1
|
Ma XN, Ho YK, Goie JYG, Ma CX, Sun ZB, Yao LQ, Zhu XL, Woo JY, Too HP, Li X. Evaluating the potential of off-the-shelf engineered mesenchymal stem cells for targeted Hepatocellular Carcinoma treatment: A multisite proof-of-concept study. Biomed Pharmacother 2024; 181:117676. [PMID: 39522266 DOI: 10.1016/j.biopha.2024.117676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/29/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Although combining 5-fluorouracil (5-FU) and Interferon-beta (IFNb) improves response rates in Hepatocellular Carcinoma (HCC), the outcomes remain suboptimal. This study investigates the feasibility of using highly transfected Mesenchymal Stem Cells (MSCs) to deliver a chemotherapeutic (5-FU) and an immunomodulator (IFNb) for localized HCC treatment. Considering the crucial role of cold-chain transportation in off-the-shelf allogeneic therapy, the study also assesses the quality and efficacy of frozen-thawed engineered MSCs, simulating a multisite study process. The engineered MSCs maintained their phenotypes and tumour tropism. With just 10 % engineered MSCs, a killing efficiency of over 70 % was achieved in Huh-7 and HepG2 cell lines in vitro. Coculture studies, soft agar assays, and in vivo experiments confirmed that MSCs are neither tumorigenic nor tumour-promoting. Tumour mass growth was inhibited by >80 % in the treated mice group. TUNEL, Annexin-V, and Ki67 staining confirmed DNA damage, cell death, and proliferation inhibition post-treatment. Blood chemistry and the weight of the mice were comparable to the control group, indicating a good safety profile. This proof-of-concept study demonstrates the efficacy and safety of off-the-shelf CDUPRT-IFNβ_MSCs in targeting hepatocellular carcinoma (HCC) growth. Evaluating the complete value chain of MSC therapy in early-stage preclinical studies is essential for justifying further investigation and clinical translation of this cell product.
Collapse
Affiliation(s)
- Xiao Ni Ma
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; Medicine Laboratory Centre, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yoon Khei Ho
- Department of Biochemistry, National University of Singapore, Singapore 117596, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; AGeM Bio, Singapore 119276, Singapore; Singapore Innovate, Singapore 059911, Singapore
| | - Jian Yi Gerald Goie
- Department of Biochemistry, National University of Singapore, Singapore 117596, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Cheng-Xu Ma
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Zong-Bin Sun
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
| | - Li-Qiong Yao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; Medicine Laboratory Centre, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xiao Liang Zhu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Jun Yung Woo
- Department of Biochemistry, National University of Singapore, Singapore 117596, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Heng-Phon Too
- Department of Biochemistry, National University of Singapore, Singapore 117596, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, Gansu, China.
| |
Collapse
|
2
|
Khan M, Nasim M, Feizy M, Parveen R, Gull A, Khan S, Ali J. Contemporary strategies in glioblastoma therapy: Recent developments and innovations. Neuroscience 2024; 560:211-237. [PMID: 39368608 DOI: 10.1016/j.neuroscience.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/30/2024] [Accepted: 09/12/2024] [Indexed: 10/07/2024]
Abstract
Glioblastoma multiforme (GBM) represents one of the most prevailing and aggressive primary brain tumors among adults. Despite advances in therapeutic approaches, the complex microenvironment of GBM poses significant challenges in its optimal therapy, which are attributed to immune evasion, tumor repopulation by stem cells, and limited drug penetration across the blood-brain barrier (BBB). Nanotechnology has emerged as a promising avenue for GBM treatment, offering biosafety, sustained drug release, enhanced solubility, and improved BBB penetrability. In this review, a comprehensive overview of recent advancements in nanocarrier-based drug delivery systems for GBM therapy is emphasized. The conventional and novel treatment modalities for GBM and the potential of nanocarriers to overcome existing limitations are comprehensively covered. Furthermore, the updates in the clinical landscape of GBM therapeutics are presented in addition to the current status of drugs and patents in the same context. Through a critical evaluation of existing literature, the therapeutic prospect and limitations of nanocarrier-based drug delivery strategies are highlighted offering insights into future research directions and clinical translation.
