1
|
Almeida AG, Grapsa J, Gimelli A, Bucciarelli-Ducci C, Gerber B, Ajmone-Marsan N, Bernard A, Donal E, Dweck MR, Haugaa KH, Hristova K, Maceira A, Mandoli GE, Mulvagh S, Morrone D, Plonska-Gosciniak E, Sade LE, Shivalkar B, Schulz-Menger J, Shaw L, Sitges M, von Kemp B, Pinto FJ, Edvardsen T, Petersen SE, Cosyns B. Cardiovascular multimodality imaging in women: a scientific statement of the European Association of Cardiovascular Imaging of the European Society of Cardiology. Eur Heart J Cardiovasc Imaging 2024; 25:e116-e136. [PMID: 38198766 DOI: 10.1093/ehjci/jeae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024] Open
Abstract
Cardiovascular diseases (CVD) represent an important cause of mortality and morbidity in women. It is now recognized that there are sex differences regarding the prevalence and the clinical significance of the traditional cardiovascular (CV) risk factors as well as the pathology underlying a range of CVDs. Unfortunately, women have been under-represented in most CVD imaging studies and trials regarding diagnosis, prognosis, and therapeutics. There is therefore a clear need for further investigation of how CVD affects women along their life span. Multimodality CV imaging plays a key role in the diagnosis of CVD in women as well as in prognosis, decision-making, and monitoring of therapeutics and interventions. However, multimodality imaging in women requires specific consideration given the differences in CVD between the sexes. These differences relate to physiological changes that only women experience (e.g. pregnancy and menopause) as well as variation in the underlying pathophysiology of CVD and also differences in the prevalence of certain conditions such as connective tissue disorders, Takotsubo, and spontaneous coronary artery dissection, which are all more common in women. This scientific statement on CV multimodality in women, an initiative of the European Association of Cardiovascular Imaging of the European Society of Cardiology, reviews the role of multimodality CV imaging in the diagnosis, management, and risk stratification of CVD, as well as highlights important gaps in our knowledge that require further investigation.
Collapse
Affiliation(s)
- Ana G Almeida
- Heart and Vessels Department, University Hospital Santa Maria, CAML, CCUL, Faculty of Medicine of Lisbon University, Lisbon, Portugal
| | - Julia Grapsa
- Cardiology Department, Guys and St Thomas NHS Trust, London, UK
| | - Alessia Gimelli
- Imaging Department, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Chiara Bucciarelli-Ducci
- Department of Cardiology, Royal Brompton and Harefield Hospitals, Guys' and St Thomas NHS Hospitals, London, UK
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Bernhard Gerber
- Service de Cardiologie, Département Cardiovasculaire, Cliniques Universitaires St. Luc, UCLouvain, Brussels, Belgium
- Division CARD, Institut de Recherche Expérimental et Clinique (IREC), UCLouvain, Brussels, Belgium
| | - Nina Ajmone-Marsan
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anne Bernard
- EA4245 Transplantation, Immunologie, Inflammation, Université de Tours, Tours, France
- Service de Cardiologie, CHRU de Tours, Tours, France
| | - Erwan Donal
- CHU Rennes, Inserm, LTSI-UMR 1099, University of Rennes, Rennes, France
| | - Marc R Dweck
- Centre for Cardiovascular Science, Chancellors Building, Little France Crescent, Edinburgh, UK
| | - Kristina H Haugaa
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
- ProCardio Center for Innovation, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Krassimira Hristova
- Center for Cardiovascular Diseases, Faculty of Medicine, Sofia University, Sofia, Bulgaria
| | - Alicia Maceira
- Ascires Biomedical Group, Valencia, Spain
- Department of Medicine, Health Sciences School, UCH-CEU University, Valencia, Spain
| | - Giulia Elena Mandoli
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Siena, Italy
| | - Sharon Mulvagh
- Division of Cardiology, Dalhousie University, Halifax, NS, Canada
| | - Doralisa Morrone
- Division of Cardiology, Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | | | - Leyla Elif Sade
- Cardiology Department, University of Baskent, Ankara, Turkey
- UPMC Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Jeanette Schulz-Menger
- Charité ECRC Medical Faculty of the Humboldt University Berlin and Helios-Clinics, Berlin, Germany
- DZHK, Partner site Berlin, Berlin, Germany
| | - Leslee Shaw
- Department of Medicine (Cardiology), Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Marta Sitges
- Cardiovascular Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
- Institut Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBERCV, Barcelona, Spain
| | - Berlinde von Kemp
- Cardiology, Centrum voor Hart en Vaatziekten (CHVZ), Universitair Ziejkenhuis Brussel (UZB), Vrij Universiteit Brussel (VUB), Brussels, Belgium
| | - Fausto J Pinto
- Heart and Vessels Department, University Hospital Santa Maria, CAML, CCUL, Faculty of Medicine of Lisbon University, Lisbon, Portugal
| | - Thor Edvardsen
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
- ProCardio Center for Innovation, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Steffen E Petersen
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University London, Charterhouse Square, London, UK
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - Bernard Cosyns
- Cardiology, Centrum voor Hart en Vaatziekten (CHVZ), Universitair Ziejkenhuis Brussel (UZB), Vrij Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
2
|
Lee SH, Back JH, Joo HJ, Lim DS, Lee JE, Lee HJ. Simultaneous detection method for two cardiac disease protein biomarkers on a single chip modified with mixed aptamers using surface plasmon resonance. Talanta 2024; 267:125232. [PMID: 37806108 DOI: 10.1016/j.talanta.2023.125232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023]
Abstract
A simultaneous detection method for two cardiac disease protein biomarkers present in serum samples on a single planar gold chip using surface plasmon resonance (SPR) is described. The detection of N-terminal pro-brain natriuretic peptide (NT-proBNP) and tumor necrosis factor α (TNF-α), which are known as acute myocardial infarction (AMI) biomarkers, with predetermined clinically relevant concentrations was performed using mixed aptamers specific to each protein tethered on a single gold surface. After the binding of NT-proBNP and/or TNF-α to the mixed aptamers, an antibody specific to each target protein was injected to form a surface sandwich complex to improve selectivity. In order to adjust the dynamic ranges in the known clinically relevant concentration significantly different for NT-proBNP (0.13-0.24 nM) and TNF-α (0.5-3 pM), the surface density ratios of the corresponding pair of aptamer and antibody were first systematically determined, which were the 1:1 mixed aptamer chip with 40 nM anti-NT-proBNP and 100 nM anti-TNF-α. This allowed to establish the distinct dynamic ranges of 0.05-0.5 nM for NT-proBNP and 0.1-5 pM for TNF-α in a buffer, along with detection and quantification limits of 0.03 and 0.19 nM for NT-proBNP and 0.06 and 0.21 pM for TNF-α, respectively. The changes in refractive unit (RU) values observed when exposing both proteins at different concentrations alongside the corresponding fixed concentration of antibodies onto the 1:1 mixed aptamer chip were then correlated to the sum of RU values measured when using the injection of individual protein for evaluating each protein concentration. With a complete characterization of the simultaneous quantification of two protein concentrations in the buffer, the mixed aptamer chip was finally employed for direct measurements of NT-proBNP and TNF-α concentrations in undiluted serum samples from healthy controls and AMI patients. The results of simultaneous SPR measurements for the two proteins in the serum samples were further compared to the individual protein concentration results using an enzyme-linked immunosorbent assay.
