1
|
Yang J, Afaq A, Sibley R, McMilan A, Pirasteh A. Deep learning applications for quantitative and qualitative PET in PET/MR: technical and clinical unmet needs. MAGMA (NEW YORK, N.Y.) 2024:10.1007/s10334-024-01199-y. [PMID: 39167304 DOI: 10.1007/s10334-024-01199-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
We aim to provide an overview of technical and clinical unmet needs in deep learning (DL) applications for quantitative and qualitative PET in PET/MR, with a focus on attenuation correction, image enhancement, motion correction, kinetic modeling, and simulated data generation. (1) DL-based attenuation correction (DLAC) remains an area of limited exploration for pediatric whole-body PET/MR and lung-specific DLAC due to data shortages and technical limitations. (2) DL-based image enhancement approximating MR-guided regularized reconstruction with a high-resolution MR prior has shown promise in enhancing PET image quality. However, its clinical value has not been thoroughly evaluated across various radiotracers, and applications outside the head may pose challenges due to motion artifacts. (3) Robust training for DL-based motion correction requires pairs of motion-corrupted and motion-corrected PET/MR data. However, these pairs are rare. (4) DL-based approaches can address the limitations of dynamic PET, such as long scan durations that may cause patient discomfort and motion, providing new research opportunities. (5) Monte-Carlo simulations using anthropomorphic digital phantoms can provide extensive datasets to address the shortage of clinical data. This summary of technical/clinical challenges and potential solutions may provide research opportunities for the research community towards the clinical translation of DL solutions.
Collapse
Affiliation(s)
- Jaewon Yang
- Department of Radiology, University of Texas Southwestern, 5323 Harry Hines Blvd., Dallas, TX, USA.
| | - Asim Afaq
- Department of Radiology, University of Texas Southwestern, 5323 Harry Hines Blvd., Dallas, TX, USA
| | - Robert Sibley
- Department of Radiology, University of Texas Southwestern, 5323 Harry Hines Blvd., Dallas, TX, USA
| | - Alan McMilan
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI, USA
| | - Ali Pirasteh
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI, USA
| |
Collapse
|
2
|
Roy CW, Milani B, Yerly J, Si-Mohamed S, Romanin L, Bustin A, Tenisch E, Rutz T, Prsa M, Stuber M. Intra-bin correction and inter-bin compensation of respiratory motion in free-running five-dimensional whole-heart magnetic resonance imaging. J Cardiovasc Magn Reson 2024; 26:101037. [PMID: 38499269 PMCID: PMC10987330 DOI: 10.1016/j.jocmr.2024.101037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Free-running cardiac and respiratory motion-resolved whole-heart five-dimensional (5D) cardiovascular magnetic resonance (CMR) can reduce scan planning and provide a means of evaluating respiratory-driven changes in clinical parameters of interest. However, respiratory-resolved imaging can be limited by user-defined parameters which create trade-offs between residual artifact and motion blur. In this work, we develop and validate strategies for both correction of intra-bin and compensation of inter-bin respiratory motion to improve the quality of 5D CMR. METHODS Each component of the reconstruction framework was systematically validated and compared to the previously established 5D approach using simulated free-running data (N = 50) and a cohort of 32 patients with congenital heart disease. The impact of intra-bin respiratory motion correction was evaluated in terms of image sharpness while inter-bin respiratory motion compensation was evaluated in terms of reconstruction error, compression of respiratory motion, and image sharpness. The full reconstruction framework (intra-acquisition correction and inter-acquisition compensation of respiratory motion [IIMC] 5D) was evaluated in terms of image sharpness and scoring of image quality by expert reviewers. RESULTS Intra-bin motion correction provides significantly (p < 0.001) sharper images for both simulated and patient data. Inter-bin motion compensation results in significant (p < 0.001) lower reconstruction error, lower motion compression, and higher sharpness in both simulated (10/11) and patient (9/11) data. The combined framework resulted in significantly (p < 0.001) sharper IIMC 5D reconstructions (End-expiration (End-Exp): 0.45 ± 0.09, End-inspiration (End-Ins): 0.46 ± 0.10) relative to the previously established 5D implementation (End-Exp: 0.43 ± 0.08, End-Ins: 0.39 ± 0.09). Similarly, image scoring by three expert reviewers was significantly (p < 0.001) higher using IIMC 5D (End-Exp: 3.39 ± 0.44, End-Ins: 3.32 ± 0.45) relative to 5D images (End-Exp: 3.02 ± 0.54, End-Ins: 2.45 ± 0.52). CONCLUSION The proposed IIMC reconstruction significantly improves the quality of 5D whole-heart MRI. This may be exploited for higher resolution or abbreviated scanning. Further investigation of the diagnostic impact of this framework and comparison to gold standards is needed to understand its full clinical utility, including exploration of respiratory-driven changes in physiological measurements of interest.
