Bolzano, Italy.
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy.
| | - Freida Blostein
- School of Public Health - Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Deesha Bhaumik
- School of Public Health - Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Elyse Davis
- School of Public Health - Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Martin Gögele
- Institute for Biomedicine, Eurac Research - Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Roberto Melotti
- Institute for Biomedicine, Eurac Research - Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Peter Pramstaller
- Institute for Biomedicine, Eurac Research - Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Cristian Pattaro
- Institute for Biomedicine, Eurac Research - Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Nicola Segata
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Betsy Foxman
- School of Public Health - Epidemiology, University of Michigan, Ann Arbor, MI, USA.
| | - Christian Fuchsberger
- Institute for Biomedicine, Eurac Research - Affiliated Institute of the University of Lübeck, Bolzano, Italy.
| |
Collapse
|
12
|
Farmer N, Maki KA, Barb JJ, Jones KK, Yang L, Baumer Y, Powell-Wiley TM, Wallen GR. Geographic social vulnerability is associated with the alpha diversity of the human microbiome. mSystems 2023; 8:e0130822. [PMID: 37642431 PMCID: PMC10654076 DOI: 10.1128/msystems.01308-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/26/2023] [Indexed: 08/31/2023] Open
Abstract
IMPORTANCE As a risk factor for conditions related to the microbiome, understanding the role of SVI on microbiome diversity may assist in identifying public health implications for microbiome research. Here we found, using a sub-sample of the Human Microbiome Project phase 1 cohort, that SVI was linked to microbiome diversity across body sites and that SVI may influence race/ethnicity-based differences in diversity. Our findings, build on the current knowledge regarding the role of human geography in microbiome research, suggest that measures of geographic social vulnerability be considered as additional contextual factors when exploring microbiome alpha diversity.
Collapse
Affiliation(s)
- Nicole Farmer
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, Bethesda, Maryland, USA
| | - Katherine A. Maki
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, Bethesda, Maryland, USA
| | - Jennifer J. Barb
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, Bethesda, Maryland, USA
| | - Kelly K. Jones
- Intramural Research Program, National Institute on Minority Health and Health Disparities, Bethesda, Maryland, USA
| | - Li Yang
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, Bethesda, Maryland, USA
| | - Yvonne Baumer
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Tiffany M. Powell-Wiley
- Intramural Research Program, National Institute on Minority Health and Health Disparities, Bethesda, Maryland, USA
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Gwenyth R. Wallen
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, Bethesda, Maryland, USA
| |
Collapse
|
13
|
Boopathi S, Priya PS, Haridevamuthu B, Nayak SPRR, Chandrasekar M, Arockiaraj J, Jia AQ. Expanding germ-organ theory: Understanding non-communicable diseases through enterobacterial translocation. Pharmacol Res 2023; 194:106856. [PMID: 37460001 DOI: 10.1016/j.phrs.2023.106856] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/02/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Diverse microbial communities colonize different habitats of the human body, including gut, oral cavity, nasal cavity and tissues. These microbial communities are known as human microbiome, plays a vital role in maintaining the health. However, changes in the composition and functions of human microbiome can result in chronic low-grade inflammation, which can damage the epithelial cells and allows pathogens and their toxic metabolites to translocate into other organs such as the liver, heart, and kidneys, causing metabolic inflammation. This dysbiosis of human microbiome has been directly linked to the onset of several non-communicable diseases. Recent metabolomics studies have revealed that pathogens produce several uraemic toxins. These metabolites can serve as inter-kingdom signals, entering the circulatory system and altering host metabolism, thereby aggravating a variety of diseases. Interestingly, Enterobacteriaceae, a critical member of Proteobacteria, has been commonly associated with several non-communicable diseases, and the abundance of this family has been positively correlated with uraemic toxin production. Hence, this review provides a comprehensive overview of Enterobacterial translocation and their metabolites role in non-communicable diseases. This understanding may lead to the identification of novel biomarkers for each metabolic disease as well as the development of novel therapeutic drugs.
Collapse
Affiliation(s)
- Seenivasan Boopathi
- Hainan General Hospital, Hainan affiliated hospital of Hainan Medical University, Haikou 570311, China; Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603 203, Chengalpattu District, Tamil Nadu, India
| | - P Snega Priya
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603 203, Chengalpattu District, Tamil Nadu, India
| | - B Haridevamuthu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603 203, Chengalpattu District, Tamil Nadu, India
| | - S P Ramya Ranjan Nayak
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603 203, Chengalpattu District, Tamil Nadu, India
| | - Munisamy Chandrasekar
- Department of Veterinary Clinical Medicine, Madras Veterinary College, Chennai, Tamil Nadu, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603 203, Chengalpattu District, Tamil Nadu, India.
| | - Ai-Qun Jia
- Hainan General Hospital, Hainan affiliated hospital of Hainan Medical University, Haikou 570311, China.
| |
Collapse
|