1
|
Varillas-Delgado D. Association of Genetic Profile with Muscle Mass Gain and Muscle Injury Prevention in Professional Football Players after Creatine Supplementation. Nutrients 2024; 16:2511. [PMID: 39125391 PMCID: PMC11313812 DOI: 10.3390/nu16152511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND In recent years, the study of creatine supplementation in professional athletes has been of great interest. However, the genetics involved in response to supplementation is unknown. The aim of this study was to analyse, for the first time, the relationship between muscle performance-related genes and the risk of an increased body mass index (BMI) and muscle mass and a decrease in fat mass in professional football players after creatine supplementation. METHODS For this longitudinal study, one hundred and sixty-one men's professional football players were recruited. The polymorphisms ACE I/D, ACTN3 c.1729C>T, AMPD1 c.34C>T, CKM c.*800A>G, and MLCK (c.49C>T and c.37885C>A) were genotyped using Single-Nucleotide Primer Extension (SNPE). To assess the combined impact of these six polymorphisms, a total genotype score (TGS) was calculated. The creatine supplementation protocol consisted of 20 g/day of creatine monohydrate for 5 days (loading dose) and 3-5 g/day for 7 weeks (maintenance dose). Anthropometric characteristics (body mass index (BMI), fat, and muscle mass) were recorded before and after the creatine supplementation protocol. Characteristics of non-contact muscle injuries during the 2022/2023 season were classified according to a consensus statement for injury recording. The results showed that the allelic frequencies of ACE and AMPD1 differed between responders and non-responders in muscle mass increase (all p < 0.05). Players with a TGS exceeding 54.16 a.u. had an odds ratio (OR) of 2.985 (95%CI: 1.560-5.711; p = 0.001) for muscle mass increase. By contrast, those with a TGS below 54.16 a.u. had an OR of 9.385 (95%CI: 4.535-19.425; p < 0.001) for suffering non-contact muscle injuries during the season. CONCLUSIONS The increase in BMI and muscle mass in response to creatine supplementation in professional football players was influenced by a TGS derived from the combination of favourable genotypes linked to muscle performance. The CC genotype and C allele of AMPD1 were particularly associated with a higher likelihood of muscle mass increase under creatine supplementation in this group of professional football players.
Collapse
Affiliation(s)
- David Varillas-Delgado
- Exercise and Sport Science, Faculty of Health Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo, Spain;
- SPORTNOMICS S.L., 28922 Madrid, Spain
| |
Collapse
|
2
|
La Mantia I, Maniaci A, Scibilia G, Scollo P. Effects of a Dietary Microalgae ( Arthrospira platensis) Supplement on Stress, Well-Being, and Performance in Water Polo Players: A Clinical Case Series. Nutrients 2024; 16:2421. [PMID: 39125302 PMCID: PMC11314195 DOI: 10.3390/nu16152421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND A common tactic used by athletes to improve performance, lessen tiredness, and hasten recovery is dietary supplementation. We aimed to assess the role of a microalgae dietary liquid supplement additivated with Copper 22.5% NRV in water polo players' performance. METHODS Twenty male water polo players were split into two groups: ten (spirulina group) took a twice-daily nutritional supplement containing 15 mL of spirulina liquid extract (titrated in Phycocyanin 1 mg/mL) and additivated with Copper 22.5% NRV for eight weeks, and ten (the placebo group) did not take the supplement. Subjective evaluations were finished using the Athlete's Subjective Performance Scale (ASPS). Levels of the biomarker creatine phosphokinase (CPK) were also assessed. RESULTS The spirulina group's mean total ASPS score increased significantly from baseline to follow-up and was significantly better than that of the placebo group (p < 0.001). Conversely, ASPS ratings in the placebo group slightly decreased. A positive correlation between spirulina supplementation and less severe ASPS was found using correlation matrix analysis. However, there was a slight difference in CPK levels from the baseline to the follow-up in the spirulina group. CONCLUSIONS A dietary supplement comprising spirulina and copper may help water polo players' subjective performance measurements by lowering muscular tension. Larger, randomized controlled trials are yet required.
