1
|
Shin HS, Thakore A, Tada Y, Pedroza AJ, Ikeda G, Chen IY, Chan D, Jaatinen KJ, Yajima S, Pfrender EM, Kawamura M, Yang PC, Wu JC, Appel EA, Fischbein MP, Woo YJ, Shudo Y. Angiogenic stem cell delivery platform to augment post-infarction neovasculature and reverse ventricular remodeling. Sci Rep 2022; 12:17605. [PMID: 36266453 PMCID: PMC9584918 DOI: 10.1038/s41598-022-21510-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 09/28/2022] [Indexed: 01/13/2023] Open
Abstract
Many cell-based therapies are challenged by the poor localization of introduced cells and the use of biomaterial scaffolds with questionable biocompatibility or bio-functionality. Endothelial progenitor cells (EPCs), a popular cell type used in cell-based therapies due to their robust angiogenic potential, are limited in their therapeutic capacity to develop into mature vasculature. Here, we demonstrate a joint delivery of human-derived endothelial progenitor cells (EPC) and smooth muscle cells (SMC) as a scaffold-free, bi-level cell sheet platform to improve ventricular remodeling and function in an athymic rat model of myocardial infarction. The transplanted bi-level cell sheet on the ischemic heart provides a biomimetic microenvironment and improved cell-cell communication, enhancing cell engraftment and angiogenesis, thereby improving ventricular remodeling. Notably, the increased density of vessel-like structures and upregulation of biological adhesion and vasculature developmental genes, such as Cxcl12 and Notch3, particularly in the ischemic border zone myocardium, were observed following cell sheet transplantation. We provide compelling evidence that this SMC-EPC bi-level cell sheet construct can be a promising therapy to repair ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Hye Sook Shin
- Department of Cardiothoracic Surgery, Falk Cardiovascular Research Center, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, USA
| | - Akshara Thakore
- Department of Cardiothoracic Surgery, Falk Cardiovascular Research Center, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, USA
| | - Yuko Tada
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, USA
| | - Albert J Pedroza
- Department of Cardiothoracic Surgery, Falk Cardiovascular Research Center, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, USA
| | - Gentaro Ikeda
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, USA
| | - Ian Y Chen
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, USA
| | - Doreen Chan
- Department of Chemistry, Department of Materials Science & Engineering, Stanford University, Stanford University, Stanford, USA
| | - Kevin J Jaatinen
- Department of Cardiothoracic Surgery, Falk Cardiovascular Research Center, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Shin Yajima
- Department of Cardiothoracic Surgery, Falk Cardiovascular Research Center, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, USA
| | - Eric M Pfrender
- Department of Cardiothoracic Surgery, Falk Cardiovascular Research Center, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, USA
| | - Masashi Kawamura
- Department of Cardiothoracic Surgery, Falk Cardiovascular Research Center, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Phillip C Yang
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, USA
| | - Joseph C Wu
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, USA
| | - Eric A Appel
- Department of Materials Science & Engineering, Department of Bioengineering, Department of Pediatric (Endocrinology), Stanford University, Stanford, USA
| | - Michael P Fischbein
- Department of Cardiothoracic Surgery, Falk Cardiovascular Research Center, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, USA
| | - YJoseph Woo
- Department of Cardiothoracic Surgery, Falk Cardiovascular Research Center, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, USA
| | - Yasuhiro Shudo
- Department of Cardiothoracic Surgery, Falk Cardiovascular Research Center, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, USA.
| |
Collapse
|
2
|
Chen X, Huang Y, Liu S, Yi J, Chen W, Wang Y, Pan C. Functional magnetic resonance imaging evaluation of masticatory muscle dysfunction in unilateral exodontia rabbits. Dentomaxillofac Radiol 2022; 51:20220022. [PMID: 35466684 PMCID: PMC10043606 DOI: 10.1259/dmfr.20220022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Objective: Occlusal alteration due to tooth loss may cause overload of masticatory muscle and promote muscle dysfunction. This study explored the feasibility of using functional magnetic resonance imaging (fMRI) to evaluate muscle dysfunction in an established unilateral exodontia animal model. Methods: six rabbits were extracted right maxillary molars. T2 mapping, T2* mapping and Iterative Decomposition of water and fat with Echo Asymmetry and Least Square Estimation (IDEAL-IQ) were performed one day before extraction and every 2 weeks (2th~12th week) after extraction. The T2 and T2* values and fat fraction (FF) of bilateral temporal muscle (TM), masseter muscle (MM) and medial pterygoid muscle (MPM) were measured and compared between the extraction side-and the contralateral side. Parameters of three monitoring time points (0th, sixth, 12th week) were also analyzed. Results: T2 values of MM on extraction side-were significantly higher than those of contralateral side-from fourth week to 12th week after extraction (p < 0.05). T2 values of MM and MPM on extraction side-and TM on contralateral side-were significantly higher in 12th week than those in 0th week (p < 0.05). And FF of bilateral MM was significantly higher in 12th week than those in 0th week (p < 0.05). T2* value showed no significant difference between extraction side-and contralateral side-and also at above three time points. Conclusion: T2 and T2* value and FF can be used as indicators of masticatory muscle dysfunction. fMRI is expected to be a non-invasive method for in vivo and real-time evaluation of masticatory muscle functional abnormality.
