1
|
Kadish R, Clardy SL. Epidemiology of paraneoplastic neurologic syndromes. HANDBOOK OF CLINICAL NEUROLOGY 2024; 200:57-77. [PMID: 38494297 DOI: 10.1016/b978-0-12-823912-4.00011-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Paraneoplastic neurologic syndromes (PNS), initially depicted as seemingly cryptic remote manifestations of malignancy, were first described clinically in the early 20th century, with pathophysiologic correlates becoming better elucidated in the latter half of the century. There remain many questions not only about the pathophysiology but also regarding the epidemiology of these conditions. The continuous discovery of novel autoantigens and related neurologic disease has broadened the association in classical PNS to include conditions such as paraneoplastic cerebellar degeneration. It has also brought into focus several other neurologic syndromes with a putative neoplastic association. These conditions are overall rare, making it difficult to capture large numbers of patients to study, and raising the question of whether incidence is increasing over time or improved identification is driving the increased numbers of cases. With the rise and increasing use of immunotherapy for cancer treatment, the incidence of these conditions is additionally expected to rise and may present with various clinical symptoms. As we enter an era of clinical trial intervention in these conditions, much work is needed to capture more granular data on population groups defined by socioeconomic characteristics such as age, ethnicity, economic resources, and gender to optimize care and clinical trial planning.
Collapse
Affiliation(s)
- Robert Kadish
- Department of Neurology, University of Utah, Salt Lake City, UT, United States
| | - Stacey L Clardy
- Department of Neurology, University of Utah, Salt Lake City, UT, United States; George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, United States.
| |
Collapse
|
2
|
Roeben B, Scharf M, Miske R, Teegen B, Traschütz A, Wilke C, Zimmermann M, Deuschle C, Schulte C, Brockmann K, Schöls L, Komorowski L, Synofzik M. Seroprevalence of autoimmune antibodies in degenerative ataxias: a broad, disease-controlled screening in 456 subjects. J Neurol 2023; 270:5649-5654. [PMID: 37507501 PMCID: PMC10576697 DOI: 10.1007/s00415-023-11900-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/22/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023]
Affiliation(s)
- Benjamin Roeben
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, 72076, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), 72076, Tübingen, Germany
| | - Madeleine Scharf
- Institute for Experimental Immunology, affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Lübeck, Germany
| | - Ramona Miske
- Institute for Experimental Immunology, affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Lübeck, Germany
| | - Bianca Teegen
- Clinical Immunological Laboratory Prof. Dr. Med. Winfried Stöcker, Lübeck, Germany
| | - Andreas Traschütz
- German Center for Neurodegenerative Diseases (DZNE), 72076, Tübingen, Germany
- Division Translational Genomics of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Carlo Wilke
- German Center for Neurodegenerative Diseases (DZNE), 72076, Tübingen, Germany
- Division Translational Genomics of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Milan Zimmermann
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, 72076, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), 72076, Tübingen, Germany
| | - Christian Deuschle
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, 72076, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), 72076, Tübingen, Germany
| | - Claudia Schulte
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, 72076, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), 72076, Tübingen, Germany
| | - Kathrin Brockmann
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, 72076, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), 72076, Tübingen, Germany
| | - Ludger Schöls
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, 72076, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), 72076, Tübingen, Germany
| | - Lars Komorowski
- Institute for Experimental Immunology, affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Lübeck, Germany
| | - Matthis Synofzik
- German Center for Neurodegenerative Diseases (DZNE), 72076, Tübingen, Germany.
- Division Translational Genomics of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany.
| |
Collapse
|
3
|
Takekoshi A, Kimura A, Yoshikura N, Yamakawa I, Urushitani M, Nakamura K, Yoshida K, Shimohata T. Clinical Features and Neuroimaging Findings of Neuropil Antibody-Positive Idiopathic Sporadic Ataxia of Unknown Etiology. CEREBELLUM (LONDON, ENGLAND) 2023; 22:915-924. [PMID: 36057079 DOI: 10.1007/s12311-022-01468-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Idiopathic sporadic ataxia (ISA) is the clinical term for nonfamilial ataxia with adult-onset and a slowly progressive course. However, immune-mediated cerebellar ataxia cannot be completely excluded from ISA. The current study investigated the neuropil antibodies against cell-surface antigens and clarified the clinical features and neuroimaging findings of patients with these antibodies. Using tissue-based immunofluorescence assays (TBAs), we examined antibodies against the cerebellum in serum samples from 67 patients who met the ISA diagnostic criteria, including 30 patients with multiple system atrophy with predominant cerebellar features (MSA-C) and 20 patients with hereditary ataxia (HA), and 18 healthy control subjects. According to the TBA results, we divided subjects into three groups: subjects positive for neuropil antibodies, subjects positive for intracellular antibodies only, and subjects negative for antibodies. We compared clinical features and neuroimaging findings in ISA patients among these three groups. The prevalence of neuropil antibodies in ISA (17.9%) was significantly higher than that in MSA-C (3.3%), HA (0%), or healthy subjects (0%). The neuropil antibody-positive ISA patients showed pure cerebellar ataxia more frequently than the other ISA patients. Two neuropil antibody-positive patients showed significant improvement of cerebellar ataxia after immunotherapy. We detected neuropil antibodies in 17.9% of ISA patients. Characteristic clinical features of neuropil antibody-positive ISA patients were pure cerebellar ataxia. Some cases of neuropil antibody-positive ISA responded to immunotherapy.