Collapse
Affiliation(s)
- Ignazio La Mantia
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95100 Catania, Italy;
| | - Antonino Maniaci
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy;
| | - Giuseppe Scibilia
- Gynecology and Obstetrics Department, Giovanni Paolo II Hospital, ASP 7, 97100 Ragusa, Italy;
| | - Paolo Scollo
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy;
- Gynecological Oncology Unit, Ospedale Cannizzaro, 95125 Catania, Italy
| |
Collapse
|
3
|
Hagele AM, Boring JL, Moon JM, Sunderland KL, Mumford PW, Kerksick CM. Naturally Bicarbonated Water Supplementation Does Not Improve Anaerobic Cycling Performance or Blood Gas Parameters in Active Men and Women. Nutrients 2023; 15:5052. [PMID: 38140311 PMCID: PMC10745886 DOI: 10.3390/nu15245052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
The completion of high-intensity exercise results in robust perturbations to physiologic homeostasis, challenging the body's natural buffering systems to mitigate the accumulation of metabolic by-products. Supplementation with bicarbonate has previously been used to offset metabolic acidosis, leading to improvements in anaerobic exercise performance. PURPOSE The purpose of this study was to investigate the presence of ergogenic properties in naturally occurring low-dose bicarbonated water and their effects on anaerobic cycling performance and blood gas kinetics in recreationally active men and women. METHODS Thirty-nine healthy, recreationally active men and women (28.1 ± 8.0 years, 169.8 ± 11.7 cm, 68.9 ± 10.8 kg, 20.1 ± 7.9% fat, V˙O2peak: 42.8 ± 7.6 mL/kg/min) completed two separate testing sessions consisting of 15 cycling sprints (10 s sprint, 20 s active rest) against 7.5% of their body mass. Using a randomized, double-blind, placebo-controlled, parallel group study design, study participants consumed a 10 mL/kg dose of either spring water (SW) or bicarbonated mineral water (BMW) (delivering ~3 g/day of bicarbonate) for 7 days. Venous blood was collected before, immediately after, and 5 and 10 min after the sprint protocol and was analyzed for lactate and a series of blood gas components. After the completion of 15 cycling sprints, averages of peak and mean power for bouts 1-5, 6-10, and 11-15, along with total work for the entire cycling protocol, were calculated. All performance and blood gas parameters were analyzed using a mixed-factorial ANOVA. RESULTS pH was found to be significantly higher in the BMW group immediately after (7.17 ± 0.09 vs. 7.20 ± 0.11; p = 0.05) and 10 min post exercise (7.21 ± 0.11 vs. 7.24 ± 0.09; p = 0.04). A similar pattern of change was observed 5 min post exercise wherein pH levels in the SW group were lower than those observed in the BMW group; however, this difference did not achieve statistical significance (p = 0.09). A statistical trend (p = 0.06) was observed wherein lactate in the BMW group tended to be lower than in the SW group 5 min post exercise. No significant main effect for time (p > 0.05) or group × time interactions (p > 0.05) for the total work, average values of peak power, or average values of mean power were observed, indicating performance was unchanged. CONCLUSION One week of consuming water with increased bicarbonate (10 mL/kg; ~3 g/day bicarbonate) showed no effect on anaerobic cycling performance. BMW decreased blood lactate concentrations 5 min after exercise and increased blood pH immediately and 10 min after exercise.
Collapse
Affiliation(s)
| | | | | | | | | | - Chad M. Kerksick
- Exercise and Performance Nutrition Laboratory, College of Science, Technology, and Health, Lindenwood University, St. Charles, MO 63301, USA; (A.M.H.); (J.M.M.); (K.L.S.); (P.W.M.)