Collapse
Affiliation(s)
- Sang Hyuk Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Ji Hyun Back
- Chemical & Biological integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Hyung Joon Joo
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Do-Sun Lim
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Ji Eun Lee
- Chemical & Biological integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hye Jin Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
3
|
Civieri G, Kerkhof PLM, Montisci R, Iliceto S, Tona F. Sex differences in diagnostic modalities of coronary artery disease: Evidence from coronary microcirculation. Atherosclerosis 2023; 384:117276. [PMID: 37775426 DOI: 10.1016/j.atherosclerosis.2023.117276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/16/2023] [Accepted: 09/01/2023] [Indexed: 10/01/2023]
Abstract
Although atherosclerosis is usually considered a disease of the large arteries, risk factors for atherosclerosis also trigger structural and functional abnormalities at a microvascular level. In cardiac disease, microvascular dysfunction is especially relevant in women, among whom the manifestation of ischemic disease due to impaired coronary microcirculation is more common than in men. This sex-specific clinical phenotype has important clinical implications and, given the higher pre-test probability of coronary microvascular dysfunction in females, different diagnostic modalities should be used in women compared to men. In this review, we summarize invasive and non-invasive diagnostic modalities to assess coronary microvascular function, ranging from catheter-based evaluation of endothelial function to Doppler echocardiography and positron emission tomography. Moreover, we discuss different clinical settings in which microvascular disease plays an important role, underlining the importance of choosing the right diagnostic modality depending on the sex of the patients.
Collapse
Affiliation(s)
- Giovanni Civieri
- Cardiology Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Peter L M Kerkhof
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, VUmc, Amsterdam, the Netherlands
| | - Roberta Montisci
- Clinical Cardiology, AOU Cagliari, Department of Medical Science and Public Health, University of Cagliari, Italy
| | - Sabino Iliceto
- Cardiology Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Francesco Tona
- Cardiology Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy.
| |
Collapse
|
4
|
Sciatti E, Coccia MG, Magnano R, Aakash G, Limonta R, Diep B, Balestrieri G, D'Isa S, Abramov D, Parwani P, D'Elia E. Heart Failure Preserved Ejection Fraction in Women: Insights Learned from Imaging. Heart Fail Clin 2023; 19:461-473. [PMID: 37714587 DOI: 10.1016/j.hfc.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
While the prevalence of heart failure, in general, is similar in men and women, women experience a higher rate of HFpEF compared to HFrEF. Cardiovascular risk factors, parity, estrogen levels, cardiac physiology, and altered response to the immune system may be at the root of this difference. Studies have found that in response to increasing age and hypertension, women experience more concentric left ventricle remodeling, more ventricular and arterial stiffness, and less ventricular dilation compared to men, which predisposes women to developing more diastolic dysfunction. A multi-modality imaging approach is recommended to identify patients with HFpEF. Particularly, appreciation of sex-based differences as described in this review is important in optimizing the evaluation and care of women with HFpEF.
Collapse
Affiliation(s)
- Edoardo Sciatti
- Cardiology Unit, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | | | | | - Gupta Aakash
- Division of Cardiology, Department of Medicine, Loma Linda University Health, Loma Linda, CA, USA
| | - Raul Limonta
- School of Medicine and Surgery, Milano Bicocca University, Milano, Italy
| | - Brian Diep
- Division of Cardiology, Department of Medicine, Loma Linda University Health, Loma Linda, CA, USA
| | | | - Salvatore D'Isa
- Cardiology Unit, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Dmitry Abramov
- Division of Cardiology, Department of Medicine, Loma Linda University Health, Loma Linda, CA, USA
| | - Purvi Parwani
- Division of Cardiology, Department of Medicine, Loma Linda University Health, Loma Linda, CA, USA
| | - Emilia D'Elia
- Cardiology Unit, Hospital Papa Giovanni XXIII, Bergamo, Italy.
| |
Collapse
|
5
|
Cau R, Pisu F, Suri JS, Montisci R, Bastarrika G, Esposito A, Saba L. Sex-based differences in late gadolinium enhancement among patients with acute myocarditis. Eur J Radiol 2023; 166:110980. [PMID: 37467520 DOI: 10.1016/j.ejrad.2023.110980] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
OBJECTIVE The aims of our study were to investigate the sex differences in late gadolinium enhancement (LGE) using cardiovascular magnetic resonance (CMR) in a single-centre cohort of consecutive patients with acute myocarditis (AM). METHOD This retrospective study performed CMR scans in 135 consecutive patients with AM that met the Lake Louise criteria. On CMR, LV ventricular strain functions were performed on conventional cine SSFP sequences. Besides myocardial strain measurements, myocardial scar location, extension, and size were assigned and quantified by LGE imaging. RESULTS There was no difference in age (age 42.51 ± 19.64 years vs 40.92 ± 19.94 years; p = 0.74) and cardiovascular risk profile between women and men. Despite similar comorbidities, women were more like to present with dyspnea (p = 0.001). Women demonstrated higher prevalence of septal LGE (p = 0.004) and increased global circumferential strain parameters (p = 0.008) in comparison with men. In multivariate analysis, female sex remained an independent determinant of septal LGE (β coefficient = -0.520, p = 0.001). CONCLUSION This is the first study reporting sex differences in LGE localization in AM. Women have more septal LGE involvement independent of age, cardiovascular risk factors, and CMR parameters. These findings further emphasize the sex-based differences in cardiovascular diseases.