Collapse
Affiliation(s)
- Xuexia Chen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yi Huang
- Department of Radiology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, PR China
| | - Simin Liu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Jingru Yi
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Weiwei Chen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yang Wang
- Department of Orthopaedic Surgery, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Chu Pan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| |
Collapse
|
3
|
Moonen RPM, Coolen BF, Sluimer JC, Daemen MJAP, Strijkers GJ. Iron Oxide Nanoparticle Uptake in Mouse Brachiocephalic Artery Atherosclerotic Plaque Quantified by T 2-Mapping MRI. Pharmaceutics 2021; 13:pharmaceutics13020279. [PMID: 33669667 PMCID: PMC7922981 DOI: 10.3390/pharmaceutics13020279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/29/2022] Open
Abstract
The purpose of our study was to monitor the iron oxide contrast agent uptake in mouse brachiocephalic artery (BCA) atherosclerotic plaques in vivo by quantitative T2-mapping magnetic resonance imaging (MRI). Female ApoE−/− mice (n = 32) on a 15-week Western-type diet developed advanced plaques in the BCA and were injected with ultra-small superparamagnetic iron oxides (USPIOs). Quantitative in vivo MRI at 9.4 T was performed with a Malcolm-Levitt (MLEV) prepared T2-mapping sequence to monitor the nanoparticle uptake in the atherosclerotic plaque. Ex vivo histology and particle electron paramagnetic resonance (pEPR) were used for validation. Longitudinal high-resolution in vivo T2-value maps were acquired with consistent quality. Average T2 values in the plaque decreased from a baseline value of 34.5 ± 0.6 ms to 24.0 ± 0.4 ms one day after injection and partially recovered to an average T2 of 27 ± 0.5 ms after two days. T2 values were inversely related to iron levels in the plaque as determined by ex vivo particle electron paramagnetic resonance (pEPR). We concluded that MRI T2 mapping facilitates a robust quantitative readout for USPIO uptake in atherosclerotic plaques in arteries near the mouse heart.
Collapse
Affiliation(s)
- Rik P. M. Moonen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands;
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands;
| | - Bram F. Coolen
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Judith C. Sluimer
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands;
- Department of Pathology, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands
| | - Mat J. A. P. Daemen
- Department of Pathology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Cardiovascular Sciences, 1105 AZ Amsterdam, The Netherlands;
| | - Gustav J. Strijkers
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
- Correspondence: ; Tel.: +31-20-566-52-02
| |
Collapse
|
4
|
Lu Y, Huang J, Neverova NV, Nguyen KL. USPIOs as targeted contrast agents in cardiovascular magnetic resonance imaging. CURRENT CARDIOVASCULAR IMAGING REPORTS 2021; 14:2. [PMID: 33824694 PMCID: PMC8021129 DOI: 10.1007/s12410-021-09552-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2021] [Indexed: 01/15/2023]
Abstract
PURPOSE OF REVIEW We aim to discuss the diagnostic use of ultra-small superparamagnetic iron oxide (USPIOs) including ferumoxytol in targeted cardiovascular magnetic resonance imaging (MRI). RECENT FINDINGS Ferumoxytol is the only USPIO clinically available in the U.S. and is a negatively charged USPIO that has potential use for tracking and characterization of macrophage-infiltrated cardiovascular structures. As an iron supplement that is approved for treatment of iron deficiency anemia, the iron core of ferumoxytol is incorporated into the body once it is phagocytosed by macrophages. In organs or tissues with high inflammatory cellular infiltration, such as atherosclerotic plaques and myocardial infarction, localization of iron-laden macrophages can be visualized on delayed MRI. The iron core of ferumoxytol alters the magnetic susceptibility and results in shortening of T2* and T2 relaxation rates. Areas with high concentration appear hypointense (negative contrast) on T2 and T2* MRI. Recently, in vitro findings support the potential specificity of ferumoxytol interactions with macrophage subtypes, which has implications for therapeutic interventions. With increasing concerns about gadolinium retention in the brain and other tissues, the value of ferumoxytol-enhanced MR for targeted clinical imaging is aided by its positive safety profile in patients with impaired renal function. SUMMARY This paper discusses pharmacokinetic properties of USPIOs with a focus on ferumoxytol, and summarizes relevant in vitro, animal, and human studies investigating the diagnostic use of USPIOs in targeted contrast-enhanced imaging. We also discuss future directions for USPIOs as targeted imaging agents and associated challenges.