Collapse
Affiliation(s)
- Christopher W Roy
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| | - Bastien Milani
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jérôme Yerly
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | - Salim Si-Mohamed
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; University Lyon, INSA-Lyon, University Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, F-69621, 7 Avenue Jean Capelle O, 69100 Villeurbanne, France; Department of Radiology, Louis Pradel Hospital, Hospices Civils de Lyon, 59 Boulevard Pinel, 69500 Bron, France
| | - Ludovica Romanin
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Switzerland
| | - Aurélien Bustin
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux - INSERM U1045, Avenue du Haut Lévêque, 33604 Pessac, France; Department of Cardiovascular Imaging, Hôpital Cardiologique du Haut-Lévêque, CHU de Bordeaux, Avenue de Magellan, 33604 Pessac, France
| | - Estelle Tenisch
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Tobias Rutz
- Service of Cardiology, Heart and Vessel Department, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Milan Prsa
- Division of Pediatric Cardiology, Woman-Mother-Child Department, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Matthias Stuber
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| |
Collapse
|
3
|
Description and Use of Three-Dimensional Numerical Phantoms of Cardiac Computed Tomography Images. DATA 2022. [DOI: 10.3390/data7080115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The World Health Organization indicates the top cause of death is heart disease. These diseases can be detected using several imaging modalities, especially cardiac computed tomography (CT), whose images have imperfections associated with noise and certain artifacts. To minimize the impact of these imperfections on the quality of the CT images, several researchers have developed digital image processing techniques (DPIT) by which the quality is evaluated considering several metrics and databases (DB), both real and simulated. This article describes the processes that made it possible to generate and utilize six three-dimensional synthetic cardiac DBs or voxels-based numerical phantoms. An exhaustive analysis of the most relevant features of images of the left ventricle, belonging to a real CT DB of the human heart, was performed. These features are recreated in the synthetic DBs, generating a reference phantom or ground truth free of imperfections (DB1) and five phantoms, in which Poisson noise (DB2), stair-step artifact (DB3), streak artifact (DB4), both artifacts (DB5) and all imperfections (DB6) are incorporated. These DBs can be used to determine the performance of DPIT, aimed at decreasing the effect of these imperfections on the quality of cardiac images.
Collapse
|
4
|
A Fetal Brain magnetic resonance Acquisition Numerical phantom (FaBiAN). Sci Rep 2022; 12:8682. [PMID: 35606398 PMCID: PMC9127105 DOI: 10.1038/s41598-022-10335-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 04/05/2022] [Indexed: 11/28/2022] Open
Abstract
Accurate characterization of in utero human brain maturation is critical as it involves complex and interconnected structural and functional processes that may influence health later in life. Magnetic resonance imaging is a powerful tool to investigate equivocal neurological patterns during fetal development. However, the number of acquisitions of satisfactory quality available in this cohort of sensitive subjects remains scarce, thus hindering the validation of advanced image processing techniques. Numerical phantoms can mitigate these limitations by providing a controlled environment with a known ground truth. In this work, we present FaBiAN, an open-source Fetal Brain magnetic resonance Acquisition Numerical phantom that simulates clinical T2-weighted fast spin echo sequences of the fetal brain. This unique tool is based on a general, flexible and realistic setup that includes stochastic fetal movements, thus providing images of the fetal brain throughout maturation comparable to clinical acquisitions. We demonstrate its value to evaluate the robustness and optimize the accuracy of an algorithm for super-resolution fetal brain magnetic resonance imaging from simulated motion-corrupted 2D low-resolution series compared to a synthetic high-resolution reference volume. We also show that the images generated can complement clinical datasets to support data-intensive deep learning methods for fetal brain tissue segmentation.
