1
|
Rebelo-Marques A, Coelho-Ribeiro B, De Sousa Lages A, Andrade R, Afonso J, Pereira R, Batista AS, Teixeira VH, Jácome C. Trends and Missing Links in (De)Hydration Research: A Narrative Review. Nutrients 2024; 16:1709. [PMID: 38892642 PMCID: PMC11174495 DOI: 10.3390/nu16111709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Despite decades of literature on (de)hydration in healthy individuals, many unanswered questions remain. To outline research and policy priorities, it is fundamental to recognize the literature trends on (de)hydration and identify current research gaps, which herein we aimed to pinpoint. From a representative sample of 180 (de)hydration studies with 4350 individuals, we found that research is mainly limited to small-scale laboratory-based sample sizes, with high variability in demographics (sex, age, and level of competition); to non-ecological (highly simulated and controlled) conditions; and with a focus on recreationally active male adults (e.g., Tier 1, non-athletes). The laboratory-simulated environments are limiting factors underpinning the need to better translate scientific research into field studies. Although, consistently, dehydration is defined as the loss of 2% of body weight, the hydration status is estimated using a very heterogeneous range of parameters. Water is the most researched hydration fluid, followed by alcoholic beverages with added carbohydrates (CHO). The current research still overlooks beverages supplemented with proteins, amino acids (AA), and glycerol. Future research should invest more effort in "real-world" studies with larger and more heterogeneous cohorts, exploring the entire available spectrum of fluids while addressing hydration outcomes more harmoniously.
Collapse
Affiliation(s)
- Alexandre Rebelo-Marques
- Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal
- Magismed Innovation Institute, 4710-353 Braga, Portugal
| | - Bruna Coelho-Ribeiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, 4806-909 Guimarães, Portugal
| | | | - Renato Andrade
- Clínica Espregueira—FIFA Medical Centre of Excellence, 4350-415 Porto, Portugal
- Dom Henrique Research Centre, 4350-415 Porto, Portugal
- Porto Biomechanics Laboratory (LABIOMEP), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| | - José Afonso
- Centre of Research, Education, Innovation, and Intervention in Sport (CIFI2D), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal
| | - Rogério Pereira
- Clínica Espregueira—FIFA Medical Centre of Excellence, 4350-415 Porto, Portugal
- Dom Henrique Research Centre, 4350-415 Porto, Portugal
- Higher School of Health Fernando Pessoa, 4200-253 Porto, Portugal
| | | | - Vitor Hugo Teixeira
- Faculty of Nutrition and Food Sciences, University of Porto, 4150-180 Porto, Portugal
- Research Center in Physical Activity, Health and Leisure, CIAFEL, Faculty of Sports, University of Porto, FADEUP, 4200-540 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health, ITR, 4050-600 Porto, Portugal
| | - Cristina Jácome
- CINTESIS@RISE, MEDCIDS, Faculty of Medicine, University of Porto, 4099-002 Porto, Portugal
| |
Collapse
|
2
|
Pérez-Castillo ÍM, Williams JA, López-Chicharro J, Mihic N, Rueda R, Bouzamondo H, Horswill CA. Compositional Aspects of Beverages Designed to Promote Hydration Before, During, and After Exercise: Concepts Revisited. Nutrients 2023; 16:17. [PMID: 38201848 PMCID: PMC10781183 DOI: 10.3390/nu16010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Hypohydration can impair aerobic performance and deteriorate cognitive function during exercise. To minimize hypohydration, athletes are recommended to commence exercise at least euhydrated, ingest fluids containing sodium during long-duration and/or high-intensity exercise to prevent body mass loss over 2% and maintain elevated plasma osmolality, and rapidly restore and retain fluid and electrolyte homeostasis before a second exercise session. To achieve these goals, the compositions of the fluids consumed are key; however, it remains unclear what can be considered an optimal formulation for a hydration beverage in different settings. While carbohydrate-electrolyte solutions such as sports drinks have been extensively explored as a source of carbohydrates to meet fuel demands during intense and long-duration exercise, these formulas might not be ideal in situations where fluid and electrolyte balance is impaired, such as practicing exercise in the heat. Alternately, hypotonic compositions consisting of moderate to high levels of electrolytes (i.e., ≥45 mmol/L), mainly sodium, combined with low amounts of carbohydrates (i.e., <6%) might be useful to accelerate intestinal water absorption, maintain plasma volume and osmolality during exercise, and improve fluid retention during recovery. Future studies should compare hypotonic formulas and sports drinks in different exercise settings, evaluating different levels of sodium and/or other electrolytes, blends of carbohydrates, and novel ingredients for addressing hydration and rehydration before, during, and after exercise.
Collapse
Affiliation(s)
| | | | | | - Niko Mihic
- Real Madrid, Medical Services, 28055 Madrid, Spain; (J.L.-C.); (N.M.)