Collapse
Affiliation(s)
- Yi Lu
- Division of Cardiology, David Geffen School of Medicine at
UCLA and VA Greater Los Angeles Healthcare System
| | - Jenny Huang
- Division of Cardiology, David Geffen School of Medicine at
UCLA and VA Greater Los Angeles Healthcare System
- Diagnostic Cardiovascular Imaging Research Laboratory,
Department of Radiology, David Geffen School of Medicine at UCLA
| | - Natalia V. Neverova
- Division of Cardiology, David Geffen School of Medicine at
UCLA and VA Greater Los Angeles Healthcare System
| | - Kim-Lien Nguyen
- Division of Cardiology, David Geffen School of Medicine at
UCLA and VA Greater Los Angeles Healthcare System
- Physics and Biology in Medicine Graduate Program,
University of California, Los Angeles
- Diagnostic Cardiovascular Imaging Research Laboratory,
Department of Radiology, David Geffen School of Medicine at UCLA
| |
Collapse
|
5
|
Chitoheptaose Promotes Heart Rehabilitation in a Rat Myocarditis Model by Improving Antioxidant, Anti-Inflammatory, and Antiapoptotic Properties. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2394704. [PMID: 32351668 PMCID: PMC7171680 DOI: 10.1155/2020/2394704] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/12/2020] [Accepted: 02/24/2020] [Indexed: 12/25/2022]
Abstract
Background Myocarditis is one of the important causes of dilated cardiomyopathy, cardiac morbidity, and mortality worldwide. Chitosan oligosaccharides (COS) may have anti-inflammatory and cardioprotective effects on myocarditis. However, the exact molecular mechanism for the effects of functional COS on myocarditis remains unclear. Methods Anti-inflammatory activities of COS (chitobiose, chitotriose, chitotetraose, chitopentaose, chitohexaose, chitoheptaose, and chitooctaose) were measured in lipopolysaccharide- (LPS-) stimulated RAW264.7 cells. A rat model with myocarditis was established and treated with chitopentaose, chitohexaose, chitoheptaose, and chitooctaose. Serum COS were measured by using high-performance liquid chromatography (HPLC) in all rats. Myocarditis injury, the levels of reactive oxygen species (ROS), reactive nitrogen species (RNS), inflammatory factors, and apoptotic factors were also measured. Pearson's correlation coefficient test was used to explore the relationship between the levels of ROS/RNS and cardiac parameters. Results Among all chitosan oligosaccharides, the COS > degrees of polymerization (DP) 4 showed anti-inflammatory activities (the activity order was chitopentaose<chitohexaose<chitoheptaose<chitooctaose) by reducing the levels of interleukin- (IL-) 1β, IL-17A, and interferon- (IFN-) γ and increasing the level of IL-10. However, the serum level of chitooctaose was low whereas it showed significant therapeutic effects on myocarditis by improving cardiac parameters (left ventricular internal dimension, both end-systolic and end-diastolic, ejection fraction, and fractional shortening), inflammatory cytokines (IL-1β, IL-10, IL-17A, and IFN-γ), oxidative factors (ROS and RNS), and apoptotic factors (caspase 3, BAX, and BCL-2) when compared with chitopentaose, chitohexaose, and chitooctaose (COS DP > 4). The levels of ROS/RNS had a strong relationship with cardiac parameters. Conclusions Chitoheptaose plays a myriad of cardioprotective roles in the myocarditis model via its antioxidant, anti-inflammatory, and antiapoptotic activities.
Collapse
|