1
|
Braschler L, Nikolaidis PT, Thuany M, Chlíbková D, Rosemann T, Weiss K, Wilhelm M, Knechtle B. Physiology and Pathophysiology of Marathon Running: A narrative Review. SPORTS MEDICINE - OPEN 2025; 11:10. [PMID: 39871014 PMCID: PMC11772678 DOI: 10.1186/s40798-025-00810-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 12/30/2024] [Indexed: 01/29/2025]
Abstract
BACKGROUND Marathon training and running have many beneficial effects on human health and physical fitness; however, they also pose risks. To date, no comprehensive review regarding both the benefits and risks of marathon running on different organ systems has been published. MAIN BODY The aim of this review was to provide a comprehensive review of the benefits and risks of marathon training and racing on different organ systems. A predefined search strategy including keywords (e.g., marathon, cardiovascular system, etc.) and free text search was used. Articles covering running regardless of sex, age, performance level, and event type (e.g., road races, mountain marathons) were considered, whereas articles examining only cycling, triathlon, stress-tests or other sports were excluded. In total, we found 1021 articles in PubMed, Scopus, and Google Scholar, of which 329 studies were included in this review. Overall, marathon training offers several benefits for different organ systems and reduces all-cause mortality. As such, it improves cardiovascular risk factors, leads to favorable cardiac adaptations, enhances lung function, and improves quality of life in chronic kidney disease patients. It also enhances gastrointestinal mobility and reduces the risk of specific tumors such as colorectal cancer and hepatocellular carcinoma. Marathon training enhances bone health and skeletal muscle metabolism. It further positively affects hematopoiesis and cytotoxic abilities of natural killer cells, and may act neuroprotective on a long-term basis. After a marathon, changes in biomarkers suggesting pathological events in certain organ systems such as cardiovascular, renal, gastrointestinal, liver, hematological, immune, musculoskeletal, central nervous, and endocrine systems can often be observed. Mostly, these changes are limited to 1-3 days post-race and usually normalize within a week. Moreover, marathon running poses the risk of serious adverse events such as sudden cardiac death or acute liver failure. Concerning lung function, a decrease after a marathon race was observed. Acute kidney injury, as well as electrolyte imbalances, are relatively common amongst marathon finishers. Many runners complain of gastrointestinal symptoms during or after long-distance running. Many runners suffer from running-related musculoskeletal injuries often impairing performance. A marathon is often accompanied by an acute inflammatory response with transient immunosuppression, making runners susceptible to infections. Also, hormonal alterations such as increased cortisol levels or decreased testosterone levels immediately after a race are observed. Disturbances in sleep patterns are commonly found in marathon runners leading up to or directly after the race. CONCLUSION All in all, marathon training is generally safe for human health and individual organ systems. Considering the high popularity of marathon running, these findings supply athletes, coaches, sports scientists, and sports medicine practitioners with practical applications. Further large-scale studies examining long-term effects on the cardiovascular, renal, and other system are needed.
Collapse
Affiliation(s)
- Lorin Braschler
- Centre for Rehabilitation and Sports Medicine, Inselspital, University Hospital of Bern, University of Bern, Bern, Switzerland
| | | | - Mabliny Thuany
- Department of Physical Education, State University of Para, Pará, Brazil
| | - Daniela Chlíbková
- Brno University of Technology, Centre of Sport Activities, Brno, Czechia
| | - Thomas Rosemann
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | - Katja Weiss
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | - Matthias Wilhelm
- Centre for Rehabilitation and Sports Medicine, Inselspital, University Hospital of Bern, University of Bern, Bern, Switzerland
| | - Beat Knechtle
- Institute of Primary Care, University of Zurich, Zurich, Switzerland.
- Medbase St. Gallen Am Vadianplatz, Vadianstrasse 26, 9001, St. Gallen, Switzerland.
| |
Collapse
|
2
|
Babaei M, Rezaei S, Saghafi Khadem S, Shirinbak I, Basir Shabestari S. The Role of Salivary C-Reactive Protein in Systemic and Oral Disorders: A Systematic Review. Med J Islam Repub Iran 2022; 36:138. [PMID: 36479533 PMCID: PMC9719583 DOI: 10.47176/mjiri.36.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Blood sampling is expensive, time-consuming, invasive, and requires technical facilities, which can be replaced by more convenient samples such as saliva. C-reactive protein (CRP) is a widely used biomarker in the management of many disorders and plasma CRP (pCRP) is suggested to be replaced by salivary CRP (sCRP). This study aimed to systematically review all available literature on the sCRP levels in systemic and oral disorders and how sCRP and pCRP levels correlate among these patients and healthy individuals. Methods: In this systematic review, a PubMed, Embase, Scopus, and Google Scholar search was conducted on October-2021 to identify all research investigating sCRP levels in systemic and oral disorders. Results: A total of 130 publications were analyzed in the review. Most of the studies reported that sCRP and pCRP levels are correlated, and sCRP is a reliable alternative for pCRP level for the diagnosis and management of medical conditions. sCRP has been measured in many different medical and oral disorders and significantly correlated with disease activity in most cases. Conclusion: Salivary CRP is a good alternative for Plasma CRP levels in most cases.