| |
Collapse
|
4
|
Kerksick CM, Pugh JN. Editorial: Pre-workout nutrition. Front Sports Act Living 2023; 5:1257740. [PMID: 37547822 PMCID: PMC10402752 DOI: 10.3389/fspor.2023.1257740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/08/2023] Open
Affiliation(s)
- Chad M. Kerksick
- Exercise and Performance Nutrition Laboratory, College of Science, Technology, and Health, Lindenwood University, St. Charles, MO, United States
| | - Jamie N. Pugh
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
5
|
Marinus N, Van Hoornweder S, Aarts M, Vanbilsen J, Hansen D, Meesen R. The influence of a single transcranial direct current stimulation session on physical fitness in healthy subjects: a systematic review. Exp Brain Res 2023; 241:31-47. [PMID: 36357590 PMCID: PMC9648891 DOI: 10.1007/s00221-022-06494-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/20/2022] [Indexed: 11/12/2022]
Abstract
Physical fitness is of indisputable importance for both health, and sports. Currently, the brain is being increasingly recognized as a contributor to physical fitness. Hereby, transcranial direct current stimulation (tDCS), as an ergogenic aid, has gained scientific interest. The current PRISMA-adherent review aimed to examine the effect of tDCS on the three core components of physical fitness: muscle strength, -endurance and cardiopulmonary endurance. Randomized controlled- or cross-over trials evaluating the effect of a single tDCS session (vs. sham) in healthy individuals were included. Hereby, a wide array of tDCS-related factors (e.g., tDCS montage and dose) was taken into account. Thirty-five studies (540 participants) were included. Between-study heterogeneity in factors such as age, activity level, tDCS protocol, and outcome measures was large. The capacity of tDCS to improve physical fitness varied substantially across studies. Nevertheless, muscle endurance was most susceptible to improvements following anodal tDCS (AtDCS), with 69% of studies (n = 11) investigating this core component of physical fitness reporting positive effects. The primary motor cortex and dorsolateral prefrontal cortex were targeted the most, with positive results being reported on muscle and cardiopulmonary endurance. Finally, online tDCS seemed most beneficial, and no clear relationship between tDCS and dose-related parameters seemed present. These findings can contribute to optimizing tDCS interventions during the rehabilitation of patients with a variety of (chronic) diseases such as cardiovascular disease. Therefore, future studies should focus on further unraveling the potential of AtDCS on physical fitness and, more specifically, muscle endurance in both healthy subjects and patients suffering from (chronic) diseases. This study was registered in Prospero with the registration number CRD42021258529. "To enable PROSPERO to focus on COVID-19 registrations during the 2020 pandemic, this registration record was automatically published exactly as submitted. The PROSPERO team has not checked eligibility".
Collapse
Affiliation(s)
- Nastasia Marinus
- Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan Building A 3590, Diepenbeek, Belgium. .,Biomedical Research Center, Hasselt University, Diepenbeek, Belgium.
| | - Sybren Van Hoornweder
- Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan Building A 3590, Diepenbeek, Belgium
| | - Marthe Aarts
- Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan Building A 3590, Diepenbeek, Belgium
| | - Jessie Vanbilsen
- Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan Building A 3590, Diepenbeek, Belgium
| | - Dominique Hansen
- Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan Building A 3590, Diepenbeek, Belgium.,Biomedical Research Center, Hasselt University, Diepenbeek, Belgium.,Heart Centre Hasselt, Jessa Hospital, Hasselt, Belgium
| | - Raf Meesen
- Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan Building A 3590, Diepenbeek, Belgium.,Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Louvain, Belgium
| |
Collapse
|
6
|
Dinan NE, Hagele AM, Jagim AR, Miller MG, Kerksick CM. Effects of creatine monohydrate timing on resistance training adaptations and body composition after 8 weeks in male and female collegiate athletes. Front Sports Act Living 2022; 4:1033842. [DOI: 10.3389/fspor.2022.1033842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
BackgroundLimited research is available on the potential impact of creatine monohydrate administration before or after workouts among athletes. This study aimed to investigate the effects of pre- vs. post-exercise creatine monohydrate supplementation on resistance training adaptations and body composition.MethodsIn a randomized, double-blind, placebo-controlled, parallel design, 34 healthy resistance-trained male and female athletes were randomly assigned and matched according to fat free mass to consume a placebo, or 5-g dose of creatine monohydrate within 1 h before training, or within 1 h after training for 8 weeks, while completing a weekly resistance training program. Participants co-ingested 25-gram doses of both whey protein isolate and maltodextrin along with each assigned supplement dose. Body composition, muscular strength, and endurance, along with isometric mid-thigh pull were assessed before and after the 8-week supplementation period. A 3 × 2 mixed factorial (group x time) ANOVA with repeated measures on time were used to evaluate differences.ResultsAll groups experienced similar and statistically significant increases in fat free mass (+1.34 ± 3.48 kg, p = 0.04), upper (+2.21 ± 5.69 kg, p = 0.04) and lower body strength (+7.32 ± 10.01 kg, p < 0.001), and decreases in body mass (−1.09 ± 2.71 kg, p = 0.03), fat mass (−2.64 ± 4.16 kg, p = 0.001), and percent body fat (−2.85 ± 4.39 kg, p < 0.001).ConclusionsThe timing of creatine monohydrate did not exert any additional influence over the measured outcomes.
