1
|
Bongers-Karmaoui MN, Hirsch A, Budde RPJ, Roest AAW, Jaddoe VWV, Gaillard R. Physical exercise and cardiovascular response: design and implementation of a pediatric CMR cohort study. Int J Cardiovasc Imaging 2023; 39:2575-2587. [PMID: 37801171 PMCID: PMC10691979 DOI: 10.1007/s10554-023-02950-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/02/2023] [Indexed: 10/07/2023]
Abstract
To examine feasibility and reproducibility and to evaluate the cardiovascular response to an isometric handgrip exercise in low-risk pediatric population using Cardiovascular Magnetic Resonance measurements. In a subgroup of 207 children with a mean age of 16 years participating in a population-based prospective cohort study, children performed an isometric handgrip exercise. During rest and exercise, continuous heart rate and blood pressure were measured. Cardiovascular magnetic resonance (CMR) measurements included left ventricular mass, aortic distensibility and pulse wave velocity at rest and left ventricular end-diastolic and end-systolic volumes, ejection fraction, stroke volume and cardiac output during rest and exercise. 207 children had successful CMR measurements in rest and 184 during exercise. We observed good reproducibility for all cardiac measurements. Heart rate increased with a mean ± standard deviation of 42.6% ± 20.0 and blood pressure with 6.4% ± 7.0, 5.4% ± 6.1 and 11.0% ± 8.3 for systolic, diastolic and mean arterial blood pressure respectively (p-values < 0.05). During exercise, left ventricular end-diastolic and end-systolic volumes and cardiac output increased, whereas left ventricular ejection fraction slightly decreased (p-values < 0.05). Stroke volume did not change significantly. A sustained handgrip exercise of 7 min at 30-40% maximal voluntary contraction is a feasible exercise-test during CMR in a healthy pediatric population, which leads to significant changes in heart rate, blood pressure and functional measurements of the left ventricle in response to exercise. This approach offers great novel opportunities to detect subtle differences in cardiovascular health.
Collapse
Affiliation(s)
- Meddy N Bongers-Karmaoui
- The Generation R Study Group, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Pediatrics, Sophia Children's Hospital, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Alexander Hirsch
- Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ricardo P J Budde
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Arno A W Roest
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Pediatrics, Sophia Children's Hospital, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Romy Gaillard
- The Generation R Study Group, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
- Department of Pediatrics, Sophia Children's Hospital, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
2
|
Mézquita AJV, Biavati F, Falk V, Alkadhi H, Hajhosseiny R, Maurovich-Horvat P, Manka R, Kozerke S, Stuber M, Derlin T, Channon KM, Išgum I, Coenen A, Foellmer B, Dey D, Volleberg RHJA, Meinel FG, Dweck MR, Piek JJ, van de Hoef T, Landmesser U, Guagliumi G, Giannopoulos AA, Botnar RM, Khamis R, Williams MC, Newby DE, Dewey M. Clinical quantitative coronary artery stenosis and coronary atherosclerosis imaging: a Consensus Statement from the Quantitative Cardiovascular Imaging Study Group. Nat Rev Cardiol 2023; 20:696-714. [PMID: 37277608 DOI: 10.1038/s41569-023-00880-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/19/2023] [Indexed: 06/07/2023]
Abstract
The detection and characterization of coronary artery stenosis and atherosclerosis using imaging tools are key for clinical decision-making in patients with known or suspected coronary artery disease. In this regard, imaging-based quantification can be improved by choosing the most appropriate imaging modality for diagnosis, treatment and procedural planning. In this Consensus Statement, we provide clinical consensus recommendations on the optimal use of different imaging techniques in various patient populations and describe the advances in imaging technology. Clinical consensus recommendations on the appropriateness of each imaging technique for direct coronary artery visualization were derived through a three-step, real-time Delphi process that took place before, during and after the Second International Quantitative Cardiovascular Imaging Meeting in September 2022. According to the Delphi survey answers, CT is the method of choice to rule out obstructive stenosis in patients with an intermediate pre-test probability of coronary artery disease and enables quantitative assessment of coronary plaque with respect to dimensions, composition, location and related risk of future cardiovascular events, whereas MRI facilitates the visualization of coronary plaque and can be used in experienced centres as a radiation-free, second-line option for non-invasive coronary angiography. PET has the greatest potential for quantifying inflammation in coronary plaque but SPECT currently has a limited role in clinical coronary artery stenosis and atherosclerosis imaging. Invasive coronary angiography is the reference standard for stenosis assessment but cannot characterize coronary plaques. Finally, intravascular ultrasonography and optical coherence tomography are the most important invasive imaging modalities for the identification of plaques at high risk of rupture. The recommendations made in this Consensus Statement will help clinicians to choose the most appropriate imaging modality on the basis of the specific clinical scenario, individual patient characteristics and the availability of each imaging modality.