Collapse
Affiliation(s)
- Mariya Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India
| | - Modassir Nasim
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India
| | - Mohammadamin Feizy
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India
| | - Rabea Parveen
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India
| | - Azka Gull
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India
| | - Saba Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India.
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India.
| |
Collapse
|
3
|
Agosti E, Antonietti S, Ius T, Fontanella MM, Zeppieri M, Panciani PP. A Systematic Review of Mesenchymal Stem Cell-Derived Extracellular Vesicles: A Potential Treatment for Glioblastoma. Brain Sci 2024; 14:1058. [PMID: 39595821 PMCID: PMC11591642 DOI: 10.3390/brainsci14111058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is an extremely aggressive brain tumor that has few available treatment options and a dismal prognosis. Recent research has highlighted the potential of extracellular vesicles (MSC-EVs) produced from mesenchymal stem cells as a potential treatment approach for GBM. MSC-EVs, including exosomes, microvesicles, and apoptotic bodies, perform a significant function in cellular communication and have shown promise in mediating anti-tumor effects. PURPOSE This systematic literature review aims to consolidate current findings on the therapeutic potential of MSC-EVs in GBM treatment. METHODS A systematic search was conducted across major medical databases (PubMed, Web of Science, and Scopus) up to September 2024 to identify studies investigating the use of MSC-derived EVs in GBM therapy. Keywords included "extracellular vesicles", "mesenchymal stem cells", "targeted therapies", "outcomes", "adverse events", "glioblastoma", and "exosomes". Inclusion criteria were studies published in English involving GBM models both in vivo and in vitro and those reporting on therapeutic outcomes of MSC-EVs. Data were extracted and analyzed based on EV characteristics, mechanisms of action, and therapeutic efficacy. RESULTS The review identified several key studies demonstrating the anti-tumor effects of MSC-EVs in GBM models. A total of three studies were included, focusing on studies conducted between 2021 and 2023. The review included three studies that collectively enrolled a total of 18 patients. These studies were distributed across two years, with two trials published in 2023 (66.7%) and one in 2021 (33.3%). The mean age of the participants ranged from 37 to 57 years. In terms of gender distribution, males were the predominant group in all studies. Prior to receiving MSC-EV therapy, all patients had undergone standard treatments for GBM, including surgery, chemotherapy (CT), and, in some cases, radiation therapy (RT). In all three studies, the targeted treatment involved the administration of herpes simplex virus thymidine kinase (HSVtk) gene therapy delivered to the tumor site, then 14 days of ganciclovir treatment. Outcomes across the studies indicated varying levels of efficacy for the MSC-EV-based therapy. The larger 2023 study reported fewer encouraging outcomes, with a median PFS of 11.0 months (95% CI: 8.3-13.7) and a median OS of 16.0 months (95% CI: 14.3-17.7). Adverse effects were reported in only one of the studies, the 2021 trial, where patients experienced mild-to-moderate side effects, including fever, headache, and cerebrospinal fluid leukocytosis. A total of 11 studies on preclinical trials, using in vitro and in vivo models, were included, covering publications from 2010 to 2024. The studies utilized MSCs as delivery systems for various therapeutic agents (interleukin 12, interleukin 7, doxorubicin, paclitaxel), reflecting the versatility of these cells in targeted cancer therapies. CONCLUSIONS MSC-derived EVs represent a promising therapeutic approach for GBM, offering multiple mechanisms to inhibit tumor growth and enhance treatment efficacy. Their ability to deliver bioactive molecules and modulate the tumor microenvironment underscores their potential as a novel, cell-free therapeutic strategy. Future studies should optimize EV production and delivery methods and fully understand their long-term effects in clinical settings to harness their therapeutic potential in GBM treatment.
Collapse
Affiliation(s)
- Edoardo Agosti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Division of Neurosurgery, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy; (E.A.)
| | - Sara Antonietti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Division of Neurosurgery, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy; (E.A.)
| | - Tamara Ius
- Neurosurgery Unit, Head-Neck and NeuroScience Department, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Marco Maria Fontanella
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Division of Neurosurgery, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy; (E.A.)