Collapse
Affiliation(s)
- Mahsa Babaei
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Rezaei
- Iran University of Medical Sciences, Tehran, Iran
| | - Shadi Saghafi Khadem
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Shirinbak
- Oral and Maxillofacial Surgery, Alborz University of Medical Sciences, Karaj, Iran
| | - Samira Basir Shabestari
- Department of Oral Medicine, School of Dentistry, Firoozgar Clinical Research Development Center, Iran University of Medical Sciences, Tehran, Iran, Corresponding author:Samira Basir Shabestari,
| |
Collapse
|
3
|
Hernández-Hermoso JA, Nescolarde L, Roca E, Revuelta-López E, Ara J, Bayes-Genis A. Marathon Running Increases Synthesis and Decreases Catabolism of Joint Cartilage Type II Collagen Accompanied by High-Energy Demands and an Inflamatory Reaction. Front Physiol 2021; 12:722718. [PMID: 34707508 PMCID: PMC8542987 DOI: 10.3389/fphys.2021.722718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: To determine the effect of marathon running on serum levels of inflammatory, high energy, and cartilage matrix biomarkers and to ascertain whether these biomarkers levels correlate. Design: Blood samples from 17 Caucasian male recreational athletes at the Barcelona Marathon 2017 were collected at the baseline, immediately and 48 h post-race. Serum C reactive protein (CRP), creatin kinase (CK), and lactate dehydrogenase (LDH) were determined using an AU-5800 chemistry analyser. Serum levels of hyaluronan (HA), cartilage oligomeric matrix protein (COMP), aggrecan chondroitin sulphate 846 (CS846), glycoprotein YKL-40, human procollagen II N-terminal propeptide (PIINP), human type IIA collagen N-propeptide (PIIANP), and collagen type II cleavage (C2C) were measured by sandwich enzyme-linked immune-sorbent assay (ELISA). Results: Medians CK and sLDH levels increased (three-fold, two-fold) post-race [429 (332) U/L, 323 (69) U/L] (p < 0.0001; p < 0.0001) and (six-fold, 1.2-fold) 48 h post-race [658 (1,073) U/L, 218 (45) U/L] (p < 0.0001; p < 0.0001). Medians CRP increased (ten-fold) after 48 h post-race [6.8 (4.1) mg/L] (p < 0.0001). Mean sHA levels increased (four-fold) post-race (89.54 ± 53.14 ng/ml) (p < 0.0001). Means PIINP (9.05 ± 2.15 ng/ml) levels increased post-race (10.82 ± 3.44 ng/ml) (p = 0.053) and 48 h post-race (11.00 ± 2.96 ng/ml) (p = 0.001). Mean sC2C levels (220.83 ± 39.50 ng/ml) decreased post-race (188.67 ± 38.52 ng/ml) (p = 0.002). In contrast, means COMP, sCS846, sPIIANP, and median sYKL-40 were relatively stable. We found a positive association between sCK levels with sLDH pre-race (r = 0.758, p < 0.0001), post-race (r = 0.623, p = 0.008) and 48-h post-race (r = 0.842, p < 0.0001); sHA with sCRP post-race vs. 48 h post-race (r = 0.563, p = 0.019) and sPIINP with sCK pre-race vs. 48-h post-race (r = 0.499, p = 0.044) and with sLDH 48-h pre-race vs. post-race (r = 0.610, p = 0.009) and a negative correlation of sPIIANP with sCRP 48-h post-race (r = −0.570, p = 0.017). Conclusion: Marathon running is an exercise with high-energy demands (sCK and sLDH increase) that provokes a high and durable general inflammatory reaction (sCRP increase) and an immediately post-marathon mechanism to protect inflammation and cartilage (sHA increase). Accompanied by an increase in type II collagen cartilage fibrils synthesis (sPIINP increase) and a decrease in its catabolism (sC2C decrease), without changes in non-collagenous cartilage metabolism (sCOMP, sC846, and sYKL-40). Metabolic changes on sPIINP and sHA synthesis may be related to energy consumption (sCK, sLDH) and the inflammatory reaction (sCRP) produced.