Collapse
Affiliation(s)
| | - Federico Biavati
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Volkmar Falk
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Charité - Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research) Partner Site, Berlin, Germany
- Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
| | - Hatem Alkadhi
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Reza Hajhosseiny
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Pál Maurovich-Horvat
- Department of Radiology, Medical Imaging Center, Semmelweis University, Budapest, Hungary
| | - Robert Manka
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, ETH Zurich, University of Zurich, Zurich, Switzerland
| | - Matthias Stuber
- Department of Radiology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Thorsten Derlin
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Keith M Channon
- Radcliffe Department of Medicine, University of Oxford and Oxford University Hospitals, Oxford, UK
| | - Ivana Išgum
- Department of Biomedical Engineering and Physics, Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Adriaan Coenen
- Department of Radiology, Erasmus University, Rotterdam, Netherlands
| | - Bernhard Foellmer
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Damini Dey
- Departments of Biomedical Sciences and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Rick H J A Volleberg
- Department of Cardiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Felix G Meinel
- Department of Radiology, University Medical Centre Rostock, Rostock, Germany
| | - Marc R Dweck
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Jan J Piek
- Department of Clinical and Experimental Cardiology and Cardiovascular Sciences, Amsterdam UMC, Heart Center, University of Amsterdam, Amsterdam, Netherlands
| | - Tim van de Hoef
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ulf Landmesser
- DZHK (German Centre for Cardiovascular Research) Partner Site, Berlin, Germany
- Department of Cardiology, Deutsches Herzzentrum der Charité (DHZC), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Giulio Guagliumi
- Division of Cardiology, IRCCS Galeazzi Sant'Ambrogio Hospital, Milan, Italy
| | - Andreas A Giannopoulos
- Department of Nuclear Medicine, Cardiac Imaging, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - René M Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Millennium Institute for Intelligent Healthcare Engineering, Santiago, Chile
| | - Ramzi Khamis
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - David E Newby
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Marc Dewey
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research) Partner Site, Berlin, Germany.
- Deutsches Herzzentrum der Charité (DHZC), Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Berlin Institute of Health, Campus Charité Mitte, Berlin, Germany.
| |
Collapse
|
3
|
Minhas AS, Goerlich E, Corretti MC, Arbab-Zadeh A, Kelle S, Leucker T, Lerman A, Hays AG. Imaging Assessment of Endothelial Function: An Index of Cardiovascular Health. Front Cardiovasc Med 2022; 9:778762. [PMID: 35498006 PMCID: PMC9051238 DOI: 10.3389/fcvm.2022.778762] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/28/2022] [Indexed: 11/18/2022] Open
Abstract
Endothelial dysfunction is a key early mechanism in a variety of cardiovascular diseases and can be observed in larger conduit arteries as well as smaller resistance vessels (microvascular dysfunction). The presence of endothelial dysfunction is a strong prognosticator for cardiovascular events and mortality, and assessment of endothelial function can aid in selecting therapies and testing their response. While the gold standard method of measuring coronary endothelial function remains invasive angiography, several non-invasive imaging techniques have emerged for investigating both coronary and peripheral endothelial function. In this review, we will explore and summarize the current invasive and non-invasive modalities available for endothelial function assessment for clinical and research use, and discuss the strengths, limitations and future applications of each technique.
