1
|
Gulyas BZ, Mogeni B, Jackson P, Walton J, Caton SJ. Biofortification as a food-based strategy to improve nutrition in high-income countries: a scoping review. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 39269149 DOI: 10.1080/10408398.2024.2402998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Biofortification (increasing the micronutrient content of food before harvest) has been successfully used to nutritionally improve staple foods in low- and middle-income countries. This approach could also help address micronutrient shortfalls in at-risk populations in high-income countries (HICs), however, the potential of biofortification interventions in this context is not well understood. The aim of this scoping review is to assess the nature and extent of available research evidence on biofortified foods in relation to human consumption in HICs. Literature searches were conducted in MEDLINE, WoS, ProQuest, CINAHL, AGRIS and Epistemonikos. Forty-six peer-reviewed articles were included. Most research was conducted in the USA (n = 15) and Italy (n = 11), on cereal crops (n = 14) and vegetables (n = 11), and on selenium (n = 12) and provitamin A (n = 11). Seven research domains were identified in the literature: bioavailability (n = 17); nutrient stability (n = 11); opinions and attitudes (n = 9); functionality (n = 9); sensory properties (n = 2); safety (n = 1); and modeling (n = 1). Evidence from HICs in each domain is limited. There is a need for more research particularly in areas sensitive to the cultural and socio-economic context.
Collapse
Affiliation(s)
- Boglarka Z Gulyas
- Sheffield Centre for Health And Related Research, Division of Population Health, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Brenda Mogeni
- Sheffield Centre for Health And Related Research, Division of Population Health, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Peter Jackson
- Institute for Sustainable Food, University of Sheffield, Sheffield, UK
| | - Jenny Walton
- Commercialization and Scaling, HarvestPlus, International Food Policy Research Institute, Washington, DC, USA
| | - Samantha J Caton
- Sheffield Centre for Health And Related Research, Division of Population Health, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| |
Collapse
|
2
|
Thomas L, Mago P. Unearthing the therapeutic benefits of culinary-medicinal mushrooms for humans: Emerging sustainable bioresources of 21st century. J Basic Microbiol 2024; 64:e2400127. [PMID: 38774954 DOI: 10.1002/jobm.202400127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/18/2024] [Accepted: 05/09/2024] [Indexed: 08/06/2024]
Abstract
Global interest in mushroom farming techniques has grown in the last few years. Despite not making up a large amount of the human diet at the moment, the nutritional worth of mushrooms has prompted their usage. The three main segments of the global mushroom industry are wild, culinary (edible), and medicinal mushrooms. The quality food that mushrooms provide can be utilized to build agricultural ecosystems that are more sustainable for increasing productivity and enhancing the effectiveness of resource usage. This is mostly because mushrooms can be utilized for the recycling of biomass and remains from crop production. Culinary-medicinal mushrooms are becoming more and more important because of their nutrient density, dietary value, and health advantages. Given its many bioactive components, which include polysaccharides, proteins, vitamins, minerals, dietary fiber, and secondary metabolites, mushrooms have been utilized extensively as health foods. These mushrooms exhibit pharmacological activities and possess prebiotic and antibacterial capabilities. This review provides information on the latest advancements in the sustainable cultivation of mushrooms, particularly with nontraditional substrates, and their potential therapeutic uses. Furthermore, some of the newest developments and difficulties in the production of mushrooms are explored.