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Pier Paolo Panciani
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Division of Neurosurgery, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy; (E.A.)
| |
Collapse
|
4
|
Wu C, Zhai Y, Ji J, Yang X, Ye L, Lu G, Shi X, Zhai G. Advances in tumor stroma-based targeted delivery. Int J Pharm 2024; 664:124580. [PMID: 39142464 DOI: 10.1016/j.ijpharm.2024.124580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/06/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
The tumor stroma plays a crucial role in tumor progression, and the interactions between the extracellular matrix, tumor cells, and stromal cells collectively influence tumor progression and the efficacy of therapeutic agents. Currently, utilizing components of the tumor stroma for drug delivery is a noteworthy strategy. A number of targeted drug delivery systems designed based on tumor stromal components are entering clinical trials. Therefore, this paper provides a thorough examination of the function of tumor stroma in the advancement of targeted drug delivery systems. One approach is to use tumor stromal components for targeted drug delivery, which includes certain stromal components possessing inherent targeting capabilities like HA, laminin, along with targeting stromal cells homologously. Another method entails directly focusing on tumor stromal components to reshape the tumor stroma and facilitate drug delivery. These drug delivery systems exhibit great potential in more effective cancer therapy strategies, such as precise targeting, enhanced penetration, improved safety profile, and biocompatibility. Ultimately, the deployment of these drug delivery systems can deepen our comprehension of tumor stroma and the advanced development of corresponding drug delivery systems.
Collapse
Affiliation(s)
- Chunyan Wu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Yujia Zhai
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84124, United States
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Lei Ye
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Guoliang Lu
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Xiaoqun Shi
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
5
|
Kangari P, Salahlou R, Vandghanooni S. Harnessing the Therapeutic Potential of Mesenchymal Stem Cells in Cancer Treatment. Adv Pharm Bull 2024; 14:574-590. [PMID: 39494266 PMCID: PMC11530882 DOI: 10.34172/apb.2024.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 11/05/2024] Open
Abstract
Cancer, as a complicated disease, is considered to be one of the major leading causes of death globally. Although various cancer therapeutic strategies have been established, however, some issues confine the efficacies of the treatments. In recent decades researchers for finding efficient therapeutic solutions have extensively focused on the abilities of stem cells in cancer inhibition. Mesenchymal stem cells (MSCs) are multipotent stromal cells that can the most widely extracted from various sources such as the bone marrow (BM), placenta, umbilical cord (UC), menses blood, Wharton's jelly (WJ), adipose tissue and dental pulp (DP). These cells are capable of differentiating into the osteoblasts, chondrocytes, and adipocytes. Due to the unique characteristics of MSCs such as paracrine effects, immunomodulation, tumor-tropism, and migration, they are considered promising candidates for cancer therapeutics. Currently, MSCs are an excellent living carrier for delivery of therapeutic genes and chemical agents to target tumor sites. Also, exosomes, the most important extracellular vesicle released from MSCs, act as a strong cell-free tool for cancer therapeutics. MSCs can prevent cancer progression by inhibiting several signaling pathways, such as wnt/β-catenin and PI3K/AKT/mTOR. However, there are several challenges associated with the use of MSCs and their exosomes in the field of therapy that need to be considered. This review explores the significance of MSCs in cell-based therapy, focusing on their homing properties and immunomodulatory characteristics. It also examines the potential of using MSCs as carriers for delivery of anticancer agents and their role in modulating the signal transduction pathways of cancer cells.