Collapse
Affiliation(s)
- Anum S. Minhas
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Erin Goerlich
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mary C. Corretti
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Armin Arbab-Zadeh
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sebastian Kelle
- Department of Internal Medicine and Cardiology, German Heart Center Berlin, Berlin, Germany
| | - Thorsten Leucker
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Amir Lerman
- Division of Ischemic Heart Disease and Critical Care, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Allison G. Hays
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
4
|
Hays AG, Schär M, Bonanno G, Lai S, Meyer J, Afework Y, Steinberg A, Stradley S, Gerstenblith G, Weiss RG. Randomized Trial of Anti-inflammatory Medications and Coronary Endothelial Dysfunction in Patients With Stable Coronary Disease. Front Cardiovasc Med 2021; 8:728654. [PMID: 34722661 PMCID: PMC8553961 DOI: 10.3389/fcvm.2021.728654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/14/2021] [Indexed: 12/03/2022] Open
Abstract
Aims: Inflammation plays a critical role in the pathogenesis of coronary artery disease (CAD), however the impact of anti-inflammatory therapies to reduce those processes which promote atherosclerosis in CAD patients is unknown. We aimed to test the hypothesis that anti-inflammatory approaches improve impaired coronary endothelial function (CEF), a driver of coronary atherosclerosis, in stable CAD patients. Methods and Results: We performed a single-center, randomized, placebo-controlled, double-blinded trial to assess whether low dose methotrexate (MTX), low dose colchicine (LDC), and/or their combination (MTX+LDC), improves CEF using non-invasive MRI measures in patients with stable CAD (N = 94). The primary endpoint was the MRI-detected change in coronary cross-sectional area from rest to isometric handgrip exercise (IHE), a predominantly nitric oxide-dependent endothelial dependent stressor. Coronary and systemic endothelial endpoints, and serum inflammatory markers, were collected at baseline, 8 and 24 weeks. Anti-inflammatory study drugs were well-tolerated. There were no significant differences in any of the CEF parameters among the four groups (MTX, LDC, MTX+LDC, placebo) at 8 or 24 weeks. Serum markers of inflammation and systemic endothelial function measures were also not significantly different among the groups. Conclusion: This is the first study to examine the effects of the anti-inflammatory approaches using MTX, LDC, and/or the combination in stable CAD patients on CEF, a marker of vascular health and the primary endpoint of the study. Although these anti-inflammatory approaches were relatively well-tolerated, they did not improve coronary endothelial function in patients with stable CAD. Clinical Trial Registration:www.clinicaltrials.gov, identifier: NCT02366091.
Collapse
Affiliation(s)
- Allison G Hays
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Michael Schär
- Division of Magnetic Resonance Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Gabriele Bonanno
- Division of Magnetic Resonance Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Shenghan Lai
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States.,Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Joseph Meyer
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yohannes Afework
- Division of Magnetic Resonance Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Angela Steinberg
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Samuel Stradley
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Gary Gerstenblith
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Robert G Weiss
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Division of Magnetic Resonance Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
5
|
Hossain T, Anan N, Arafat MT. The effects of plaque morphological characteristics on the post-stenotic flow in left main coronary artery bifurcation. Biomed Phys Eng Express 2021; 7. [PMID: 34425569 DOI: 10.1088/2057-1976/ac202c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022]
Abstract
Local post-stenotic hemodynamics has critical influence in the atherosclerotic plaque progression occurring in susceptible arterial sites, in particular the left main coronary artery (LMCA) bifurcation. Understanding the effects of plaque morphological characteristics: stenosis severity (SS), eccentricity index (EI) and lesion length (LL) on the post-stenotic flow behavior can significantly improve treatment planning. In order to investigate these effects, we have employed computational fluid dynamics (CFD) simulations in twenty computer-generated and five patient-specific LMCA models and the hemodynamic parameters: velocity, pressure (P), wall pressure gradient (WPG), wall shear stress (WSS), time averaged wall shear stress (TAWSS), oscillatory shear index (OSI), relative residence time (RRT) and helicity intensity (h2) were analyzed. Our results revealed that the effect of stenosis eccentricity varied significantly for different values of stenosis severity and lesion length. Regions with low WSS, low TAWSS and high RRT were more prominent in models having higher stenosis severity. For smaller lesion length, at low and moderate stenosis severity, surface area with low TAWSS and high RRT decreased with increasing eccentricity index, whereas for high stenosis severity models, low TAWSS region and average RRT values increased with eccentricity. However, for models with longer lesion length, regions with high OSI and RRT overall increased gradually with eccentricity. The helicity intensity (h2) of all models remained very low except at the most eccentric model with longer lesion length. The presence of very high helical flow in this model suggests the possibility of atheroprotective flow. It can be concluded that all plaque morphological characteristics covered under this investigation play an important role in plaque progression.
Collapse
Affiliation(s)
- Tahura Hossain
- Department of Biomedical Engineering, Military Institute of Science and Technology (MIST), Dhaka-1216, Bangladesh
| | - Noushin Anan
- Department of Biomedical Engineering, Military Institute of Science and Technology (MIST), Dhaka-1216, Bangladesh
| | - M Tarik Arafat
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka-1205, Bangladesh
| |
Collapse
|
6
|
A randomized, placebo-controlled, double-blinded clinical trial of colchicine to improve vascular health in people living with HIV. AIDS 2021; 35:1041-1050. [PMID: 33587443 PMCID: PMC8916096 DOI: 10.1097/qad.0000000000002845] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVES People living with HIV (PWH) experience an increased burden of coronary artery disease (CAD) believed to be related, in part, to an interplay of chronically increased inflammation and traditional risk factors. Recent trials suggest cardiovascular benefits of the anti-inflammatory, colchicine, in HIV-seronegative CAD patients. However, the impact of colchicine on impaired vascular health, as measured by coronary endothelial function (CEF), an independent contributor to CAD, has not been studied in PWH. We tested the hypothesis that colchicine improves vascular health in PWH. DESIGN This was a randomized, placebo-controlled, double-blinded trial in 81 PWH to test whether low-dose colchicine (0.6 mg daily) improves CEF over 8-24 weeks. METHODS Coronary and systemic endothelial function and serum inflammatory markers were measured at baseline, and at 8 and 24 weeks. The primary endpoint was CEF, measured as the change in coronary blood flow from rest to that during an isometric handgrip exercise, an endothelial-dependent stressor, measured with non-invasive MRI at 8 weeks. RESULTS Colchicine was well tolerated and not associated with increased adverse events. However, there were no significant improvements in coronary or systemic endothelial function or reductions in serum inflammatory markers at 8 or 24 weeks with colchicine as compared to placebo. CONCLUSIONS In PWH with no history of CAD, low-dose colchicine was well tolerated but did not improve impaired coronary endothelial function, a predictor of cardiovascular events. These findings suggest that this anti-inflammatory approach using colchicine in PWH does not improve vascular health, the central, early driver of coronary atherosclerosis.