Collapse
|
7
|
Taskin S, Celik T, Demiryurek S, Turedi S, Taskin A. Effects of different-intensity exercise and creatine supplementation on mitochondrial biogenesis and redox status in mice. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:1009-1015. [PMID: 36159328 PMCID: PMC9464337 DOI: 10.22038/ijbms.2022.65047.14321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/16/2022] [Indexed: 11/07/2022]
Abstract
Objectives Dietary supplementation combined with exercise may potentiate the beneficial effects of exercise by reducing exercise-induced oxidative stress and improving mitochondrial quality and capacity. In this study, the effects of creatine monohydrate (CrM) supplementation with low and high-intensity exercise on mitochondrial biogenesis regulators, Nrf2 anti-oxidant signaling pathway and muscle damage levels were investigated. Materials and Methods Balb/c male mice were divided into six experimental groups: control, control+CrM, high-intensity exercise, high-intensity exercise+CrM, low-intensity exercise, and low-intensity exercise+CrM. Mice were given CrM supplementation and at the same time, low and high-intensity exercise was applied to the groups on the treadmill at 30min/5day/8week. Then, mitochondrial biogenesis marker (PGC-1α, NRF-1, TFAM), Nrf2 and HO-1 protein expressions, total oxidant-anti-oxidant status level, and histopathological changes were investigated in serum and muscle tissue. Results Exercise intensity and CrM supplementation were found to be effective factors in mitochondrial biogenesis induction via the PGC-1α signaling pathway. Nrf2 and HO-1 protein levels increased with exercise intensity, and this result was directly related to serum oxidative stress markers. In addition, CrM supplementation was effective in reducing exercise-induced muscle damage. Conclusion This combination induced skeletal muscle adaptations, including mitochondrial biogenesis and enhanced anti-oxidant reserves. This synergistic effect of dietary supplementation with low-intensity exercise may be valuable as a complement to treatment, especially in diseases caused by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Seyhan Taskin
- Department of Physiology, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Taskin Celik
- Department of Physiology, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Seniz Demiryurek
- Department of Physiology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Sibel Turedi
- Department of Histology and Embryology, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Abdullah Taskin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Harran University, Sanliurfa, Turkey
| |
Collapse
|
8
|
Bourdas DI, Souglis A, Zacharakis ED, Geladas ND, Travlos AK. Meta-Analysis of Carbohydrate Solution Intake during Prolonged Exercise in Adults: From the Last 45+ Years' Perspective. Nutrients 2021; 13:4223. [PMID: 34959776 PMCID: PMC8704222 DOI: 10.3390/nu13124223] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/02/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
Carbohydrate (CHO) supplementation during prolonged exercise postpones fatigue. However, the optimum administration timing, dosage, type of CHO intake, and possible interaction of the ergogenic effect with athletes' cardiorespiratory fitness (CRF) are not clear. Ninety-six studies (from relevant databases based on predefined eligibility criteria) were selected for meta-analysis to investigate the acute effect of ≤20% CHO solutions on prolonged exercise performance. The between-subject standardized mean difference [SMD = ([mean post-value treatment group-mean post-value control group]/pooled variance)] was assessed. Overall, SMD [95% CI] of 0.43 [0.35, 0.51] was significant (p < 0.001). Subgroup analysis showed that SMD was reduced as the subjects' CRF level increased, with a 6-8% CHO solution composed of GL:FRU improving performance (exercise: 1-4 h); administration during the event led to a superior performance compared to administration before the exercise, with a 6-8% single-source CHO solution increasing performance in intermittent and 'stop and start' sports and an ~6% CHO solution appearing beneficial for 45-60 min exercises, but there were no significant differences between subjects' gender and age groups, varied CHO concentrations, doses, or types in the effect measurement. The evidence found was sound enough to support the hypothesis that CHO solutions, when ingested during endurance exercise, have ergogenic action and a possible crossover interaction with the subject's CRF.