Collapse
Affiliation(s)
- Lebin Thomas
- Department of Botany, University of Delhi, New Delhi, Delhi, India
| | - Payal Mago
- Department of Botany, Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi, Delhi, India
- Campus of Open Learning, University of Delhi, New Delhi, Delhi, India
| |
Collapse
|
3
|
Turck D, Bohn T, Castenmiller J, De Henauw S, Hirsch‐Ernst KI, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Aguilera‐Gómez M, Cubadda F, Frenzel T, Heinonen M, Marchelli R, Neuhäuser‐Berthold M, Poulsen M, Prieto Maradona M, Schlatter JR, Siskos A, van Loveren H, Gerazova‐Efremova K, Roldán‐Torres R, Knutsen HK. Safety of vitamin D 2 mushroom powder as a Novel food pursuant to Regulation (EU) 2015/2283 (NF 2020/2226). EFSA J 2024; 22:e8817. [PMID: 38868108 PMCID: PMC11167336 DOI: 10.2903/j.efsa.2024.8817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on vitamin D2 mushroom powder as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The NF is produced from Agaricus bisporus mushroom powder that has been exposed to ultraviolet (UV) irradiation to induce the conversion of provitamin D2 (ergosterol) to vitamin D2 (ergocalciferol). The NF contains concentrations of vitamin D in the form of vitamin D2 in the range of 245-460 μg/g. The information provided on the production process, composition and specifications of the NF does not raise safety concerns. The applicant intends to add the NF as an ingredient in a variety of foods and beverages in amounts that result in either 1.2 or 2.4 μg vitamin D2 per 100 g or 100 mL of the food as consumed. The applicant also intends to add the NF in food supplements at a maximum of 15 μg vitamin D2/day for individuals above 1 year of age, as well as in foods for special medical purposes (FSMPs). The estimates for combined intake of vitamin D from the NF, the background diet and fortified foods, were below the ULs for vitamin D as established previously by the NDA Panel for children, adolescents and adults, i.e. 50 and 100 μg/day. The estimated combined vitamin D intake in infants (6-12 months) is also below the UL for vitamin D of 35 μg/day. The Panel considers that taking into account the composition of the NF and the proposed conditions of use, the consumption of the NF is not nutritionally disadvantageous for the proposed target population. The Panel concludes that the NF is safe under the proposed conditions of use.
Collapse
|
4
|
Cashman KD, O'Neill CM. Strategic food vehicles for vitamin D fortification and effects on vitamin D status: A systematic review and meta-analysis of randomised controlled trials. J Steroid Biochem Mol Biol 2024; 238:106448. [PMID: 38141736 DOI: 10.1016/j.jsbmb.2023.106448] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
There has been growing interest in the potential of vitamin D food fortification in Europe as a means of addressing low vitamin D status. The WHO-FAO suggest that choosing a suitable food vehicle and ensuring the combination of the food vehicle and the fortificant will be efficacious and effective are of key importance to a successful food fortification programme. Our key objective was to conduct a systematic review and meta-analysis to investigate the effect of various animal- and plant-based food vehicles fortified with vitamin D (as D3 or D2) on circulating 25-hydroxyvitamin D [25(OH)D] concentrations. A list of prioritised food vehicles was established and we searched PubMed, Embase, Scopus and Web of Science for randomised controlled trials (RCTs) which used these vehicles individually, and which met prespecified criteria. The searches identified 49 papers which described suitable RCTs using vitamin D-fortified bread/savoury biscuits (n = 5), orange juice (n = 5), UV-mushrooms (n = 8), cheese (n = 3), yogurt (n = 5), fluid milk (n = 13), powdered milk (n = 5), eggs (n = 2), edible oils (n = 4), or breakfast cereal (n = 1). No suitable RCTs were identified for rice, maize flour, butter, margarine or dairy spreads, plant-based milk or yogurt alternatives. Random-effects meta-analyses of each food vehicle individually indicated weighted mean differences (WMD) in 25(OH)D in the range ∼9-35 nmol/L (3-15 RCT arms, depending on vehicle), and all statistically significant (P < 0.01-0.0001), with the exception of UV-mushrooms (P = 0.06). Heterogeneity was variable (I2 =33-99%, depending on vehicle), but subgroup analysis based on vitamer and dose reduced it in some instances. Sub-group analysis on the basis of whether the food vehicles were from plant-based or animal-based origin showed no significant difference in WMD (15.2 versus 15.9 nmol/L, respectively; P = 0.48). These results support the use of various animal- and plant-based food vehicles for vitamin D fortification to improve circulating 25(OH)D concentrations in populations. This work was registered with PROSPERO as CRD42023439883.
Collapse
Affiliation(s)
- Kevin D Cashman
- Cork Centre for Vitamin D and Nutrition Research, School of Food and Nutritional Sciences, University College Cork, Cork, Ireland.