Collapse
|
7
|
Bongers-Karmaoui MN, Jaddoe VWV, Roest AAW, Gaillard R. The Cardiovascular Stress Response as Early Life Marker of Cardiovascular Health: Applications in Population-Based Pediatric Studies-A Narrative Review. Pediatr Cardiol 2020; 41:1739-1755. [PMID: 32879997 PMCID: PMC7695663 DOI: 10.1007/s00246-020-02436-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
Abstract
Stress inducement by physical exercise requires major cardiovascular adaptations in both adults and children to maintain an adequate perfusion of the body. As physical exercise causes a stress situation for the cardiovascular system, cardiovascular exercise stress tests are widely used in clinical practice to reveal subtle cardiovascular pathology in adult and childhood populations with cardiac and cardiovascular diseases. Recently, evidence from small studies suggests that the cardiovascular stress response can also be used within research settings to provide novel insights on subtle differences in cardiovascular health in non-diseased adults and children, as even among healthy populations an abnormal response to physical exercise is associated with an increased risk of cardiovascular diseases. This narrative review is specifically focused on the possibilities of using the cardiovascular stress response to exercise combined with advanced imaging techniques in pediatric population-based studies focused on the early origins of cardiovascular diseases. We discuss the physiology of the cardiovascular stress response to exercise, the type of physical exercise used to induce the cardiovascular stress response in combination with advanced imaging techniques, the obtained measurements with advanced imaging techniques during the cardiovascular exercise stress test and their associations with cardiovascular health outcomes. Finally, we discuss the potential for cardiovascular exercise stress tests to use in pediatric population-based studies focused on the early origins of cardiovascular diseases.
Collapse
Affiliation(s)
- Meddy N Bongers-Karmaoui
- The Generation R Study Group, Erasmus MC, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Arno A W Roest
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Romy Gaillard
- The Generation R Study Group, Erasmus MC, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
8
|
Javed A, Yoon A, Cen S, Nayak KS, Garg P. Feasibility of coronary endothelial function assessment using arterial spin labeled CMR. NMR IN BIOMEDICINE 2020; 33:e4183. [PMID: 31799707 PMCID: PMC6980265 DOI: 10.1002/nbm.4183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
Coronary endothelial dysfunction (CED) is an independent predictor of cardiovascular disease, but its assessment has been limited to invasive coronary angiography. Myocardial perfusion imaging using arterial spin labeled (ASL) cardiac magnetic resonance (CMR) may be an effective non-invasive alternative for detection of CED. Thirty-four patients were recruited: 10 healthy volunteers, 13 at high-risk for coronary artery disease (CAD), and 11 with established CAD. ASL-CMR was performed continuously in a single mid-short axis slice during rest, stress, and recovery. Stress was induced with sustained isometric handgrip exercise, an endothelial dependent stressor. Myocardial perfusion (MP) during rest, peak stress, and recovery were calculated and compared. After excluding subjects unable to complete the protocol or who exhibited poor data quality, 6 healthy, 10 high-risk, and 7 CAD patients were included in the analysis. Average MP (ml/g/min) was 1.31 ± 1.23, 1.61 ± 1.12, and 1.40 ± 0.97 at rest, and 1.64 ± 1.49, 2.31 ± 1.61, and 2.84 ± 1.77 during stress, for the CAD, high-risk and healthy group, respectively. The average MP response (MPstress - MPrest , ml/g/min) was 0.32 ± 1.93, 0.69 ± 1.34, and 1.44 ± 1.46 for CAD, high-risk and healthy group, respectively. MP during handgrip stress was significantly lower for both the CAD (p = 0.0005) and high-risk groups (p = 0.05) compared to the healthy volunteers. In only the healthy subjects, MP was significantly higher in stress compared to rest (p = 0.0002). Participants with CAD had significantly lower MP response compared to healthy volunteers, as detected by ASL-CMR. These findings support the feasibility of ASL-CMR for non-invasive assessment of CED.