Collapse
Affiliation(s)
- Riccardo Cau
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari - Polo di Monserrato, s.s. 554 Monserrato, Cagliari 09045, Italy
| | - Francesco Pisu
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari - Polo di Monserrato, s.s. 554 Monserrato, Cagliari 09045, Italy
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| | - Roberta Montisci
- Department of Cardiology, Azienda Ospedaliero Universitaria, Monserrato, Cagliari, Italy
| | - Gorka Bastarrika
- Department of Radiology, Clinica Universidad de Navarra, Pamplona, Spain
| | - Antonio Esposito
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy; School of Medicine, Vita Salute San Raffaele University, Milan, Italy
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari - Polo di Monserrato, s.s. 554 Monserrato, Cagliari 09045, Italy.
| |
Collapse
|
6
|
Oliveira GMMD, Almeida MCCD, Rassi DDC, Bragança ÉOV, Moura LZ, Arrais M, Campos MDSB, Lemke VG, Avila WS, Lucena AJGD, Almeida ALCD, Brandão AA, Ferreira ADDA, Biolo A, Macedo AVS, Falcão BDAA, Polanczyk CA, Lantieri CJB, Marques-Santos C, Freire CMV, Pellegrini D, Alexandre ERG, Braga FGM, Oliveira FMFD, Cintra FD, Costa IBSDS, Silva JSN, Carreira LTF, Magalhães LBNC, Matos LDNJD, Assad MHV, Barbosa MM, Silva MGD, Rivera MAM, Izar MCDO, Costa MENC, Paiva MSMDO, Castro MLD, Uellendahl M, Oliveira Junior MTD, Souza OFD, Costa RAD, Coutinho RQ, Silva SCTFD, Martins SM, Brandão SCS, Buglia S, Barbosa TMJDU, Nascimento TAD, Vieira T, Campagnucci VP, Chagas ACP. Position Statement on Ischemic Heart Disease - Women-Centered Health Care - 2023. Arq Bras Cardiol 2023; 120:e20230303. [PMID: 37556656 PMCID: PMC10382148 DOI: 10.36660/abc.20230303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023] Open
Affiliation(s)
| | | | | | | | | | | | | | | | - Walkiria Samuel Avila
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP - Brasil
| | | | | | | | | | - Andreia Biolo
- Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS - Brasil
| | | | | | | | | | - Celi Marques-Santos
- Universidade Tiradentes (UNIT), Aracaju, SE - Brasil
- Hospital São Lucas Rede D'Or São Luis, Aracaju, SE - Brasil
| | | | - Denise Pellegrini
- Hospital São Lucas da Pontifícia Universidade Católica do Rio Grande do Sul (PUC-RS), Porto Alegre, RS - Brasil
| | | | - Fabiana Goulart Marcondes Braga
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP - Brasil
| | | | | | | | | | - Lara Terra F Carreira
- Cardiologia Nuclear de Curitiba, Curitiba, PR - Brasil
- Hospital Pilar, Curitiba, PR - Brasil
| | | | | | | | | | | | | | | | | | | | | | - Marly Uellendahl
- Universidade Federal de São Paulo (UNIFESP), São Paulo, SP - Brasil
- DASA - Diagnósticos da América S/A, São Paulo, SP - Brasil
| | - Mucio Tavares de Oliveira Junior
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP - Brasil
| | | | | | - Ricardo Quental Coutinho
- Faculdade de Ciências Médicas da Universidade de Pernambuco (UPE), Recife, PE - Brasil
- Hospital Universitário Osvaldo Cruz da Universidade de Pernambuco (UPE), Recife, PE - Brasil
| | | | - Sílvia Marinho Martins
- Pronto Socorro Cardiológico de Pernambuco da Universidade de Pernambuco (PROCAPE/UPE), Recife, PE - Brasil
| | | | - Susimeire Buglia
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP - Brasil
- Instituto Dante Pazzanese de Cardiologia, São Paulo, SP - Brasil
| | | | | | - Thais Vieira
- Universidade Tiradentes (UNIT), Aracaju, SE - Brasil
- Rede D'Or, Aracaju, SE - Brasil
- Hospital Universitário da Universidade Federal de Sergipe (UFS), Aracaju, SE - Brasil
| | | | - Antonio Carlos Palandri Chagas
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP - Brasil
- Centro Universitário Faculdade de Medicina ABC, Santo André, SP - Brasil
| |
Collapse
|
7
|
Abstract
Approach to imaging ischemia in women Coronary artery disease in women tends to have a worse short- and long-term prognosis relative to men and remains the leading cause of mortality worldwide. Both clinical symptoms and diagnostic approach remain challenging in women due to lesser likelihood of women presenting with classic anginal symptoms on one hand and underperformance of conventional exercise treadmill testing in women on the other. Moreover, a higher proportion of women with signs and symptoms suggestive of ischemia are more likely to have nonobstructive coronary artery disease (CAD) that requires additional imaging and therapeutic considerations. New imaging techniques such as coronary computed tomography (CT) angiography, CT myocardial perfusion imaging, CT functional flow reserve assessment, and cardiac magnetic resonance imaging carry substantially better sensitivity and specificity for the detection of ischemia and coronary artery disease in women. Familiarity with various clinical subtypes of ischemic heart disease in women and with the major advantages and disadvantages of advanced imaging tests to ensure the decision to select one modality over another is one of the keys to successful diagnosis of CAD in women. This review compares the 2 major types of ischemic heart disease in women - obstructive and nonobstructive, while focusing on sex-specific elements of its pathophysiology.