Collapse
Affiliation(s)
- Parisa Kangari
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Salahlou
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Vandghanooni
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Oishi T, Koizumi S, Kurozumi K. Mesenchymal stem cells as therapeutic vehicles for glioma. Cancer Gene Ther 2024; 31:1306-1314. [PMID: 38654128 DOI: 10.1038/s41417-024-00775-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Glioma is a disease with a poor prognosis despite the availability of multimodality treatments, and the development of novel therapies is urgently needed. Challenges in glioma treatment include the difficulty for drugs to cross the blood-brain barrier when administered systemically and poor drug diffusion when administered locally. Mesenchymal stem cells exhibit advantages for glioma therapy because of their ability to pass through the blood-brain barrier and migrate to tumor cells and their tolerance to the immune system. Therefore, mesenchymal stem cells have been explored as vehicles for various therapeutic agents for glioma treatment. Mesenchymal stem cells loaded with chemotherapeutic drugs show improved penetration and tumor accumulation. For gene therapy, mesenchymal stem cells can be used as vehicles for suicide genes, the so-called gene-directed enzyme prodrug therapy. Mesenchymal stem cell-based oncolytic viral therapies have been attempted in recent years to enhance the efficacy of infection against the tumor, viral replication, and distribution of viral particles. Many uncertainties remain regarding the function and behavior of mesenchymal stem cells in gliomas. However, strategies to increase mesenchymal stem cell migration to gliomas may improve the delivery of therapeutic agents and enhance their anti-tumor effects, representing promising potential for patient treatment.
Collapse
Affiliation(s)
- Tomoya Oishi
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shinichiro Koizumi
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuhiko Kurozumi
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| |
Collapse
|
7
|
Boleti APDA, Jacobowski AC, Monteiro-Alfredo T, Pereira APR, Oliva MLV, Maria DA, Macedo MLR. Cutaneous Melanoma: An Overview of Physiological and Therapeutic Aspects and Biotechnological Use of Serine Protease Inhibitors. Molecules 2024; 29:3891. [PMID: 39202970 PMCID: PMC11357276 DOI: 10.3390/molecules29163891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Metastatic melanoma stands out as the most lethal form of skin cancer because of its high propensity to spread and its remarkable resistance to treatment methods. METHODS In this review article, we address the incidence of melanoma worldwide and its staging phases. We thoroughly investigate the different melanomas and their associated risk factors. In addition, we underscore the principal therapeutic goals and pharmacological methods that are currently used in the treatment of melanoma. RESULTS The implementation of targeted therapies has contributed to improving the approach to patients. However, because of the emergence of resistance early in treatment, overall survival and progression-free periods continue to be limited. CONCLUSIONS We provide new insights into plant serine protease inhibitor therapeutics, supporting high-throughput drug screening soon, and seeking a complementary approach to explain crucial mechanisms associated with melanoma.
Collapse
Affiliation(s)
- Ana Paula De Araújo Boleti
- Laboratory of Protein Purification and Their Biological Functions, Food Technology and Public Health Unit, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (A.P.D.A.B.); (A.C.J.); (T.M.-A.); (A.P.R.P.)
| | - Ana Cristina Jacobowski
- Laboratory of Protein Purification and Their Biological Functions, Food Technology and Public Health Unit, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (A.P.D.A.B.); (A.C.J.); (T.M.-A.); (A.P.R.P.)
| | - Tamaeh Monteiro-Alfredo
- Laboratory of Protein Purification and Their Biological Functions, Food Technology and Public Health Unit, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (A.P.D.A.B.); (A.C.J.); (T.M.-A.); (A.P.R.P.)
| | - Ana Paula Ramos Pereira
- Laboratory of Protein Purification and Their Biological Functions, Food Technology and Public Health Unit, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (A.P.D.A.B.); (A.C.J.); (T.M.-A.); (A.P.R.P.)
| | - Maria Luiza Vilela Oliva
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, SP, Brazil;
| | - Durvanei Augusto Maria
- Divisão de Ciências Fisiológicas e Químicas, Serviço de Bioquímica, Instituto Butantan, São Paulo 05585-000, SP, Brazil;
| | - Maria Lígia Rodrigues Macedo
- Laboratory of Protein Purification and Their Biological Functions, Food Technology and Public Health Unit, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (A.P.D.A.B.); (A.C.J.); (T.M.-A.); (A.P.R.P.)