Collapse
Affiliation(s)
- Dimitrios I. Bourdas
- Section of Sport Medicine & Biology of Exercise, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 41 Ethnikis Antistasis, 17237 Athens, Greece;
| | - Athanasios Souglis
- Section of Didactics and Coaching in Sport Games, School of Physical Education & Sport Science, National and Kapodistrian University of Athens, 41 Ethnikis Antistasis, 17237 Athens, Greece; (A.S.); (E.D.Z.)
| | - Emmanouil D. Zacharakis
- Section of Didactics and Coaching in Sport Games, School of Physical Education & Sport Science, National and Kapodistrian University of Athens, 41 Ethnikis Antistasis, 17237 Athens, Greece; (A.S.); (E.D.Z.)
| | - Nickos D. Geladas
- Section of Sport Medicine & Biology of Exercise, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 41 Ethnikis Antistasis, 17237 Athens, Greece;
| | - Antonios K. Travlos
- Department of Sports Organization and Management, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Efstathiou and Stamatikis Valioti & Plataion Avenue, 23100 Tripoli, Greece;
| |
Collapse
|
9
|
Miraftabi H, Avazpoor Z, Berjisian E, Sarshin A, Rezaei S, Domínguez R, Reale R, Franchini E, Samanipour MH, Koozehchian MS, Willems MET, Rafiei R, Naderi A. Effects of Beetroot Juice Supplementation on Cognitive Function, Aerobic and Anaerobic Performances of Trained Male Taekwondo Athletes: A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph181910202. [PMID: 34639501 PMCID: PMC8507686 DOI: 10.3390/ijerph181910202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/21/2022]
Abstract
Studies have shown that nitrate (NO3−)-rich beetroot juice (BJ) supplementation improves endurance and high-intensity intermittent exercise. The dose–response effects on taekwondo following BJ supplementation are yet to be determined. This study aimed to investigate two acute doses of 400 mg of NO3− (BJ-400) and 800 mg of NO3− (BJ-800) on taekwondo-specific performance and cognitive function tests compared with a placebo (PL) and control (CON) conditions. Eight trained male taekwondo athletes (age: 20 ± 4 years, height: 180 ± 2 cm, body mass: 64.8 ± 4.0 kg) completed four experimental trials using a randomized, double-blind placebo-controlled design: BJ-400, BJ-800, PL, and CON. Participants consumed two doses of BJ-400 and BJ-800 or nitrate-depleted PL at 2.5 h prior to performing the Multiple Frequency Speed of Kick Test (FSKT). Countermovement jump (CMJ) was performed before the (FSKT) and PSTT, whereas cognitive function was assessed (via the Stroop test) before and after supplementation and 10 min following PSTT. Blood lactate was collected before the CMJ tests immediately and 3 min after the FSKT and PSST; rating of perceived exertion (RPE) was recorded during and after both specific taekwondo tests. No significant differences (p > 0.05), with moderate and large effect sizes, between conditions were observed for PSTT and FSKT performances. In addition, blood lactate, RPE, heart rate, and CMJ height were not significantly different among conditions (p > 0.05). However, after the PSTT test, cognitive function was higher in BJ-400 compared to other treatments (p < 0.05). It was concluded that acute intake of 400 and 800 mg of NO3− rich BJ reported a moderate to large effect size in anaerobic and aerobic; however, no statistical differences were found in taekwondo-specific performance.
Collapse
Affiliation(s)
- Hossein Miraftabi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Tehran University, Tehran 1417935840, Iran; (H.M.); (Z.A.); (E.B.); (R.R.)
| | - Zahra Avazpoor
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Tehran University, Tehran 1417935840, Iran; (H.M.); (Z.A.); (E.B.); (R.R.)
| | - Erfan Berjisian
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Tehran University, Tehran 1417935840, Iran; (H.M.); (Z.A.); (E.B.); (R.R.)
| | - Amir Sarshin
- Clinical Care and Health Promotion Research Center, Karaj Branch, Islamic Azad University, Karaj 3149968111, Iran;
| | - Sajjad Rezaei
- Department of Physical Education & Sport Sciences, Faculty of Humanities, Tarbiat Modares University, Tehran 1411713116, Iran;
| | - Raúl Domínguez
- Departamento de Motricidad Humana y Rendimiento Deportivo, Faculty of Education Sciences, Universidad de Sevilla, 41018 Sevilla, Spain;
- Studies Research Group in Neuromuscular Responses (GEPREN), University of Lavras, Lavras 37200-000, Brazil
| | - Reid Reale
- USA.UFC Performance Institute, Shanghai 200072, China;
| | - Emerson Franchini
- School of Physical Education and Sport, University of São Paulo, São Paulo 05508-030, Brazil;
| | | | - Majid S. Koozehchian
- Department of Kinesiology, Jacksonville State University, Jacksonville, AL 36265, USA;
| | - Mark E. T. Willems
- Institute of Sport, Nursing and Allied Health, College Lane, University of Chichester, Chichester PO19 6PE, UK;
| | - Ramin Rafiei
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Tehran University, Tehran 1417935840, Iran; (H.M.); (Z.A.); (E.B.); (R.R.)