| | - Colette M O'Neill
- Cork Centre for Vitamin D and Nutrition Research, School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| |
Collapse
|
5
|
Neill HR, Gill CIR, McDonald EJ, McRoberts WC, McAleenon R, Slevin MM, Cobice D, McMurray R, Loy R, White A, Pourshahidi LK. Bioavailability of vitamin D biofortified pork meat: results of an acute human crossover study in healthy adults. Int J Food Sci Nutr 2023; 74:279-290. [PMID: 36843327 DOI: 10.1080/09637486.2023.2182256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
Vitamin D intakes are concerningly low. Food-based strategies are urgently warranted to increase vitamin D intakes and subsequently improve 25-hydroxyvitamin D (25(OH)D) concentrations. This acute randomised three-way crossover study investigated the efficacy of vitamin D biofortified pork derived from pigs exposed to UVB light to increase serum 25(OH)D3 concentrations, compared to a dose-matched vitamin D3 supplement and control pork in adults (n = 14). Blood samples were obtained at baseline and then 1.5, 3, 6, 9 and 24 h postprandially. There was a significant effect of time (p < 0.01) and a significant treatment*time interaction (p < 0.05). UV pork and supplement significantly increased within-group serum 25(OH)D3 concentrations over timepoints (p < 0.05) (max. change 0.9 nmol/L (2.2%) UV pork, 1.5 nmol/L (3.5%) supplement, 0.7 nmol/L (1.9%) control). Vitamin D biofortified pork modestly increased 25(OH)D3 concentrations and produced a similar response pattern as a dose-matched vitamin D supplement, but biofortification protocols should be further optimised to ensure differentiation from standard pork.
Collapse
Affiliation(s)
- H R Neill
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - C I R Gill
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - E J McDonald
- Devenish Nutrition Ltd, Lagan House, Belfast, United Kingdom
| | - W C McRoberts
- Agri-Food and Biosciences Institute, Belfast, United Kingdom
| | - R McAleenon
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - M M Slevin
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - D Cobice
- Mass Spectrometry Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, United Kingdom
| | - R McMurray
- Devenish Nutrition Ltd, Lagan House, Belfast, United Kingdom
| | - R Loy
- Agri-Food and Biosciences Institute, Belfast, United Kingdom
| | - A White
- Agri-Food and Biosciences Institute, Belfast, United Kingdom
| | - L K Pourshahidi
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| |
Collapse
|
6
|
Ewendt F, Kotwan J, Ploch S, Feger M, Hirche F, Föller M, Stangl GI. Tachysterol 2 increases the synthesis of fibroblast growth factor 23 in bone cells. Front Nutr 2022; 9:948264. [PMID: 35958252 PMCID: PMC9358286 DOI: 10.3389/fnut.2022.948264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/06/2022] [Indexed: 12/16/2022] Open
Abstract
Tachysterol2 (T2) is a photoisomer of the previtamin D2 found in UV-B-irradiated foods such as mushrooms or baker’s yeast. Due to its structural similarity to vitamin D, we hypothesized that T2 can affect vitamin D metabolism and in turn, fibroblast growth factor 23 (FGF23), a bone-derived phosphaturic hormone that is transcriptionally regulated by the vitamin D receptor (VDR). Initially, a mouse study was conducted to investigate the bioavailability of T2 and its impact on vitamin D metabolism and Fgf23 expression. UMR106 and IDG-SW3 bone cell lines were used to elucidate the effect of T2 on FGF23 synthesis and the corresponding mechanisms. LC-MS/MS analysis found high concentrations of T2 in tissues and plasma of mice fed 4 vs. 0 mg/kg T2 for 2 weeks, accompanied by a significant decrease in plasma 1,25(OH)2D and increased renal Cyp24a1 mRNA abundance. The Fgf23 mRNA abundance in bones of mice fed T2 was moderately higher than that in control mice. The expression of Fgf23 strongly increased in UMR106 cells treated with T2. After Vdr silencing, the T2 effect on Fgf23 diminished. This effect is presumably mediated by single-hydroxylated T2-derivatives, since siRNA-mediated silencing of Cyp27a1, but not Cyp27b1, resulted in a marked reduction in T2-induced Fgf23 gene expression. To conclude, T2 is a potent regulator of Fgf23 synthesis in bone and activates Vdr. This effect depends, at least in part, on the action of Cyp27a1. The potential of oral T2 to modulate vitamin D metabolism and FGF23 synthesis raises questions about the safety of UV-B-treated foods.