- Department of Pharmaceutical Sciences, Food, and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| |
Collapse
|
8
|
Tang J, Chen Y, Wang C, Xia Y, Yu T, Tang M, Meng K, Yin L, Yang Y, Shen L, Xing H, Mao X. The role of mesenchymal stem cells in cancer and prospects for their use in cancer therapeutics. MedComm (Beijing) 2024; 5:e663. [PMID: 39070181 PMCID: PMC11283587 DOI: 10.1002/mco2.663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are recruited by malignant tumor cells to the tumor microenvironment (TME) and play a crucial role in the initiation and progression of malignant tumors. This role encompasses immune evasion, promotion of angiogenesis, stimulation of cancer cell proliferation, correlation with cancer stem cells, multilineage differentiation within the TME, and development of treatment resistance. Simultaneously, extensive research is exploring the homing effect of MSCs and MSC-derived extracellular vesicles (MSCs-EVs) in tumors, aiming to design them as carriers for antitumor substances. These substances are targeted to deliver antitumor drugs to enhance drug efficacy while reducing drug toxicity. This paper provides a review of the supportive role of MSCs in tumor progression and the associated molecular mechanisms. Additionally, we summarize the latest therapeutic strategies involving engineered MSCs and MSCs-EVs in cancer treatment, including their utilization as carriers for gene therapeutic agents, chemotherapeutics, and oncolytic viruses. We also discuss the distribution and clearance of MSCs and MSCs-EVs upon entry into the body to elucidate the potential of targeted therapies based on MSCs and MSCs-EVs in cancer treatment, along with the challenges they face.
Collapse
Affiliation(s)
- Jian Tang
- Central LaboratoryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
| | - Yu Chen
- Central LaboratoryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
- Medical Affairs, Xiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
| | - Chunhua Wang
- Department of Clinical LaboratoryXiangyang No. 1 People's HospitalHubei University of MedicineXiangyangHubei ProvinceChina
| | - Ying Xia
- Central LaboratoryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
| | - Tingyu Yu
- Central LaboratoryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
| | - Mengjun Tang
- Central LaboratoryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
| | - Kun Meng
- Central LaboratoryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
| | - Lijuan Yin
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Industrial MicrobiologyMinistry of EducationTianjin Key Laboratory of Industry MicrobiologyNational and Local United Engineering Lab of Metabolic Control Fermentation TechnologyChina International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal ChemistryCollege of BiotechnologyTianjin University of Science & TechnologyTianjinChina
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and ImmunityNational Clinical Research Center for Infectious DiseaseState Key Discipline of Infectious DiseaseShenzhen Third People's HospitalSecond Hospital Affiliated to Southern University of Science and TechnologyShenzhenChina
| | - Liang Shen
- Central LaboratoryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
| | - Hui Xing
- Central LaboratoryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
- Department of Obstetrics and GynecologyXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and SciencesXiangyangChina
| | - Xiaogang Mao
- Central LaboratoryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
- Department of Obstetrics and GynecologyXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and SciencesXiangyangChina
| |
Collapse
|
9
|
Kaviani M, Soleimanian S, Keshtkar S, Azarpira N, Asvar Z, Pakbaz S. Molecular Prospective on Malignant Transformation of Mesenchymal Stem Cells: An Issue in Cell Therapy. Cell Reprogram 2024; 26:96-106. [PMID: 38917438 DOI: 10.1089/cell.2024.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
Mesenchymal stem cell (MSCs) therapy, as a rapidly developing area of medicine, holds great promise for the treatment of a variety of medical conditions. MSCs are multipotent stem cells that can be isolated from various tissues and could self-renew and differentiate. They secrete cytokines and trophic factors that create a regenerative microenvironment and have immunomodulatory properties. Although clinical trials have been conducted with MSCs in various diseases, concerns regarding the possibility of malignant transformation of these cells have been raised. The studies showed a higher rate of hematological malignancy and carcinogenesis in experimental models after MSC transplantation. The mechanisms underlying malignant transformation of MSCs are complex and not fully understood, but they are believed to involve the presence of special signaling molecules and alterations in cell behavior regulation pathways. Possible pathways that lead to MSCs' oncogenic transformation occur through two mechanisms: spontaneous and stimulated malignant transformation, including cell fusion, fusion proteins, and the tumor microenvironment. MSC-based therapies have the potential to revolutionize medicine, and addressing the issue of malignancy is crucial to ensure their safety and efficacy. Therefore, the purpose of the present review is to summarize the potential mechanisms of the malignant transformation of MSCs. [Figure: see text].