| | - Alireza Naderi
- Department of Sport Physiology, Boroujerd Branch, Islamic Azad University, Boroujerd 6915136111, Iran
- Correspondence: ; Tel.: +98-91-0448-6440
| |
Collapse
|
10
|
Eating Perception, Nutrition Knowledge and Body Image among Para-Athletes: Practical Challenges in Nutritional Support. Nutrients 2021; 13:nu13093120. [PMID: 34578997 PMCID: PMC8465964 DOI: 10.3390/nu13093120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/29/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023] Open
Abstract
Limited information exists on dietary practices in para-athletes. The aim of this study was to clarify the actual situation of para-athletes' dietary practice and to sort out the factors (i.e., eating perception, nutrition knowledge, and body image), that may hinder their dietary practices, and explored the practical challenges in nutritional support and improving nutrition knowledge for para-athletes. Thirty-two Japanese para-athletes (22 men) and 45 collegiate student athletes without disabilities (27 men) participated in the online survey. The questionnaire included demographic characteristics, eating perception, dietary practices, and nutrition knowledge. The Japanese version of the body appreciation scale was used to determine their body image. Para-athletes who answered that they knew their ideal amount and way of eating showed significantly higher body image scores (r = 0.604, p < 0.001). However, mean score for nutrition knowledge of para-athletes were significantly lower than collegiate student athletes (19.4 ± 6.8 vs. 24.2 ± 6.1 points, p = 0.001). Both groups did not identify a dietitian as the source of nutrition information or receiving their nutrition advice. The results indicate para-athletes have unique eating perceptions and inadequate nutrition knowledge. Future interventions are needed to examine nutritional supports and education in relation to the role of dietitians.
Collapse
|
11
|
Jiaming Y, Rahimi MH. Creatine supplementation effect on recovery following exercise-induced muscle damage: A systematic review and meta-analysis of randomized controlled trials. J Food Biochem 2021; 45:e13916. [PMID: 34472118 DOI: 10.1111/jfbc.13916] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 01/10/2023]
Abstract
Exercise-induced muscle damage (EIMD) causes increased soreness, impaired function of muscles, and reductions in muscle force. Accumulating evidence suggests the beneficial effects of creatine on EIMD. Nevertheless, outcomes differ substantially across various articles. The main aim of this meta-analysis was to evaluate the effect of creatine on recovery following EIMD. Medline, Embase, Cochrane Library, Scopus, and Google Scholar were systematically searched up to March 2021. The Cochrane Collaboration tool for examining the risk of bias was applied for assessing the quality of studies. Weighted mean difference (WMD), 95% confidence interval (CI), and random-effects model, were applied for estimating the overall effect. Between studies, heterogeneity was examined using the chi-squared and I2 statistics. Nine studies met the inclusion criteria. Pooled data showed that creatine significantly reduced creatine kinase (CK) concentration overall (WMD = -30.94; 95% CI: -53.19, -8.69; p = .006) and at three follow-up times (48, 72, and 96 hr) in comparison with placebo. In contrast, effects were not significant in lactate dehydrogenase (LDH) concentration overall (WMD = -5.99; 95% CI: -14.49, 2.50; p = .167), but creatine supplementation leaded to a significant reduction in LDH concentrations in trials with 48 hr measurement of LDH. The current data indicate that creatine consumption is better than rest after diverse forms of damaging and exhaustive exercise or passive recovery. The benefits relate to a decrease in muscle damage indices and improved muscle function because of muscle power loss after exercise. PRACTICAL APPLICATIONS: Creatine supplementation would be effective in reducing the immediate muscle damage that happens <24, 24, 48, 72, and 96 hr post-exercise. In the current meta-analysis, the positive effects of creatine could cause a decrease in CK concentration overall. But, due to high heterogeneity and the medium risk of bias for articles, we suggest that these results are taken into account and the facts are interpreted with caution by the readers.