Collapse
|
8
|
Rabbani A, Gao H, Lazarus A, Dalton D, Ge Y, Mangion K, Berry C, Husmeier D. Image-based estimation of the left ventricular cavity volume using deep learning and Gaussian process with cardio-mechanical applications. Comput Med Imaging Graph 2023; 106:102203. [PMID: 36848766 DOI: 10.1016/j.compmedimag.2023.102203] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/26/2022] [Accepted: 02/17/2023] [Indexed: 02/27/2023]
Abstract
In this investigation, an image-based method has been developed to estimate the volume of the left ventricular cavity using cardiac magnetic resonance (CMR) imaging data. Deep learning and Gaussian processes have been applied to bring the estimations closer to the cavity volumes manually extracted. CMR data from 339 patients and healthy volunteers have been used to train a stepwise regression model that can estimate the volume of the left ventricular cavity at the beginning and end of diastole. We have decreased the root mean square error (RMSE) of cavity volume estimation approximately from 13 to 8 ml compared to the common practice in the literature. Considering the RMSE of manual measurements is approximately 4 ml on the same dataset, 8 ml of error is notable for a fully automated estimation method, which needs no supervision or user-hours once it has been trained. Additionally, to demonstrate a clinically relevant application of automatically estimated volumes, we inferred the passive material properties of the myocardium given the volume estimates using a well-validated cardiac model. These material properties can be further used for patient treatment planning and diagnosis.
Collapse
Affiliation(s)
- Arash Rabbani
- School of Mathematics & Statistics, University of Glasgow, Glasgow G12 8QQ, United Kingdom; School of Computing, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | - Hao Gao
- School of Mathematics & Statistics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Alan Lazarus
- School of Mathematics & Statistics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - David Dalton
- School of Mathematics & Statistics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Yuzhang Ge
- School of Mathematics & Statistics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Kenneth Mangion
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Colin Berry
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Dirk Husmeier
- School of Mathematics & Statistics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
9
|
Giacobbe G, Granata V, Trovato P, Fusco R, Simonetti I, De Muzio F, Cutolo C, Palumbo P, Borgheresi A, Flammia F, Cozzi D, Gabelloni M, Grassi F, Miele V, Barile A, Giovagnoni A, Gandolfo N. Gender Medicine in Clinical Radiology Practice. J Pers Med 2023; 13:jpm13020223. [PMID: 36836457 PMCID: PMC9966684 DOI: 10.3390/jpm13020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Gender Medicine is rapidly emerging as a branch of medicine that studies how many diseases common to men and women differ in terms of prevention, clinical manifestations, diagnostic-therapeutic approach, prognosis, and psychological and social impact. Nowadays, the presentation and identification of many pathological conditions pose unique diagnostic challenges. However, women have always been paradoxically underestimated in epidemiological studies, drug trials, as well as clinical trials, so many clinical conditions affecting the female population are often underestimated and/or delayed and may result in inadequate clinical management. Knowing and valuing these differences in healthcare, thus taking into account individual variability, will make it possible to ensure that each individual receives the best care through the personalization of therapies, the guarantee of diagnostic-therapeutic pathways declined according to gender, as well as through the promotion of gender-specific prevention initiatives. This article aims to assess potential gender differences in clinical-radiological practice extracted from the literature and their impact on health and healthcare. Indeed, in this context, radiomics and radiogenomics are rapidly emerging as new frontiers of imaging in precision medicine. The development of clinical practice support tools supported by artificial intelligence allows through quantitative analysis to characterize tissues noninvasively with the ultimate goal of extracting directly from images indications of disease aggressiveness, prognosis, and therapeutic response. The integration of quantitative data with gene expression and patient clinical data, with the help of structured reporting as well, will in the near future give rise to decision support models for clinical practice that will hopefully improve diagnostic accuracy and prognostic power as well as ensure a more advanced level of precision medicine.
Collapse
Affiliation(s)
- Giuliana Giacobbe
- General and Emergency Radiology Department, “Antonio Cardarelli” Hospital, 80131 Naples, Italy
| | - Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Piero Trovato
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Naples, Italy
- Correspondence:
| | - Igino Simonetti
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Federica De Muzio
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Carmen Cutolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Salerno, Italy
| | - Pierpaolo Palumbo
- Department of Diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, Abruzzo Health Unit 1, 67100 L’Aquila, Italy
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy
| | - Alessandra Borgheresi
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60126 Ancona, Italy
- Department of Radiology, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, Via Conca 71, 60126 Ancona, Italy
| | - Federica Flammia
- Department of Emergency Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Diletta Cozzi
- Department of Emergency Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Michela Gabelloni
- Department of Translational Research, Diagnostic and Interventional Radiology, University of Pisa, 56126 Pisa, Italy
| | - Francesca Grassi
- Division of Radiology, “Università degli Studi della Campania Luigi Vanvitelli”, 80138 Naples, Italy
| | - Vittorio Miele
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy
- Department of Emergency Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Antonio Barile
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy
- Department of Applied Clinical Sciences and Biotechnology, University of L’Aquila, 67100 L’Aquila, Italy
| | - Andrea Giovagnoni
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60126 Ancona, Italy
- Department of Radiology, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, Via Conca 71, 60126 Ancona, Italy
| | - Nicoletta Gandolfo
- Diagnostic Imaging Department, Villa Scassi Hospital-ASL 3, Corso Scassi 1, 16149 Genoa, Italy
| |
Collapse
|
10
|
Palau P, Núñez J, Monmeneu JV, Lopez-Lereu MP, Gavara J, Rios-Navarro C, de Dios E, Perez-Sole N, Marcos-Garces V, Domínguez E, Moratal D, Canoves J, Miñana G, Chorro FJ, Bodi V. Sex Effect in the Decision to Perform Invasive Coronary Angiography in Patients With Chronic Coronary Syndrome After Undergoing Vasodilator Stress MRI. J Magn Reson Imaging 2022; 56:1680-1690. [PMID: 35344231 DOI: 10.1002/jmri.28163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Stress cardiac MRI permits comprehensive evaluation of patients with known or suspected chronic coronary syndromes (CCS). The impact of sex on the use of invasive cardiac angiography (ICA) after vasodilator stress cardiac MRI is unclear. PURPOSE To evaluate the impact of sex on ICA use after vasodilator stress cardiac MRI. STUDY TYPE Retrospective. POPULATION A total of 6229 consecutive patients (age [mean ± standard deviation] 65.2 ± 11.5 years, 38.1% women). FIELD STRENGTH/SEQUENCE A 5-T; a steady-state free-precession cine sequence; stress first-pass perfusion imaging; late enhancement imaging. ASSESSMENT Patients underwent vasodilator stress cardiac MRI for known or suspected CCS. The ischemic burden (at stress first-pass perfusion imaging) was computed (17-segment model). STATISTICAL TESTS Multivariate logistic regression was used to evaluate the potential differential association between ischemic burden and use of cardiac MRI-related ICA across sex. RESULTS A total of 1109 (17.8%) patients were referred to ICA, among which there were significantly more men (762, 19.7%) than women (347, 14.6%). Overall, after multivariate adjustment, female sex was not associated with lower use of ICA (odds ratio [OR] = 0.99; confidence interval [CI] 95%: 0.84-1.18, P = 0.934). However, significant sex differences were detected across ischemic burden. Whereas women with nonischemic vasodilator stress cardiac MRI (0 ischemic segments) were less commonly submitted to ICA (OR = 0.49; CI 95%: 0.35-0.69) in patients with ischemia (>1 ischemic segment), adjusted use of ICA was more frequent in women than men (OR = 1.27; CI 95%: 1.1-1.5). DATA CONCLUSIONS In patients with known or suspected CCS submitted to undergo vasodilator stress cardiac MRI, cardiac MRI-related ICA may be overused in men without ischemia. Furthermore, ICA referral in patients with negative ischemia resulted in greater odds of revascularization in men. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 5.