Collapse
Affiliation(s)
- Ahsan Javed
- Ming Hsieh Department of Electrical and computer Engineering, University of Southern California, Los Angeles, California, USA
| | - Andrew Yoon
- Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Steven Cen
- Department of Neurology and Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Krishna S Nayak
- Ming Hsieh Department of Electrical and computer Engineering, University of Southern California, Los Angeles, California, USA
| | - Parveen Garg
- Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
9
|
Manning WJ. Journal of Cardiovascular Magnetic Resonance: 2017/2018 in review. J Cardiovasc Magn Reson 2019; 21:79. [PMID: 31884956 PMCID: PMC6936125 DOI: 10.1186/s12968-019-0594-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022] Open
Abstract
There were 89 articles published in the Journal of Cardiovascular Magnetic Resonance (JCMR) in 2017, including 76 original research papers, 4 reviews, 5 technical notes, 1 guideline, and 3 corrections. The volume was down slightly from 2017 with a corresponding 15% decrease in manuscript submissions from 405 to 346 and thus reflects a slight increase in the acceptance rate from 25 to 26%. The decrease in submissions for the year followed the initiation of the increased author processing charge (APC) for Society for Cardiovascular Magnetic Resonance (SCMR) members for manuscripts submitted after June 30, 2018. The quality of the submissions continues to be high. The 2018 JCMR Impact Factor (which is published in June 2019) was slightly lower at 5.1 (vs. 5.46 for 2017; as published in June 2018. The 2018 impact factor means that on average, each JCMR published in 2016 and 2017 was cited 5.1 times in 2018. Our 5 year impact factor was 5.82.In accordance with Open-Access publishing guidelines of BMC, the JCMR articles are published on-line in a continuus fashion in the chronologic order of acceptance, with no collating of the articles into sections or special thematic issues. For this reason, over the years, the Editors have felt that it is useful for the JCMR audience to annually summarize the publications into broad areas of interest or themes, so that readers can view areas of interest in a single article in relation to each other and contemporaneous JCMR publications. In this publication, the manuscripts are presented in broad themes and set in context with related literature and previously published JCMR papers to guide continuity of thought within the journal. In addition, as in the past two years, I have used this publication to also convey information regarding the editorial process and as a "State of our JCMR."This is the 12th year of JCMR as an open-access publication with BMC (formerly known as Biomed Central). The timing of the JCMR transition to the open access platform was "ahead of the curve" and a tribute to the vision of Dr. Matthias Friedrich, the SCMR Publications Committee Chair and Dr. Dudley Pennell, the JCMR editor-in-chief at the time. The open-access system has dramatically increased the reading and citation of JCMR publications and I hope that you, our authors, will continue to send your very best, high quality manuscripts to JCMR for consideration. It takes a village to run a journal and I thank our very dedicated Associate Editors, Guest Editors, Reviewers for their efforts to ensure that the review process occurs in a timely and responsible manner. These efforts have allowed the JCMR to continue as the premier journal of our field. This entire process would also not be possible without the dedication and efforts of our managing editor, Diana Gethers. Finally, I thank you for entrusting me with the editorship of the JCMR as I begin my 4th year as your editor-in-chief. It has been a tremendous experience for me and the opportunity to review manuscripts that reflect the best in our field remains a great joy and highlight of my week!
Collapse
Affiliation(s)
- Warren J Manning
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
10
|
Ko S, Lee J, Song S, Kim D, Lee SH, Cho JH. Patient-specific Hemodynamics of Severe Carotid Artery Stenosis Before and After Endarterectomy Examined by 4D Flow MRI. Sci Rep 2019; 9:18554. [PMID: 31811162 PMCID: PMC6897954 DOI: 10.1038/s41598-019-54543-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 08/28/2019] [Indexed: 11/09/2022] Open
Abstract
Carotid endarterectomy (CEA) influences the carotid endoluminal anatomy, which results in hemodynamic changes before and after surgery. We investigated the hemodynamics of severe carotid artery stenosis before and after conventional endarterectomy with/without patch repair. An in vitro experiment utilizing carotid phantoms, which underwent a procedure that emulated CEA with/without the patch repair, was performed with a high-spatiotemporal resolution using 4D flow MRI. We evaluated an abnormal region of carotids, which consists of the normalized time-averaged wall shear stress (NTA|WSS|) and the oscillatory shear index (OSI), to account for continuous high-shear regions (high NTA|WSS| and low OSI) and chaotic low-shear regions, i.e., stenosis-prone regions (low NTA|WSS| and high OSI). The use of normalized hemodynamic parameters (e.g., NTA|WSS|) allowed comparison of diverse cases with different conditions of hemodynamics and vessel geometry. We observed that the stenosis-prone regions of the carotids with patches were noticeably larger than the corresponding regions in no-patch carotids. A large recirculating flow zone found in the stenosis-prone region of the internal carotid artery (ICA) of the postoperative carotids with patches partially blocks the flow path into ICA, and consequently the flow rate was not recovered after surgery unlike an expectation.