Collapse
Affiliation(s)
- Maryam Kaviani
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeede Soleimanian
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Keshtkar
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Asvar
- Nanotechnology School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Pakbaz
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine & Pathobiology, Mount Sinai Hospital, Toronto, ON, Canada
| |
Collapse
|
10
|
Pachane BC, Selistre-de-Araujo HS. The Role of αvβ3 Integrin in Cancer Therapy Resistance. Biomedicines 2024; 12:1163. [PMID: 38927370 PMCID: PMC11200931 DOI: 10.3390/biomedicines12061163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/16/2023] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
A relevant challenge for the treatment of patients with neoplasia is the development of resistance to chemo-, immune-, and radiotherapies. Although the causes of therapy resistance are poorly understood, evidence suggests it relies on compensatory mechanisms that cells develop to replace specific intracellular signaling that should be inactive after pharmacological inhibition. One such mechanism involves integrins, membrane receptors that connect cells to the extracellular matrix and have a crucial role in cell migration. The blockage of one specific type of integrin is frequently compensated by the overexpression of another integrin dimer, generally supporting cell adhesion and migration. In particular, integrin αvβ3 is a key receptor involved in tumor resistance to treatments with tyrosine kinase inhibitors, immune checkpoint inhibitors, and radiotherapy; however, the specific inhibition of the αvβ3 integrin is not enough to avoid tumor relapse. Here, we review the role of integrin αvβ3 in tumor resistance to therapy and the mechanisms that have been proposed thus far. Despite our focus on the αvβ3 integrin, it is important to note that other integrins have also been implicated in drug resistance and that the collaborative action between these receptors should not be neglected.
Collapse
Affiliation(s)
- Bianca Cruz Pachane
- Biochemistry and Molecular Biology Laboratory, Department of Physiological Sciences, Universidade Federal de São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil;
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Heloisa S. Selistre-de-Araujo
- Biochemistry and Molecular Biology Laboratory, Department of Physiological Sciences, Universidade Federal de São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil;
| |
Collapse
|
11
|
Gholap AD, Kapare HS, Pagar S, Kamandar P, Bhowmik D, Vishwakarma N, Raikwar S, Garkal A, Mehta TA, Rojekar S, Hatvate N, Mohanto S. Exploring modified chitosan-based gene delivery technologies for therapeutic advancements. Int J Biol Macromol 2024; 260:129581. [PMID: 38266848 DOI: 10.1016/j.ijbiomac.2024.129581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/26/2023] [Accepted: 01/06/2024] [Indexed: 01/26/2024]
Abstract
One of the critical steps in gene therapy is the successful delivery of the genes. Immunogenicity and toxicity are major issues for viral gene delivery systems. Thus, non-viral vectors are explored. A cationic polysaccharide like chitosan could be used as a nonviral gene delivery vector owing to its significant interaction with negatively charged nucleic acid and biomembrane, providing effective cellular uptake. However, the native chitosan has issues of targetability, unpacking ability, and solubility along with poor buffer capability, hence requiring modifications for effective use in gene delivery. Modified chitosan has shown that the "proton sponge effect" involved in buffering the endosomal pH results in osmotic swelling owing to the accumulation of a greater amount of proton and chloride along with water. The major challenges include limited exploration of chitosan as a gene carrier, the availability of high-purity chitosan for toxicity reduction, and its immunogenicity. The genetic drugs are in their infancy phase and require further exploration for effective delivery of nucleic acid molecules as FDA-approved marketed formulations soon.
Collapse
Affiliation(s)
- Amol D Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Harshad S Kapare
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pune 411018, Maharashtra, India
| | - Sakshi Pagar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Pallavi Kamandar
- Institute of Chemical Technology, Mumbai, Marathwada Campus, Jalna 431203, India
| | - Deblina Bhowmik
- Institute of Chemical Technology, Mumbai, Marathwada Campus, Jalna 431203, India
| | - Nikhar Vishwakarma
- Department of Pharmacy, Gyan Ganga Institute of Technology and Sciences, Jabalpur 482003, Madhya Pradesh, India
| | - Sarjana Raikwar
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Central University, Sagar 470003, Madhya Pradesh, India
| | - Atul Garkal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujrat, India
| | - Tejal A Mehta
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujrat, India
| | - Satish Rojekar
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Navnath Hatvate
- Institute of Chemical Technology, Mumbai, Marathwada Campus, Jalna 431203, India.