Collapse
Affiliation(s)
- Patricia Palau
- Department of Cardiology, Hospital Clínico Universitario de Valencia, Valencia, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico Universitario de Valencia (INCLIVA), Valencia, Spain.,Faculty of Medicine, Universitat de València, Valencia, Spain
| | - Julio Núñez
- Department of Cardiology, Hospital Clínico Universitario de Valencia, Valencia, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico Universitario de Valencia (INCLIVA), Valencia, Spain.,Faculty of Medicine, Universitat de València, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| | - Jose V Monmeneu
- Cardiovascular Unit, ASCIRES Biomedical Group, Valencia, Spain
| | | | - Jose Gavara
- Instituto de Investigación Sanitaria del Hospital Clínico Universitario de Valencia (INCLIVA), Valencia, Spain.,Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain
| | - Cesar Rios-Navarro
- Instituto de Investigación Sanitaria del Hospital Clínico Universitario de Valencia (INCLIVA), Valencia, Spain
| | - Elena de Dios
- Faculty of Medicine, Universitat de València, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| | - Nerea Perez-Sole
- Instituto de Investigación Sanitaria del Hospital Clínico Universitario de Valencia (INCLIVA), Valencia, Spain
| | - Victor Marcos-Garces
- Department of Cardiology, Hospital Clínico Universitario de Valencia, Valencia, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico Universitario de Valencia (INCLIVA), Valencia, Spain
| | | | - David Moratal
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain
| | - Joaquim Canoves
- Department of Cardiology, Hospital Clínico Universitario de Valencia, Valencia, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico Universitario de Valencia (INCLIVA), Valencia, Spain.,Faculty of Medicine, Universitat de València, Valencia, Spain
| | - Gema Miñana
- Department of Cardiology, Hospital Clínico Universitario de Valencia, Valencia, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico Universitario de Valencia (INCLIVA), Valencia, Spain.,Faculty of Medicine, Universitat de València, Valencia, Spain
| | - Francisco Javier Chorro
- Department of Cardiology, Hospital Clínico Universitario de Valencia, Valencia, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico Universitario de Valencia (INCLIVA), Valencia, Spain.,Faculty of Medicine, Universitat de València, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| | - Vicente Bodi
- Department of Cardiology, Hospital Clínico Universitario de Valencia, Valencia, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico Universitario de Valencia (INCLIVA), Valencia, Spain.,Faculty of Medicine, Universitat de València, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| |
Collapse
|
11
|
O'Brien AT, Gil KE, Varghese J, Simonetti OP, Zareba KM. T2 mapping in myocardial disease: a comprehensive review. J Cardiovasc Magn Reson 2022; 24:33. [PMID: 35659266 PMCID: PMC9167641 DOI: 10.1186/s12968-022-00866-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 04/27/2022] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular magnetic resonance (CMR) is considered the gold standard imaging modality for myocardial tissue characterization. Elevated transverse relaxation time (T2) is specific for increased myocardial water content, increased free water, and is used as an index of myocardial edema. The strengths of quantitative T2 mapping lie in the accurate characterization of myocardial edema, and the early detection of reversible myocardial disease without the use of contrast agents or ionizing radiation. Quantitative T2 mapping overcomes the limitations of T2-weighted imaging for reliable assessment of diffuse myocardial edema and can be used to diagnose, stage, and monitor myocardial injury. Strong evidence supports the clinical use of T2 mapping in acute myocardial infarction, myocarditis, heart transplant rejection, and dilated cardiomyopathy. Accumulating data support the utility of T2 mapping for the assessment of other cardiomyopathies, rheumatologic conditions with cardiac involvement, and monitoring for cancer therapy-related cardiac injury. Importantly, elevated T2 relaxation time may be the first sign of myocardial injury in many diseases and oftentimes precedes symptoms, changes in ejection fraction, and irreversible myocardial remodeling. This comprehensive review discusses the technical considerations and clinical roles of myocardial T2 mapping with an emphasis on expanding the impact of this unique, noninvasive tissue parameter.
Collapse
Affiliation(s)
- Aaron T O'Brien
- Ohio University Heritage College of Osteopathic Medicine, Athens, Ohio, USA
| | - Katarzyna E Gil
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Juliet Varghese
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Orlando P Simonetti
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
- Department of Radiology, The Ohio State University, Columbus, Ohio, USA
| | - Karolina M Zareba
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
12
|
Qin C, Murali S, Lee E, Supramaniam V, Hausenloy DJ, Obungoloch J, Brecher J, Lin R, Ding H, Akudjedu TN, Anazodo UC, Jagannathan NR, Ntusi NAB, Simonetti OP, Campbell-Washburn AE, Niendorf T, Mammen R, Adeleke S. Sustainable low-field cardiovascular magnetic resonance in changing healthcare systems. Eur Heart J Cardiovasc Imaging 2022; 23:e246-e260. [PMID: 35157038 PMCID: PMC9159744 DOI: 10.1093/ehjci/jeab286] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/14/2021] [Indexed: 11/14/2022] Open
Abstract
Cardiovascular disease continues to be a major burden facing healthcare systems worldwide. In the developed world, cardiovascular magnetic resonance (CMR) is a well-established non-invasive imaging modality in the diagnosis of cardiovascular disease. However, there is significant global inequality in availability and access to CMR due to its high cost, technical demands as well as existing disparities in healthcare and technical infrastructures across high-income and low-income countries. Recent renewed interest in low-field CMR has been spurred by the clinical need to provide sustainable imaging technology capable of yielding diagnosticquality images whilst also being tailored to the local populations and healthcare ecosystems. This review aims to evaluate the technical, practical and cost considerations of low field CMR whilst also exploring the key barriers to implementing sustainable MRI in both the developing and developed world.