Collapse
Affiliation(s)
- Seungbin Ko
- Department of Mechanical Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Jeesoo Lee
- Department of Mechanical Engineering, Hanyang University, Seoul, 04763, South Korea. .,Institute of Nano Science and Technology, Hanyang University, Seoul, 04763, South Korea.
| | - Simon Song
- Department of Mechanical Engineering, Hanyang University, Seoul, 04763, South Korea. .,Institute of Nano Science and Technology, Hanyang University, Seoul, 04763, South Korea.
| | - Doosang Kim
- Department of Thoracic and Cardiovascular Surgery, Veterans Health Service Medical Center, Seoul, 05368, South Korea.
| | - Sang Hyung Lee
- Department of Neurosurgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, 07061, South Korea
| | - Jee-Hyun Cho
- Bioimaging Research Team, Korea Basic Science Institute, Cheongju, 28119, South Korea
| |
Collapse
|
11
|
Liu H, Leung T, Wong A, Chen F, Zheng D. The Geometric Effects on the Stress of Arterial Atherosclerotic Plaques: a Computational Study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2019:6948-6951. [PMID: 31947437 DOI: 10.1109/embc.2019.8857885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
BACKGROUND The rupture of atherosclerotic plaques could cause serious clinical events. The wall shear stress (WSS) and axial plaque stress (APS) could reflect the risk of plaque rupture. This study aimed to quantitatively investigate the geometric effects on WSS and APS using computational fluid dynamics (CFD). METHODS 63 plaque models were developed from three severities (75%, 82%, and 89% in area), three eccentricities (the deviation of plaque throat from the arterial centerline: 0, 0.375 and 0.75mm), and 7 different length combinations of the proximal and distal stenotic segments (2mm-5mm, 3mm-5mm, 4mm-5mm, 5mm-5mm, 5mm-4mm, 5mm-3mm, 5mm-2mm). For each model, CFD simulation was performed to calculate the maximum and area-averaged WSS and APS on the proximal and distal stenotic segments. The multivariate analysis of variance and linear regression analysis were performed to quantitatively investigate the geometry-stress relationship.The results showed that, the severity and eccentricity of a plaque were linearly related to its WSS and APS. APS value on a segment (proximal or distal) of the plaque depended on the segmental length It was also shown that the difference of APS between proximal and distal segments depended exclusively on the difference of length between segments (all p<; 0.05). CONCLUSION The geometry of a plaque influences its WSS and APS. APS and its proximal/distal difference depend on the segmental lengths.
Collapse
|
12
|
Sheu JJ, Hsiao HY, Chung SY, Chua S, Chen KH, Sung PH, Lee FY, Lu HI, Chen YL, Li YC, Chang HW, Ko SF, Yip HK. Endothelial progenitor cells, rosuvastatin and valsartan have a comparable effect on repair of balloon-denudated carotid artery injury. Am J Transl Res 2019; 11:1282-1298. [PMID: 30972162 PMCID: PMC6456547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
Endothelial cell (EC) dysfunction plays a crucial role for arterial obstructive disease. This study tested the therapeutic role of autologous endothelial progenitor cells (EPCs)/rosuvastatin-(Rosu)/valsartan-(Val) on repair of injured carotid ECs. Male Sprague-Dawley rats (n = 60) were categorized into five groups [sham-control (SC), left common carotid artery injury induced by balloon denudation (LCABD), LCABD + Rosu (10 mg/kg/day), LCABD + Val (20 mg/kg/day), and LCABD + EPC (1.2 × 106)]. By day 5, the LCA was harvested from each rat (n = 6/each time interval in group) after the procedure. Carotid-ring angiogenesis was significantly lower in LCABD than the other groups (all P < 0.001). Compared with LCABD, the number of EC was significantly higher in LCABD treated with adipose-derived mesenchymal stem cells (ADMSCs) and more significantly higher in LCABD treated with EPCs (all P < 0.001). Gene expression of EC (CD31/vWF), EPC (SDF-1α/CXCR4) and angiogenesis (VEGF/VEGF-receptor/angiopoietin/eNOS) and EC intercellular junction (VE-cadherin) biomarkers were significantly lower in LCABD than in groups LCABD + Rosu to LCABD + EPC (all P < 0.001). Conversely, the gene expression of inflammatory (VCAM-1/MMP-9/TNF-α), oxidative-stress (NOX-1/NOX-2), apoptosis (cleaved caspase-3/PARP) and thrombin cofactor (thrombomodulin) biomarkers were significantly higher in LCABD than in other groups (all P < 0.001). By day 14, the neointimal-layer area and cellular expressions of (CD40+/CD68+) were highest in LCABD, lowest in SC, significantly higher in LCABD + Val than in LCABD + Rosu and LCABD + EPC (all P < 0.001). In conclusion, EPCs were comparable to rosuvastatin and valsartan in upregulation of angiogenesis and repair of injured carotid ECs.