Collapse
Affiliation(s)
- José A Hernández-Hermoso
- Department of Orthopedic Surgery and Traumatology, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain.,Department of Surgery, Faculty of Medicine, Universitat Autònoma Barcelona, Bellaterra, Spain
| | - Lexa Nescolarde
- Department of Electronic Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
| | | | - Elena Revuelta-López
- Research Program, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Jordi Ara
- Departament of Medicine, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Nephrology, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| | - Antoni Bayes-Genis
- Research Program, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain.,Departament of Medicine, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Cardiology, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| |
Collapse
|
4
|
Buchmann Godinho D, da Silva Fiorin F, Schneider Oliveira M, Furian AF, Rechia Fighera M, Freire Royes LF. The immunological influence of physical exercise on TBI-induced pathophysiology: Crosstalk between the spleen, gut, and brain. Neurosci Biobehav Rev 2021; 130:15-30. [PMID: 34400178 DOI: 10.1016/j.neubiorev.2021.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/04/2021] [Accepted: 08/08/2021] [Indexed: 12/16/2022]
Abstract
Traumatic brain injury (TBI) is a non-degenerative and non-congenital insult to the brain and is recognized as a global public health problem, with a high incidence of neurological disorders. Despite the causal relationship not being entirely known, it has been suggested that multiorgan inflammatory response involving the autonomic nervous system and the spleen-gut brain axis dysfunction exacerbate the TBI pathogenesis in the brain. Thus, applying new therapeutic tools, such as physical exercise, have been described in the literature to act on the immune modulation induced by brain injuries. However, there are caveats to consider when interpreting the effects of physical exercise on this neurological injury. Given the above, this review will highlight the main findings of the literature involving peripheral immune responses in TBI-induced neurological damage and how changes in the cellular metabolism of the spleen-gut brain axis elicited by different protocols of physical exercise alter the pathophysiology induced by this neurological injury.
Collapse
Affiliation(s)
- Douglas Buchmann Godinho
- Laboratório de Bioquímica do Exercício, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Fernando da Silva Fiorin
- Programa de Pós-Graduação em Neuroengenharia, Instituto Internacional de Neurociências Edmond e Lily Safra, Instituto Santos Dumont, Macaíba, RN, Brazil
| | - Mauro Schneider Oliveira
- Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Ana Flavia Furian
- Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Michele Rechia Fighera
- Laboratório de Bioquímica do Exercício, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Centro de Ciências da Saúde, Departamento de Clínica Médica e Pediatria, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | |
Collapse
|
5
|
Bloomer RJ, Butawan M, van der Merwe M, Keating FH. An Assessment of the Glyconutrient Ambrotose™ on Immunity, Gut Health, and Safety in Men and Women: A Placebo-Controlled, Double-Blind, Randomized Clinical Trial. Nutrients 2020; 12:nu12061751. [PMID: 32545396 PMCID: PMC7353283 DOI: 10.3390/nu12061751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Certain dietary fibers have been reported to improve gut health and cellular immunity. Ambrotose is a glyconutrient supplement that contains mannose-rich polysaccharides (acemannan), reported to improve immune function. A more nutrient-dense version of this dietary supplement has been developed recently, with added aloe leaf gel powder (acemannan). The purpose of this study was to evaluate the impact of the traditional and newly developed Ambrotose products on immunity, gut health, and psychological well-being in healthy men and women. Methods: Seventy-five men and women were randomly assigned in double-blind manner to one of five treatments, as follows: Ambrotose Advanced (AA) at 2 or 4 g daily, Ambrotose LIFE (AL) at 2 or 4 g daily, or placebo. Subjects ingested their assigned treatment daily for eight weeks. Resting heart rate, blood pressure, and measures of psychological well-being were analyzed before and after four and eight weeks of supplementation. Blood samples were collected at the same times and analyzed for zonulin, hematology measures, and cytokines—IL-6, IL-10, IL-1β, and TNF-α (analyzed both with and without stimulation via lipopolysaccharide [LPS]). Results: All Ambrotose treatments were well-tolerated. There were no differences among treatments in heart rate or blood pressure across time. Self-reported well-being scores were generally higher for the Ambrotose treatments but there were no changes of statistical significance across time (p > 0.05). Differences of statistical significance were noted for select biochemical variables, the most notable being a dramatic decrease in monocytes in the Ambrotose groups. No change was noted in the cytokine response to LPS stimulation in all groups, indicating a maintenance of a healthy immune response. Conclusion:Regular supplementation with Ambrotose is safe and can improve subclinical cellular adversity (as evidenced by a decrease in monocytes), without unnecessary activation of an immune response.
Collapse
|