Collapse
Affiliation(s)
- Cathy Qin
- Department of Imaging, Imperial College Healthcare NHS Trust, London, UK
| | - Sanjana Murali
- Department of Imaging, Imperial College Healthcare NHS Trust, London, UK
| | - Elsa Lee
- School of Medicine, Faculty of Medicine, Imperial College London, London, UK
| | | | - Derek J Hausenloy
- Division of Medicine, University College London, London, UK
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
- Hatter Cardiovascular Institue, UCL Institute of Cardiovascular Sciences, University College London, London, UK
- Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
| | - Johnes Obungoloch
- Department of Biomedical Engineering, Mbarara University of Science and Technology, Mbarara, Uganda
| | | | - Rongyu Lin
- School of Medicine, University College London, London, UK
| | - Hao Ding
- Department of Imaging, Imperial College Healthcare NHS Trust, London, UK
| | - Theophilus N Akudjedu
- Institute of Medical Imaging and Visualisation, Faculty of Health and Social Science, Bournemouth University, Poole, UK
| | | | - Naranamangalam R Jagannathan
- Department of Electrical Engineering, Indian Institute of Technology, Chennai, India
- Department of Radiology, Sri Ramachandra University Medical College, Chennai, India
- Department of Radiology, Chettinad Hospital and Research Institute, Kelambakkam, India
| | - Ntobeko A B Ntusi
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, Western Cape, South Africa
| | - Orlando P Simonetti
- Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, USA
- Department of Radiology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Adrienne E Campbell-Washburn
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück Centre for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Regina Mammen
- Department of Cardiology, The Essex Cardiothoracic Centre, Basildon, UK
| | - Sola Adeleke
- School of Cancer & Pharmaceutical Sciences, King’s College London, Queen Square, London WC1N 3BG, UK
- High Dimensional Neurology, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
13
|
Xu L, Wang F. LINC00936 exacerbated myocardial infarction progression via miR-4795-3p/Wnt3a signaling pathway based on biological and imaging methods. Perfusion 2022; 38:706-716. [PMID: 35410528 DOI: 10.1177/02676591221076788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE LncRNAs show great potential in diagnosing and treating myocardial infarction (MI). Clarifying the mechanism of lncRNAs on MI is of great significance for the application of MI biomarkers. Therefore, this report intended to determine the role and mechanism of LINC00936 on MI by biological and imaging methods. METHODS Hypoxia H9C2 model was established by hypoxia treatment. Flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling assay detected the apoptosis of H9C2. H2DCFDA staining and enzyme-linked immunosorbent assay (ELISA) was used to detect the reactive oxygen species (ROS) accumulation and Lactate dehydrogenase (LDH) contents, respectively. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to detect LINC00936, Wnt3a and miR-4795-3p levels. Western blot detected Wnt3a protein expression. Dual luciferase reporter assays detected the relationship of miR-4795-3p to LINC00936 or Wnt3a. Echocardiography analysis detected cardiac function. 2,3,5-Triphenyltetrazolium chloride (TTC) detected the infarct size. Masson staining detected the pathological changes. RESULTS LINC00936 level was elevated in the MI patients compared with the controls. Overexpression of LINC00936 promoted apoptosis and ROS accumulation in hypoxia H9C2 model and exacerbated MI progression in vivo. miR-4795-3p bound with LINC00936 in H9C2 cells and miR-4795-3p mimics inhibited apoptosis and ROS accumulation in hypoxia H9C2 model regulated by LINC00936. Wnt3a was targeted by miR-4795-3p and Wnt3a elevation promoted apoptosis and ROS accumulation in hypoxia H9C2 model. CONCLUSION In this report, we illustrated that LINC00936 exacerbated MI progression via the miR-4795-3p/Wnt3a signaling pathway based on biological and imaging methods. These findings might provide potential molecular target for the diagnosis and treatment of MI.
Collapse
Affiliation(s)
- Lvyun Xu
- Department of Emergency, Affiliated Taikang Xianlin Drum Tower Hospital, 117559Medical School of Nanjing University, Nanjing, China
| | - Fan Wang
- Department of Radiology, Nanjing BenQ Medical Center, 189779The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Rodriguez Lozano PF, Rrapo Kaso E, Bourque JM, Morsy M, Taylor AM, Villines TC, Kramer CM, Salerno M. Cardiovascular Imaging for Ischemic Heart Disease in Women: Time for a Paradigm Shift. JACC. CARDIOVASCULAR IMAGING 2022; 15:1488-1501. [PMID: 35331658 PMCID: PMC9355915 DOI: 10.1016/j.jcmg.2022.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 10/18/2022]
Abstract
Heart disease is the leading cause of death among men and women. Women have a unique phenotype of ischemic heart disease with less calcified lesions, more nonobstructive plaques, and a higher prevalence of microvascular disease compared with men, which may explain in part why current risk models to detect obstructive coronary artery disease (CAD) may not work as well in women. This paper summarizes the sex differences in the functional and anatomical assessment of CAD in women presenting with stable chest pain and provides an approach for using multimodality imaging for the evaluation of suspected ischemic heart disease in women in accordance to the recently published American Heart Association/American College of Cardiology guidelines for the evaluation and diagnosis of chest pain. A paradigm shift in the approach to imaging ischemic heart disease women is needed including updated risk models, a more profound understanding of CAD in women where nonobstructive disease is more prevalent, and algorithms focused on the evaluation of ischemia with nonobstructive CAD and myocardial infarction with nonobstructive CAD.