Collapse
Affiliation(s)
- Jiunn-Jye Sheu
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial HospitalKaohsiung, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial HospitalKaohsiung, Taiwan
| | - Hao-Yi Hsiao
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
| | - Sheng-Ying Chung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
| | - Sarah Chua
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
| | - Kuan-Hung Chen
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial HospitalKaohsiung, Taiwan
| | - Fan-Yen Lee
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical CenterTaiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial HospitalKaohsiung, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial HospitalKaohsiung, Taiwan
| | - Hung-I Lu
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
| | - Yi-Ling Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial HospitalKaohsiung, Taiwan
| | - Yi-Chen Li
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
| | - Hsueh-Wen Chang
- Department of Biological Sciences, National Sun Yat-Sen UniversityKaohsiung 80424, Taiwan
| | - Sheung-Fat Ko
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial HospitalKaohsiung, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial HospitalKaohsiung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical UniversityTaichung 40402, Taiwan
- Department of Nursing, Asia UniversityTaichung 41354, Taiwan
| |
Collapse
|
13
|
Schär M, Soleimanifard S, Bonanno G, Yerly J, Hays AG, Weiss RG. Precision and accuracy of cross-sectional area measurements used to measure coronary endothelial function with spiral MRI. Magn Reson Med 2019; 81:291-302. [PMID: 30024061 PMCID: PMC6258280 DOI: 10.1002/mrm.27384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/25/2018] [Accepted: 05/09/2018] [Indexed: 01/22/2023]
Abstract
PURPOSE Coronary endothelial function (CEF) reflects vascular health and conventional invasive CEF measures predict cardiovascular events. MRI can now noninvasively measure CEF by quantifying coronary artery cross-sectional area changes in response to isometric handgrip exercise, an endothelial-dependent stressor. Area changes (10 to 20% in healthy; 2 to -12% in impaired vessels) are only a few imaging voxels because of MRI's limited spatial resolution. Here, with numerical simulations and phantom studies, we test whether Fourier interpolation enables sub-pixel area measurement precision and determine the smallest detectable area change using spiral MRI. METHODS In vivo coronary SNR with the currently used CEF protocol at 3T was measured in 7 subjects for subsequent in vitro work. Area measurements of circular vessels were simulated by varying partial volume, vessel diameter, voxel size, SNR, and Fourier interpolation factor. A phantom with precision-drilled holes (diameters 3-3.42 mm) was imaged 10 times with the current CEF protocol (voxel size, Δx = 0.89 mm) and a high-resolution protocol (Δx = 0.6 mm) to determine precision, accuracy, and the smallest detectable area changes. RESULTS In vivo coronary SNR ranged from 30-76. Eight-fold Fourier interpolation improved area measurement precision by a factor 6.5 and 4.9 in the simulations and phantom scans, respectively. The current CEF protocol can detect mean area changes of 4-5% for SNR above 30, and 3-3.5% for SNR above 40 with a higher-resolution protocol. CONCLUSION Current CEF spiral MRI with in vivo SNR allows detection of a 4-5% area change and Fourier interpolation improves precision several-fold to sub-voxel dimensions.