Collapse
Affiliation(s)
- Yue Jiaming
- China Football College, Beijing Sport University, Beijing, China
| | | |
Collapse
|
12
|
Timing of Creatine Supplementation around Exercise: A Real Concern? Nutrients 2021; 13:nu13082844. [PMID: 34445003 PMCID: PMC8401986 DOI: 10.3390/nu13082844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 01/21/2023] Open
Abstract
Creatine has been considered an effective ergogenic aid for several decades; it can help athletes engaged in a variety of sports and obtain performance gains. Creatine supplementation increases muscle creatine stores; several factors have been identified that may modify the intramuscular increase and subsequent performance benefits, including baseline muscle Cr content, type II muscle fibre content and size, habitual dietary intake of Cr, aging, and exercise. Timing of creatine supplementation in relation to exercise has recently been proposed as an important consideration to optimise muscle loading and performance gains, although current consensus is lacking regarding the ideal ingestion time. Research has shifted towards comparing creatine supplementation strategies pre-, during-, or post-exercise. Emerging evidence suggests greater benefits when creatine is consumed after exercise compared to pre-exercise, although methodological limitations currently preclude solid conclusions. Furthermore, physiological and mechanistic data are lacking, in regard to claims that the timing of creatine supplementation around exercise moderates gains in muscle creatine and exercise performance. This review discusses novel scientific evidence on the timing of creatine intake, the possible mechanisms that may be involved, and whether the timing of creatine supplementation around exercise is truly a real concern.
Collapse
|
13
|
Patel KA, Farias de Oliveira L, Sale C, James RM. The effect of β-alanine supplementation on high intensity cycling capacity in normoxia and hypoxia. J Sports Sci 2021; 39:1295-1301. [PMID: 33491594 DOI: 10.1080/02640414.2020.1867416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The availability of dietary beta-alanine (BA) is the limiting factor in carnosine synthesis within human muscle due to its low intramuscular concentration and substrate affinity. Carnosine can accept hydrogen ions (H+), making it an important intramuscular buffer against exercise-induced acidosis. Metabolite accumulation rate increases when exercising in hypoxic conditions, thus an increased carnosine concentration could attenuate H+ build-up when exercising in hypoxic conditions. This study examined the effects of BA supplementation on high intensity cycling capacity in normoxia and hypoxia. In a double-blind design, nineteen males were matched into a BA group (n = 10; 6.4 g·d-1) or a placebo group (PLA; n = 9) and supplemented for 28 days, carrying out two pre- and two post-supplementation cycling capacity trials at 110% of powermax, one in normoxia and one in hypoxia (15.5% O2). Hypoxia led to a 9.1% reduction in exercise capacity, but BA supplementation had no significant effect on exercise capacity in normoxia or hypoxia (P > 0.05). Blood lactate accumulation showed a significant trial x time interaction post-supplementation (P = 0.016), although this was not significantly different between groups. BA supplementation did not increase high intensity cycling capacity in normoxia, nor did it improve cycling capacity in hypoxia even though exercise capacity was reduced under hypoxic conditions.
Collapse
Affiliation(s)
- Kiran Akshay Patel
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Luana Farias de Oliveira
- Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Craig Sale
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Ruth M James
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| |
Collapse
|
14
|
|
15
|
Nutritional Strategies to Optimize Performanceand Recovery in Rowing Athletes. Nutrients 2020; 12:nu12061685. [PMID: 32516908 PMCID: PMC7352678 DOI: 10.3390/nu12061685] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 11/17/2022] Open
Abstract
Rowing is a high-intensity sport requiring a high level of aerobic and anaerobic capacity. Although good nutrition is essential for successful performance in a rowing competition, its significance is not sufficiently established. This review aimed to provide nutritional strategies to optimize performance and recovery in rowing athletes based on a literature review. Following the guidelines given in the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA), we performed web searches using online databases (Pubmed, Web of Science, Wiley Online Library, ACS Publications, and SciFinder). Typically, a rowing competition involves a 6–8-min high-intensity exercise on a 2000-m course. The energy required for the exercise is supplied by muscle-stored glycogens, which are derived from carbohydrates. Therefore, rowing athletes can plan their carbohydrate consumption based on the intensity, duration, and type of training they undergo. For effective and safe performance enhancement, rowing athletes can take supplements such as β-alanine, caffeine, β-hydroxy-β-methylbutyric acid (HMB), and beetroot juice (nitrate). An athlete may consume carbohydrate-rich foods or use a carbohydrate mouth rinse. Recovery nutrition is also very important to minimize the risk of injury or unexplained underperformance syndrome (UUPS) from overuse. It must take into account refueling (carbohydrate), rehydration (fluid), and repair (protein). As lightweight rowing athletes often attempt acute weight loss by limiting food and fluid intake to qualify for a competition, they require personalized nutritional strategies and plans based on factors such as their goals and environment. Training and competition performance can be maximized by including nutritional strategies in training plans.