Collapse
Affiliation(s)
- Patricia F Rodriguez Lozano
- Department of Medicine, Cardiovascular Division, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Elona Rrapo Kaso
- Department of Medicine, Cardiovascular Division, Orlando VA Medical Center, Orlando, Florida, USA
| | - Jamieson M Bourque
- Department of Medicine, Cardiovascular Division, University of Virginia Health System, Charlottesville, Virginia, USA; Department of Radiology and Medical Imaging, Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Mohamed Morsy
- Department of Medicine, Cardiovascular Division, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Angela M Taylor
- Department of Medicine, Cardiovascular Division, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Todd C Villines
- Department of Medicine, Cardiovascular Division, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Christopher M Kramer
- Department of Medicine, Cardiovascular Division, University of Virginia Health System, Charlottesville, Virginia, USA; Department of Radiology and Medical Imaging, Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Michael Salerno
- Department of Medicine, Cardiovascular Division, University of Virginia Health System, Charlottesville, Virginia, USA; Department of Radiology and Medical Imaging, Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, Virginia, USA; Stanford University Medical Center, Cardiovascular Medicine, Stanford, California, USA.
| |
Collapse
|
15
|
Manning WJ. 2021 - State of our JCMR. J Cardiovasc Magn Reson 2022; 24:14. [PMID: 35246157 PMCID: PMC8896069 DOI: 10.1186/s12968-021-00840-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 11/10/2022] Open
Abstract
There were 89 articles published in the Journal of Cardiovascular Magnetic Resonance (JCMR) in 2020, including 71 original research papers, 5 technical notes, 6 reviews, 4 Society for Cardiovascular Magnetic Resonance (SCMR) position papers/guidelines/protocols and 3 corrections. The volume was up 12.7% from 2019 (n = 79) with a corresponding 17.9% increase in manuscript submissions from 369 to 435. This led to a slight increase in the acceptance rate from 22 to 23%. The quality of the submissions continues to be high. The 2020 JCMR Impact Factor (which is published in June 2020) slightly increased from 5.361 to 5.364 placing us in the top quartile of Society and cardiac imaging journals. Our 5 year impact factor increased from 5.18 to 6.52. Fourteen years ago, the JCMR was at the forefront of medical and medical society journal migration to the Open-Access format. The Open-Access system has dramatically increased the availability and citation of JCMR publications with accesses now exceeding 1.2 M! It takes a village to run a journal. JCMR is blessed to have a group of very dedicated Associate Editors, Guest Editors, Journal Club Editors, and Reviewers. I thank each of them for their efforts to ensure that the review process occurs in a timely and responsible manner. These efforts have allowed the JCMR to continue as the premier journal of our field. My role, and the entire process would not be possible without the dedication and efforts of our new managing editor, Jennifer Rodriguez, whose premier organizational efforts have allowed for streamlining of the review process and marked improvement in our time-to-decision (see later). As I begin my 6th and final year as your editor-in-chief, I thank you for entrusting me with the JCMR editorship. I hope that you will continue to send us your very best, high quality manuscripts for JCMR consideration and that our readers will continue to look to JCMR for the very best/state-of-the-art CMR publications. The editorial process continues to be a tremendously fulfilling experience and the opportunity to review manuscripts that reflect the best in our field remains a great joy and true highlight of my week!
Collapse
Affiliation(s)
- Warren J Manning
- Departments of Medicine (Cardiovascular Division) and Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, 02215, USA.
- JCMR Editorial Office, Boston, Massachusetts, 02215, USA.
| |
Collapse
|
16
|
Leo I, Nakou E, de Marvao A, Wong J, Bucciarelli-Ducci C. Imaging in Women with Heart Failure: Sex-specific Characteristics and Current Challenges. Card Fail Rev 2022; 8:e29. [PMID: 36303591 PMCID: PMC9585642 DOI: 10.15420/cfr.2022.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/16/2022] [Indexed: 11/30/2022] Open
Abstract
Cardiovascular disease (CVD) represents a significant threat to women's health. Heart failure (HF) is one CVD that still has an increasing incidence and about half of all cases involve women. HF is characterised by strong sex-specific features in aetiology, clinical manifestation and outcomes. Women are more likely to have hypertensive heart disease and HF with preserved ejection fraction, they experience worse quality of life but have a better overall survival rate. Women's hearts also have unique morphological characteristics that should be considered during cardiovascular assessment. It is important to understand and highlight these sex-specific features to be able to provide a tailored diagnostic approach and therapeutic management. The aim of this article is to review these aspects together with the challenges and the unique characteristics of different imaging modalities used for the diagnosis and follow-up of women with HF.
Collapse
Affiliation(s)
- Isabella Leo
- Department of Cardiology, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation TrustLondon, UK
- Department of Medical and Surgical Sciences, Magna Graecia UniversityCatanzaro, Italy
| | - Eleni Nakou
- Department of Cardiology, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation TrustLondon, UK
| | - Antonio de Marvao
- Medical Research Council, London Institute of Medical Sciences, Imperial College LondonLondon, UK
| | - Joyce Wong
- Department of Cardiology, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation TrustLondon, UK
| | - Chiara Bucciarelli-Ducci
- Department of Cardiology, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation TrustLondon, UK
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College LondonLondon, UK
| |
Collapse
|
17
|
Cardiovascular Disease in Older Women. Clin Geriatr Med 2021; 37:651-665. [PMID: 34600729 DOI: 10.1016/j.cger.2021.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cardiovascular disease is the major cause of death in women. Older women remain at risk for coronary artery disease/cardiovascular disease, but risk-modifying behavior can improve outcomes. Women have a different symptom profile and have been underdiagnosed and undertreated as compared with men. Although older women are underrepresented in trials, clinicians should be more attuned to the prevention, diagnosis, and treatment of cardiovascular disease in older women.