Collapse
Affiliation(s)
- Michael Schär
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sahar Soleimanifard
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Gabriele Bonanno
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jérôme Yerly
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | - Allison G. Hays
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Robert G. Weiss
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
14
|
Manning WJ. Journal of Cardiovascular Magnetic Resonance 2017. J Cardiovasc Magn Reson 2018; 20:89. [PMID: 30593280 PMCID: PMC6309095 DOI: 10.1186/s12968-018-0518-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 12/06/2018] [Indexed: 02/07/2023] Open
Abstract
There were 106 articles published in the Journal of Cardiovascular Magnetic Resonance (JCMR) in 2017, including 92 original research papers, 3 reviews, 9 technical notes, and 1 Position paper, 1 erratum and 1 correction. The volume was similar to 2016 despite an increase in manuscript submissions to 405 and thus reflects a slight decrease in the acceptance rate to 26.7%. The quality of the submissions continues to be high. The 2017 JCMR Impact Factor (which is published in June 2018) was minimally lower at 5.46 (vs. 5.71 for 2016; as published in June 2017), which is the second highest impact factor ever recorded for JCMR. The 2017 impact factor means that an average, each JCMR paper that were published in 2015 and 2016 was cited 5.46 times in 2017.In accordance with Open-Access publishing of Biomed Central, the JCMR articles are published on-line in continuus fashion and in the chronologic order of acceptance, with no collating of the articles into sections or special thematic issues. For this reason, over the years, the Editors have felt that it is useful to annually summarize the publications into broad areas of interest or theme, so that readers can view areas of interest in a single article in relation to each other and other contemporary JCMR articles. In this publication, the manuscripts are presented in broad themes and set in context with related literature and previously published JCMR papers to guide continuity of thought within the journal. In addition, I have elected to use this format to convey information regarding the editorial process to the readership.I hope that you find the open-access system increases wider reading and citation of your papers, and that you will continue to send your very best, high quality manuscripts to JCMR for consideration. I thank our very dedicated Associate Editors, Guest Editors, and Reviewers for their efforts to ensure that the review process occurs in a timely and responsible manner and that the JCMR continues to be recognized as the forefront journal of our field. And finally, I thank you for entrusting me with the editorship of the JCMR as I begin my 3rd year as your editor-in-chief. It has been a tremendous learning experience for me and the opportunity to review manuscripts that reflect the best in our field remains a great joy and highlight of my week!
Collapse
Affiliation(s)
- Warren J Manning
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA.
| |
Collapse
|
15
|
The relationship between coronary lesion characteristics and pathologic shear in human coronary arteries. Clin Biomech (Bristol, Avon) 2018; 60:177-184. [PMID: 30384262 DOI: 10.1016/j.clinbiomech.2018.10.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 10/06/2018] [Accepted: 10/26/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Pathological shear stress is associated with distinct pathogenic biological pathways relevant to coronary thrombosis and atherogenesis. Although the individual effects of lesion characteristics including stenosis severity, eccentricity and lesion length on coronary haemodynamics is known, their relative importance remains poorly understood. METHODS Computational fluid dynamics (CFD) was implemented for haemodynamic analysis of 104 coronary arteries. For each coronary artery, maximum shear stress at the site of maximal stenosis, average shear stress over the sites of maximal stenosis segment, average shear stress in the proximal segments and average shear stress in the distal segments were determined. In addition, the area of low wall shear stress (ALWSS) sites in post-stenotic regions were quantified as a proportion of the vessel segment. RESULTS With increasing stenosis severity, eccentricity and lesion length, maximal and average shear stress over the sites of maximal stenosis and ALWSS increased whereas average shear stress in the proximal segments decreased. Two-way ANCOVA analysis revealed that stenosis severity and lesion length were both independent predictors of maximum shear at the site of maximal stenosis [F (1, 104) = 10.94, P = 0.001 for diameter stenosis and F (1, 104) = 6.21, P = 0.014 for lesion length] and ALWSS [F (1, 104) = 66.10, P = 0.001 for diameter stenosis and F (1, 104) = 4.23, P = 0.047 for lesion length]. CONCLUSION Our findings demonstrate that although all lesion characteristics correlate with abnormal shear stress, only stenosis severity and lesion length are independent predictors of pathogenic physiological processes.
Collapse
|
16
|
Ruscica M, Castelnuovo S, Macchi C, Gandini S, Mombelli G, Ferri N, Labombarda F, Sirtori CR. Left main coronary wall thickness correlates with the carotid intima media thickness and may provide a new marker of cardiovascular risk. Eur J Prev Cardiol 2018; 26:1001-1004. [PMID: 30348004 DOI: 10.1177/2047487318806985] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Massimiliano Ruscica
- 1 Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy
| | - Samuela Castelnuovo
- 2 Centro Dislipidemie, Azienda Socio Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, Italy
| | - Chiara Macchi
- 1 Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy
| | | | - Giuliana Mombelli
- 2 Centro Dislipidemie, Azienda Socio Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, Italy
| | - Nicola Ferri
- 4 Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Italy
| | - Fabien Labombarda
- 5 Cardiology Department, CHU de Caen, Université de Caen Normandie, France
| | - Cesare R Sirtori
- 2 Centro Dislipidemie, Azienda Socio Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, Italy
| |
Collapse
|