| | | | | | - Craig A. Horswill
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60608, USA;
| |
Collapse
|
3
|
Yun HJ, Lee JY, Jeon M, Oh SE, Park JH, Yoon J. The effects of fluid absorption and plasma volume changes in athletes following consumption of various beverages. BMC Sports Sci Med Rehabil 2022; 14:207. [PMID: 36476514 PMCID: PMC9730682 DOI: 10.1186/s13102-022-00583-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/21/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND To verify the hydration effects of oral rehydration solution (ORS) on athletes by comparing the degrees of fluid absorption and plasma volume changes following beverage consumption, including ORS. METHODS Thirty-one participants visited the testing laboratory 4 times at 1-week intervals to consume 1 L of beverage (e.g., water, ORS, and two sports drinks [SpD]) for 30 min on each visit. The urine output was measured 4 times at 1 h, 2 h, 3 h, and 4 h after beverage consumption. A blood sample was collected 3 times at 1 h, 2 h, and 3 h after beverage consumption. Body weight was measured once in 4 h after beverage consumption. RESULTS Body weight change was smaller for ORS than for water, SpD1, and SpD2 (p < 0.05). Cumulative urine output in 4 h was lower for ORS, SpD1, and SpD2 than for water (p < 0.05), and it was lower for ORS than for SpD2 (p < 0.05). BHI in 4 h was higher for ORS, SpD1, and SpD2 than for water (p < 0.05), and it was higher for ORS than for SpD2 (p < 0.05). There was no significant difference in PVC for different beverages at all test times, i.e.., 1 h, 2 h, and 3 h. CONCLUSIONS We evaluated the hydration effects of the consumption of beverages, such as water, SpD, and ORS in athletes. ORS and SpD were more effective than water. A comparison between ORS and SpD showed that the result could vary depending on the type of SpD.
Collapse
Affiliation(s)
- Hyo-Jun Yun
- grid.411131.70000 0004 0387 0116Center for Sports and Performance Analysis, Korea National Sport University, Seoul, Republic of Korea
| | - Ji-Yong Lee
- grid.411131.70000 0004 0387 0116Center for Sports and Performance Analysis, Korea National Sport University, Seoul, Republic of Korea
| | - Minsoo Jeon
- grid.411131.70000 0004 0387 0116Center for Sports and Performance Analysis, Korea National Sport University, Seoul, Republic of Korea
| | - Sang-eun Oh
- grid.411131.70000 0004 0387 0116Center for Sports and Performance Analysis, Korea National Sport University, Seoul, Republic of Korea
| | - Jae-Hyeon Park
- grid.411131.70000 0004 0387 0116Center for Sports and Performance Analysis, Korea National Sport University, Seoul, Republic of Korea
| | - Jiwun Yoon
- grid.411131.70000 0004 0387 0116Center for Sports and Performance Analysis, Korea National Sport University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Wołyniec W, Szwarc A, Kasprowicz K, Zorena K, Jaskulak M, Renke M, Naczyk M, Ratkowski W. Impact of hydration with beverages containing free sugars or xylitol on metabolic and acute kidney injury markers after physical exercise. Front Physiol 2022; 13:841056. [PMID: 36338481 PMCID: PMC9632281 DOI: 10.3389/fphys.2022.841056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
The proper fluid and carbohydrates intake is essential before and during physical exercise, and for this reason most athletes drink beverages containing a high amount of free sugars. Sweetened soft drinks are also commonly consumed by those not doing any sport, and this habit seems to be both unhealthy and also the cause of metabolic problems. Recently, several sweeteners have been proposed to replace sugars in popular beverages. To examine the impact of free sugars and the popular sweetener xylitol on metabolic profile and the markers of kidney function and injury after exercise the present study was conducted with semi-professional football players. All participants were healthy, with a mean age of 21.91 years. Their sports skills were on the level of the 4th-5th division of the league. The subjects took part in four football training sessions. During each session they drank a 7% solution of sugar (sucrose, fructose, glucose) or xylitol. The tolerability of these beverages and well-being during exercise was monitored. Before and after each training session, blood and urine were collected. The markers of kidney function and injury, uric acid, electrolytes, complete blood count, CRP, serum albumin, serum glucose and the lipid profile were analyzed. The main finding of this study was that the xylitol beverage is the least tolerated during exercise and 38.89% of participants experienced diarrhea after training and xylitol intake. Xylitol also led to unfavorable metabolic changes and a large increase in uric acid and creatinine levels. A mean increase of 1.8 mg/dl in the uric acid level was observed after xylitol intake. Increases in acute kidney injury markers were observed after all experiments, but changes in urine albumin and cystatin C were highest after xylitol. The other three beverages (containing “free sugars” - glucose, fructose and sucrose) had a similar impact on the variables studied, although the glucose solution seems to have some advantages over other beverages. The conclusion is that sweeteners are not a good alternative to sugars, especially during exercise. Pure water without sweeteners should be drunk by those who need to limit their calorie consumption. Clinical Trial Registration:ClinicalTrials.gov, (NCT04310514)
Collapse
Affiliation(s)
- Wojciech Wołyniec
- Division of Occupational, Metabolic and Internal Diseases, Medical University of Gdańsk, Gdańsk, Poland
- *Correspondence: Wojciech Wołyniec,
| | - Andrzej Szwarc
- Department of Sport Sciences, Gdańsk University of Physical Education and Sport, Gdańsk, Poland
| | - Katarzyna Kasprowicz
- Faculty of Physical Education, Gdańsk University of Physical Education and Sport, Gdańsk, Poland
| | - Katarzyna Zorena
- Division of Immunobiology and Environmental Microbiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Marta Jaskulak
- Division of Immunobiology and Environmental Microbiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Marcin Renke
- Division of Occupational, Metabolic and Internal Diseases, Medical University of Gdańsk, Gdańsk, Poland
| | - Marta Naczyk
- Laboratory of Nutritional Biochemistry, Department of Clinical Nutrition, Medical University of Gdańsk, Gdańsk, Poland
| | - Wojciech Ratkowski
- Department of Athletics, Gdańsk University of Physical Education and Sport, Gdańsk, Poland
| |
Collapse
|