Collapse
Affiliation(s)
- Franz Ewendt
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Julia Kotwan
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,NutriCARD Competence Cluster for Nutrition and Cardiovascular Health, Halle (Saale), Germany
| | - Stefan Ploch
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Martina Feger
- Department of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Frank Hirche
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Michael Föller
- Department of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Gabriele I Stangl
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,NutriCARD Competence Cluster for Nutrition and Cardiovascular Health, Halle (Saale), Germany
| |
Collapse
|
7
|
Kessi-Pérez EI, González A, Palacios JL, Martínez C. Yeast as a biological platform for vitamin D production: A promising alternative to help reduce vitamin D deficiency in humans. Yeast 2022; 39:482-492. [PMID: 35581681 DOI: 10.1002/yea.3708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/08/2022] Open
Abstract
Vitamin D is an important human hormone, known primarily to be involved in the intestinal absorption of calcium and phosphate, but it is also involved in various non-skeletal processes (molecular, cellular, immune, and neuronal). One of the main health problems nowadays is the vitamin D deficiency of the human population due to lack of sun exposure, with estimates of one billion people worldwide with vitamin D deficiency, and the consequent need for clinical intervention (i.e., prescription of pharmacological vitamin D supplements). An alternative to reduce vitamin D deficiency is to produce good dietary sources of it, a scenario in which the yeast Saccharomyces cerevisiae seems to be a promising alternative. This review focuses on the potential use of yeast as a biological platform to produce vitamin D, summarizing both the biology aspects of vitamin D (synthesis, ecology and evolution, metabolism, and bioequivalence) and the work done to produce it in yeast (both for vitamin D2 and for vitamin D3 ), highlighting existing challenges and potential solutions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Eduardo I Kessi-Pérez
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile.,Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Adens González
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - José Luis Palacios
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Claudio Martínez
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile.,Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
| |
Collapse
|
8
|
Mwangi RW, Macharia JM, Wagara IN, Bence RL. The antioxidant potential of different edible and medicinal mushrooms. Pharmacotherapy 2022; 147:112621. [PMID: 35026489 DOI: 10.1016/j.biopha.2022.112621] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/20/2022]
Abstract
Mushroom consumption has grown extraordinarily owing to their high nutritional value, desirable taste, and aroma. Mushrooms continue generating lots of interest chiefly in their consumption as food, as a cure for different ailments, as well as important goods for commerce throughout the globe owing to their dietary, antioxidant, and therapeutic values. Higher Ascomycetes and Basidiomycetes mushrooms have different properties with anticancer and immunological potential. They as well provide vital health benefits and display a wide-ranging continuum of pharmacological effects. The antioxidant activity of different mushrooms was reviewed for different radicals including DPPH, ABTS, OH, Nitrite, metals, and lipid peroxidation. The present review presents pharmacological activities of different species of edible and medicinal mushrooms. This review provides tangible evidence that these mushrooms are an excellent source of natural constituents and antioxidants with potential application in pharmaceuticals and in treating and managing different diseases.
Collapse
Affiliation(s)
- Ruth W Mwangi
- Department of Biological Sciences, Egerton University, Nakuru, Kenya
| | - John M Macharia
- Doctoral School of Health Sciences, Faculty of Health Science, University of Pẻcs, Hungary.
| | - Isabel N Wagara
- Department of Biological Sciences, Egerton University, Nakuru, Kenya
| | - Raposa L Bence
- Doctoral School of Health Sciences, Faculty of Health Science, University of Pẻcs, Hungary
| |
Collapse
|
9
|
Tiwari A, Singh G, Singh U, Sapra L, Rana V, Sharma V, Srivastava RK, Sharma S. Edible mushrooms: The potential game changer in alleviating vitamin D deficiency and improving human health. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Abhay Tiwari
- Centre for Rural Development & Technology Indian Institute of Technology (IIT) New Delhi India
| | - Garima Singh
- Centre for Rural Development & Technology Indian Institute of Technology (IIT) New Delhi India
| | - Umesh Singh
- Centre for Rural Development & Technology Indian Institute of Technology (IIT) New Delhi India
| | - Leena Sapra
- Department of Biotechnology All India Institute of Medical Sciences (AIIMS) New Delhi India
| | - Vikrant Rana
- Department of Applied Agriculture School of Basic and Applied Sciences Central University of Punjab Bathinda Punjab India
| | - Vasudha Sharma
- Department of Food Technology Jamia Hamdard New Delhi India
| | - Rupesh K. Srivastava
- Department of Biotechnology All India Institute of Medical Sciences (AIIMS) New Delhi India
| | - Satyawati Sharma
- Centre for Rural Development & Technology Indian Institute of Technology (IIT) New Delhi India
| |
Collapse
|