Collapse
|
5
|
Roy CW, Heerfordt J, Piccini D, Rossi G, Pavon AG, Schwitter J, Stuber M. Motion compensated whole-heart coronary cardiovascular magnetic resonance angiography using focused navigation (fNAV). J Cardiovasc Magn Reson 2021; 23:33. [PMID: 33775246 PMCID: PMC8006382 DOI: 10.1186/s12968-021-00717-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 01/28/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Radial self-navigated (RSN) whole-heart coronary cardiovascular magnetic resonance angiography (CCMRA) is a free-breathing technique that estimates and corrects for respiratory motion. However, RSN has been limited to a 1D rigid correction which is often insufficient for patients with complex respiratory patterns. The goal of this work is therefore to improve the robustness and quality of 3D radial CCMRA by incorporating both 3D motion information and nonrigid intra-acquisition correction of the data into a framework called focused navigation (fNAV). METHODS We applied fNAV to 500 data sets from a numerical simulation, 22 healthy subjects, and 549 cardiac patients. In each of these cohorts we compared fNAV to RSN and respiratory resolved extradimensional golden-angle radial sparse parallel (XD-GRASP) reconstructions of the same data. Reconstruction times for each method were recorded. Motion estimate accuracy was measured as the correlation between fNAV and ground truth for simulations, and fNAV and image registration for in vivo data. Percent vessel sharpness was measured in all simulated data sets and healthy subjects, and a subset of patients. Finally, subjective image quality analysis was performed by a blinded expert reviewer who chose the best image for each in vivo data set and scored on a Likert scale 0-4 in a subset of patients by two reviewers in consensus. RESULTS The reconstruction time for fNAV images was significantly higher than RSN (6.1 ± 2.1 min vs 1.4 ± 0.3, min, p < 0.025) but significantly lower than XD-GRASP (25.6 ± 7.1, min, p < 0.025). Overall, there is high correlation between the fNAV and reference displacement estimates across all data sets (0.73 ± 0.29). For simulated data, healthy subjects, and patients, fNAV lead to significantly sharper coronary arteries than all other reconstruction methods (p < 0.01). Finally, in a blinded evaluation by an expert reviewer fNAV was chosen as the best image in 444 out of 571 data sets (78%; p < 0.001) and consensus grades of fNAV images (2.6 ± 0.6) were significantly higher (p < 0.05) than uncorrected (1.7 ± 0.7), RSN (1.9 ± 0.6), and XD-GRASP (1.8 ± 0.8). CONCLUSION fNAV is a promising technique for improving the quality of RSN free-breathing 3D whole-heart CCMRA. This novel approach to respiratory self-navigation can derive 3D nonrigid motion estimations from an acquired 1D signal yielding statistically significant improvement in image sharpness relative to 1D translational correction as well as XD-GRASP reconstructions. Further study of the diagnostic impact of this technique is therefore warranted to evaluate its full clinical utility.
Collapse
Affiliation(s)
- Christopher W Roy
- Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Rue de Bugnon 46, BH-7-84, 1011, Lausanne, Switzerland.
| | - John Heerfordt
- Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Rue de Bugnon 46, BH-7-84, 1011, Lausanne, Switzerland
- Advanced Clinical Imaging Technology (ACIT), Siemens Healthcare AG, Lausanne, Switzerland
| | - Davide Piccini
- Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Rue de Bugnon 46, BH-7-84, 1011, Lausanne, Switzerland
- Advanced Clinical Imaging Technology (ACIT), Siemens Healthcare AG, Lausanne, Switzerland
| | - Giulia Rossi
- Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Rue de Bugnon 46, BH-7-84, 1011, Lausanne, Switzerland
| | - Anna Giulia Pavon
- Division of Cardiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Juerg Schwitter
- Division of Cardiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Director CMR-Center, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Matthias Stuber
- Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Rue de Bugnon 46, BH-7-84, 1011, Lausanne, Switzerland
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| |
Collapse
|
6
|
Abadi E, Segars WP, Tsui BMW, Kinahan PE, Bottenus N, Frangi AF, Maidment A, Lo J, Samei E. Virtual clinical trials in medical imaging: a review. J Med Imaging (Bellingham) 2020; 7:042805. [PMID: 32313817 PMCID: PMC7148435 DOI: 10.1117/1.jmi.7.4.042805] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/23/2020] [Indexed: 12/13/2022] Open
Abstract
The accelerating complexity and variety of medical imaging devices and methods have outpaced the ability to evaluate and optimize their design and clinical use. This is a significant and increasing challenge for both scientific investigations and clinical applications. Evaluations would ideally be done using clinical imaging trials. These experiments, however, are often not practical due to ethical limitations, expense, time requirements, or lack of ground truth. Virtual clinical trials (VCTs) (also known as in silico imaging trials or virtual imaging trials) offer an alternative means to efficiently evaluate medical imaging technologies virtually. They do so by simulating the patients, imaging systems, and interpreters. The field of VCTs has been constantly advanced over the past decades in multiple areas. We summarize the major developments and current status of the field of VCTs in medical imaging. We review the core components of a VCT: computational phantoms, simulators of different imaging modalities, and interpretation models. We also highlight some of the applications of VCTs across various imaging modalities.
Collapse
Affiliation(s)
- Ehsan Abadi
- Duke University, Department of Radiology, Durham, North Carolina, United States
| | - William P. Segars
- Duke University, Department of Radiology, Durham, North Carolina, United States
| | - Benjamin M. W. Tsui
- Johns Hopkins University, Department of Radiology, Baltimore, Maryland, United States
| | - Paul E. Kinahan
- University of Washington, Department of Radiology, Seattle, Washington, United States
| | - Nick Bottenus
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
- University of Colorado Boulder, Department of Mechanical Engineering, Boulder, Colorado, United States
| | - Alejandro F. Frangi
- University of Leeds, School of Computing, Leeds, United Kingdom
- University of Leeds, School of Medicine, Leeds, United Kingdom
| | - Andrew Maidment
- University of Pennsylvania, Department of Radiology, Philadelphia, Pennsylvania, United States
| | - Joseph Lo
- Duke University, Department of Radiology, Durham, North Carolina, United States
| | - Ehsan Samei
- Duke University, Department of Radiology, Durham, North Carolina, United States
| |
Collapse
|