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangaluru, Karnataka 575018, India
| |
Collapse
|
12
|
Wang J, Deng G, Wang S, Li S, Song P, Lin K, Xu X, He Z. Enhancing regenerative medicine: the crucial role of stem cell therapy. Front Neurosci 2024; 18:1269577. [PMID: 38389789 PMCID: PMC10881826 DOI: 10.3389/fnins.2024.1269577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Stem cells offer new therapeutic avenues for the repair and replacement of damaged tissues and organs owing to their self-renewal and multipotent differentiation capabilities. In this paper, we conduct a systematic review of the characteristics of various types of stem cells and offer insights into their potential applications in both cellular and cell-free therapies. In addition, we provide a comprehensive summary of the technical routes of stem cell therapy and discuss in detail current challenges, including safety issues and differentiation control. Although some issues remain, stem cell therapy demonstrates excellent potential in the field of regenerative medicine and provides novel tactics and methodologies for managing a wider spectrum of illnesses and traumas.
Collapse
Affiliation(s)
- Jipeng Wang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Deng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuyi Wang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuang Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Peng Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kun Lin
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaoxiang Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zuhong He
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
13
|
Chiariello M, Inzalaco G, Barone V, Gherardini L. Overcoming challenges in glioblastoma treatment: targeting infiltrating cancer cells and harnessing the tumor microenvironment. Front Cell Neurosci 2023; 17:1327621. [PMID: 38188666 PMCID: PMC10767996 DOI: 10.3389/fncel.2023.1327621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Glioblastoma (GB) is a highly malignant primary brain tumor with limited treatment options and poor prognosis. Despite current treatment approaches, including surgical resection, radiation therapy, and chemotherapy with temozolomide (TMZ), GB remains mostly incurable due to its invasive growth pattern, limited drug penetration beyond the blood-brain barrier (BBB), and resistance to conventional therapies. One of the main challenges in GB treatment is effectively eliminating infiltrating cancer cells that remain in the brain parenchyma after primary tumor resection. We've reviewed the most recent challenges and surveyed the potential strategies aimed at enhancing local treatment outcomes.
Collapse
Affiliation(s)
- Mario Chiariello
- Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche, Via Fiorentina, Siena, Italy
- Core Research Laboratory (CRL), Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Via Fiorentina, Siena, Italy
| | - Giovanni Inzalaco
- Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche, Via Fiorentina, Siena, Italy
- Core Research Laboratory (CRL), Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Via Fiorentina, Siena, Italy
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Virginia Barone
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Lisa Gherardini
- Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche, Via Fiorentina, Siena, Italy
- Core Research Laboratory (CRL), Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Via Fiorentina, Siena, Italy
| |
Collapse
|
14
|
Nafe R, Hattingen E. Cellular Components of the Tumor Environment in Gliomas-What Do We Know Today? Biomedicines 2023; 12:14. [PMID: 38275375 PMCID: PMC10813739 DOI: 10.3390/biomedicines12010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
A generation ago, the molecular properties of tumor cells were the focus of scientific interest in oncology research. Since then, it has become increasingly apparent that the tumor environment (TEM), whose major components are non-neoplastic cell types, is also of utmost importance for our understanding of tumor growth, maintenance and resistance. In this review, we present the current knowledge concerning all cellular components within the TEM in gliomas, focusing on their molecular properties, expression patterns and influence on the biological behavior of gliomas. Insight into the TEM of gliomas has expanded considerably in recent years, including many aspects that previously received only marginal attention, such as the phenomenon of phagocytosis of glioma cells by macrophages and the role of the thyroid-stimulating hormone on glioma growth. We also discuss other topics such as the migration of lymphocytes into the tumor, phenotypic similarities between chemoresistant glioma cells and stem cells, and new clinical approaches with immunotherapies involving the cells of TEM.
Collapse
Affiliation(s)
- Reinhold Nafe
- Department of Neuroradiology, Clinics of Johann Wolfgang Goethe-University, Schleusenweg 2-16, D-60528 Frankfurt am Main, Germany;
| | | |
Collapse
|