Collapse
|
16
|
Fernández-Landa J, Fernández-Lázaro D, Calleja-González J, Caballero-García A, Córdova Martínez A, León-Guereño P, Mielgo-Ayuso J. Effect of Ten Weeks of Creatine Monohydrate Plus HMB Supplementation on Athletic Performance Tests in Elite Male Endurance Athletes. Nutrients 2020; 12:nu12010193. [PMID: 31936727 PMCID: PMC7019716 DOI: 10.3390/nu12010193] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 01/09/2023] Open
Abstract
Creatine monohydrate (CrM) and β-hydroxy β-methylbutyrate (HMB) are common ergogenic aids in the field of sports and are frequently used in an isolated way. However, there are a few studies that have investigated the effect of combining both supplements on different variables related to performance, with controversial results. Therefore, the main purpose of this study was to determine the efficacy and the degree of potentiation of 10 weeks of CrM plus HMB supplementation on sports performance, which was measured by an incremental test to exhaustion in elite male traditional rowers. In this placebo-controlled, double-blind trial, 10-week study, participants (n = 28) were randomized to a placebo group (PLG; n = 7), CrM group (0.04 g/kg/day of CrM; n = 7), HMB group (3 g/day of HMB; n = 7) and CrM-HMB group (0.04 g/kg/day of CrM plus 3 g/day of HMB; n = 7). Before and after 10 weeks of different treatments, an incremental test was performed on a rowing ergometer to calculate the power that each rower obtained at the anaerobic threshold (WAT), and at 4 mmol (W4) and 8 mmol (W8) of blood lactate concentration. There were no significant differences in WAT and W4 among groups or in body composition. However, it was observed that the aerobic power achieved at W8 was significantly higher in the CrM-HMB group than in the PLG, CrM and HMB groups (p < 0.001; η2p = 0.766). Likewise, a synergistic effect of combined supplementation was found for the sum of the two supplements separately at WAT (CrM-HMBG = 403.19% vs. CrMG+HMBG = 337.52%), W4 (CrM-HMBG = 2736.17% vs. CrMG+HMBG = 1705.32%) and W8 (CrM-HMBG = 1293.4% vs. CrMG+HMBG = 877.56%). In summary, CrM plus HMB supplementation over 10 weeks showed a synergistic effect on aerobic power (measured as WAT, W4, and W8) during an incremental test but had no influence muscle mass.
Collapse
Affiliation(s)
- Julen Fernández-Landa
- Laboratory of Human Performance, Department of Physical Education and Sport, Faculty of Education, Sport Section, University of the Basque Country, 01007 Vitoria, Spain; (J.F.-L.); (J.C.-G.)
| | - Diego Fernández-Lázaro
- Department of Cellular Biology, Histology and Pharmacology, Faculty of Health Sciences, University of Valladolid, Campus de Soria, 42003 Soria, Spain;
| | - Julio Calleja-González
- Laboratory of Human Performance, Department of Physical Education and Sport, Faculty of Education, Sport Section, University of the Basque Country, 01007 Vitoria, Spain; (J.F.-L.); (J.C.-G.)
| | - Alberto Caballero-García
- Department of Anatomy and Radiology, Faculty of Health Sciences, University of Valladolid, Campus de Soria, 42003 Soria, Spain;
| | - Alfredo Córdova Martínez
- Department of Biochemistry, Molecular Biology and Physiology, Faculty of Health Sciences, University of Valladolid, Campus de Soria, 42003 Soria, Spain;
| | - Patxi León-Guereño
- Faculty of Psychology and Education, University of Deusto, Campus of Donostia-San Sebastián, 20012 San Sebastián, Guipúzcoa, Spain;
| | - Juan Mielgo-Ayuso
- Department of Biochemistry, Molecular Biology and Physiology, Faculty of Health Sciences, University of Valladolid, Campus de Soria, 42003 Soria, Spain;
- Correspondence: ; Tel.: +34-975-129-187
| |
Collapse
|