Collapse
|
18
|
Bays HE, Khera A, Blaha MJ, Budoff MJ, Toth PP. Ten things to know about ten imaging studies: A preventive cardiology perspective ("ASPC top ten imaging"). Am J Prev Cardiol 2021; 6:100176. [PMID: 34327499 PMCID: PMC8315431 DOI: 10.1016/j.ajpc.2021.100176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023] Open
Abstract
Knowing the patient's current cardiovascular disease (CVD) status, as well as the patient's current and future CVD risk, helps the clinician make more informed patient-centered management recommendations towards the goal of preventing future CVD events. Imaging tests that can assist the clinician with the diagnosis and prognosis of CVD include imaging studies of the heart and vascular system, as well as imaging studies of other body organs applicable to CVD risk. The American Society for Preventive Cardiology (ASPC) has published "Ten Things to Know About Ten Cardiovascular Disease Risk Factors." Similarly, this "ASPC Top Ten Imaging" summarizes ten things to know about ten imaging studies related to assessing CVD and CVD risk, listed in tabular form. The ten imaging studies herein include: (1) coronary artery calcium imaging (CAC), (2) coronary computed tomography angiography (CCTA), (3) cardiac ultrasound (echocardiography), (4) nuclear myocardial perfusion imaging (MPI), (5) cardiac magnetic resonance (CMR), (6) cardiac catheterization [with or without intravascular ultrasound (IVUS) or coronary optical coherence tomography (OCT)], (7) dual x-ray absorptiometry (DXA) body composition, (8) hepatic imaging [ultrasound of liver, vibration-controlled transient elastography (VCTE), CT, MRI proton density fat fraction (PDFF), magnetic resonance spectroscopy (MRS)], (9) peripheral artery / endothelial function imaging (e.g., carotid ultrasound, peripheral doppler imaging, ultrasound flow-mediated dilation, other tests of endothelial function and peripheral vascular imaging) and (10) images of other body organs applicable to preventive cardiology (brain, kidney, ovary). Many cardiologists perform cardiovascular-related imaging. Many non-cardiologists perform applicable non-cardiovascular imaging. Cardiologists and non-cardiologists alike may benefit from a working knowledge of imaging studies applicable to the diagnosis and prognosis of CVD and CVD risk - both important in preventive cardiology.
Collapse
Affiliation(s)
- Harold E. Bays
- Louisville Metabolic and Atherosclerosis Research Center, 3288 Illinois Avenue, Louisville KY 40213 USA
| | - Amit Khera
- UT Southwestern Medical Center, Dallas, TX USA
| | - Michael J. Blaha
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Baltimore MD USA
| | - Matthew J Budoff
- Department of Medicine, Lundquist Institute at Harbor-UCLA, Torrance CA USA
| | - Peter P. Toth
- CGH Medical Cener, Sterling, IL 61081 USA
- Cicarrone center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD USA
| |
Collapse
|
19
|
Ordovas KG, Baldassarre LA, Bucciarelli-Ducci C, Carr J, Fernandes JL, Ferreira VM, Frank L, Mavrogeni S, Ntusi N, Ostenfeld E, Parwani P, Pepe A, Raman SV, Sakuma H, Schulz-Menger J, Sierra-Galan LM, Valente AM, Srichai MB. Cardiovascular magnetic resonance in women with cardiovascular disease: position statement from the Society for Cardiovascular Magnetic Resonance (SCMR). J Cardiovasc Magn Reson 2021; 23:52. [PMID: 33966639 PMCID: PMC8108343 DOI: 10.1186/s12968-021-00746-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 03/17/2021] [Indexed: 01/09/2023] Open
Abstract
This document is a position statement from the Society for Cardiovascular Magnetic Resonance (SCMR) on recommendations for clinical utilization of cardiovascular magnetic resonance (CMR) in women with cardiovascular disease. The document was prepared by the SCMR Consensus Group on CMR Imaging for Female Patients with Cardiovascular Disease and endorsed by the SCMR Publications Committee and SCMR Executive Committee. The goals of this document are to (1) guide the informed selection of cardiovascular imaging methods, (2) inform clinical decision-making, (3) educate stakeholders on the advantages of CMR in specific clinical scenarios, and (4) empower patients with clinical evidence to participate in their clinical care. The statements of clinical utility presented in the current document pertain to the following clinical scenarios: acute coronary syndrome, stable ischemic heart disease, peripartum cardiomyopathy, cancer therapy-related cardiac dysfunction, aortic syndrome and congenital heart disease in pregnancy, bicuspid aortic valve and aortopathies, systemic rheumatic diseases and collagen vascular disorders, and cardiomyopathy-causing mutations. The authors cite published evidence when available and provide expert consensus otherwise. Most of the evidence available pertains to translational studies involving subjects of both sexes. However, the authors have prioritized review of data obtained from female patients, and direct comparison of CMR between women and men. This position statement does not consider CMR accessibility or availability of local expertise, but instead highlights the optimal utilization of CMR in women with known or suspected cardiovascular disease. Finally, the ultimate goal of this position statement is to improve the health of female patients with cardiovascular disease by providing specific recommendations on the use of CMR.
Collapse
Affiliation(s)
| | | | - Chiara Bucciarelli-Ducci
- Bristol Heart Institute, Bristol, UK
- Bristol National Institute of Health Research (NIHR) Biomedical , Research Centre, Bristol, UK
- University Hospitals Bristol, Bristol, UK
- University of Bristol, Bristol, UK
| | - James Carr
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Vanessa M Ferreira
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Luba Frank
- Medical College of Wisconsin, Wisconsin, USA
| | - Sophie Mavrogeni
- Onassis Cardiac Surgery Center, Athens, Greece
- Kapodistrian University of Athens, Athens, Greece
| | - Ntobeko Ntusi
- University of Cape Town, Cape Town, South Africa
- Groote Schuur Hospital, Cape Town, South Africa
| | - Ellen Ostenfeld
- Department of Clinical Sciences Lund, Clinical Physiology, Skåne University Hospital Lund, Lund University, Lund, Sweden
| | - Purvi Parwani
- Division of Cardiology, Department of Medicine, Loma Linda University Health, Loma Linda, CA, USA
| | - Alessia Pepe
- Magnetic Resonance Imaging Unit, Fondazione G. Monasterio C.N.R., Pisa, Italy
| | - Subha V Raman
- Krannert Institute of Cardiology, Indiana University, Indianapolis, USA
| | - Hajime Sakuma
- Department of Radiology, Mie University School of Medicine, Mie, Japan
| | - Jeanette Schulz-Menger
- harite Hospital, University of Berlin, Berlin, Germany
- HELIOS-Clinics Berlin-Buch, Berlin, Germany
| | | | | | | |
Collapse
|