Collapse
Affiliation(s)
- Akira Takekoshi
- Department of Neurology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Akio Kimura
- Department of Neurology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Nobuaki Yoshikura
- Department of Neurology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Isamu Yamakawa
- Department of Neurology, Shiga University of Medical Science, Seta Tsukinowa, Otsu, Japan
| | - Makoto Urushitani
- Department of Neurology, Shiga University of Medical Science, Seta Tsukinowa, Otsu, Japan
| | - Katsuya Nakamura
- Department of Neurology (Neurology and Rheumatology), Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Japan
| | - Kunihiro Yoshida
- Department of Brain Disease Research, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Japan
| | - Takayoshi Shimohata
- Department of Neurology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan.
| |
Collapse
|
4
|
Huang H, Shakkottai VG. Targeting Ion Channels and Purkinje Neuron Intrinsic Membrane Excitability as a Therapeutic Strategy for Cerebellar Ataxia. Life (Basel) 2023; 13:1350. [PMID: 37374132 DOI: 10.3390/life13061350] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
In degenerative neurological disorders such as Parkinson's disease, a convergence of widely varying insults results in a loss of dopaminergic neurons and, thus, the motor symptoms of the disease. Dopamine replacement therapy with agents such as levodopa is a mainstay of therapy. Cerebellar ataxias, a heterogeneous group of currently untreatable conditions, have not been identified to have a shared physiology that is a target of therapy. In this review, we propose that perturbations in cerebellar Purkinje neuron intrinsic membrane excitability, a result of ion channel dysregulation, is a common pathophysiologic mechanism that drives motor impairment and vulnerability to degeneration in cerebellar ataxias of widely differing genetic etiologies. We further propose that treatments aimed at restoring Purkinje neuron intrinsic membrane excitability have the potential to be a shared therapy in cerebellar ataxia akin to levodopa for Parkinson's disease.
Collapse
Affiliation(s)
- Haoran Huang
- Medical Scientist Training Program, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Vikram G Shakkottai
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
5
|
Miske R, Scharf M, Borowski K, Rieckhoff N, Teegen B, Denno Y, Probst C, Guthke K, Didrihsone I, Wildemann B, Ruprecht K, Komorowski L, Jarius S. Septin-3 autoimmunity in patients with paraneoplastic cerebellar ataxia. J Neuroinflammation 2023; 20:88. [PMID: 36997937 PMCID: PMC10061979 DOI: 10.1186/s12974-023-02718-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/03/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND Septins are cytoskeletal proteins with filament forming capabilities, which have multiple roles during cell division, cellular polarization, morphogenesis, and membrane trafficking. Autoantibodies against septin-5 are associated with non-paraneoplastic cerebellar ataxia, and autoantibodies against septin-7 with encephalopathy with prominent neuropsychiatric features. Here, we report on newly identified autoantibodies against septin-3 in patients with paraneoplastic cerebellar ataxia. We also propose a strategy for anti-septin autoantibody determination. METHODS Sera from three patients producing similar immunofluorescence staining patterns on cerebellar and hippocampal sections were subjected to immunoprecipitation followed by mass spectrometry. The identified candidate antigens, all of which were septins, were expressed recombinantly in HEK293 cells either individually, as complexes, or combinations missing individual septins, for use in recombinant cell-based indirect immunofluorescence assays (RC-IIFA). Specificity for septin-3 was further confirmed by tissue IIFA neutralization experiments. Finally, tumor tissue sections were analyzed immunohistochemically for septin-3 expression. RESULTS Immunoprecipitation with rat cerebellum lysate revealed septin-3, -5, -6, -7, and -11 as candidate target antigens. Sera of all three patients reacted with recombinant cells co-expressing septin-3/5/6/7/11, while none of 149 healthy control sera was similarly reactive. In RC-IIFAs the patient sera recognized only cells expressing septin-3, individually and in complexes. Incubation of patient sera with five different septin combinations, each missing one of the five septins, confirmed the autoantibodies' specificity for septin-3. The tissue IIFA reactivity of patient serum was abolished by pre-incubation with HEK293 cell lysates overexpressing the septin-3/5/6/7/11 complex or septin-3 alone, but not with HEK293 cell lysates overexpressing septin-5 as control. All three patients had cancers (2 × melanoma, 1 × small cell lung cancer), presented with progressive cerebellar syndromes, and responded poorly to immunotherapy. Expression of septin-3 was demonstrated in resected tumor tissue available from one patient. CONCLUSIONS Septin-3 is a novel autoantibody target in patients with paraneoplastic cerebellar syndromes. Based on our findings, RC-IIFA with HEK293 cells expressing the septin-3/5/6/7/11 complex may serve as a screening tool to investigate anti-septin autoantibodies in serological samples with a characteristic staining pattern on neuronal tissue sections. Autoantibodies against individual septins can then be confirmed by RC-IIFA expressing single septins.
Collapse
Affiliation(s)
- Ramona Miske
- Institute for Experimental Immunology, affiliated to EUROIMMUN AG, Lübeck, Germany
| | - Madeleine Scharf
- Institute for Experimental Immunology, affiliated to EUROIMMUN AG, Lübeck, Germany.
| | - Kathrin Borowski
- Clinical Immunological Laboratory Prof. Dr. med. Winfried Stöcker, Lübeck, Germany
| | - Nicole Rieckhoff
- Institute for Experimental Immunology, affiliated to EUROIMMUN AG, Lübeck, Germany
| | - Bianca Teegen
- Clinical Immunological Laboratory Prof. Dr. med. Winfried Stöcker, Lübeck, Germany
| | - Yvonne Denno
- Institute for Experimental Immunology, affiliated to EUROIMMUN AG, Lübeck, Germany
| | - Christian Probst
- Institute for Experimental Immunology, affiliated to EUROIMMUN AG, Lübeck, Germany
| | - Kersten Guthke
- Department of Neurology, Städtisches Klinikum Görlitz, Görlitz, Germany
| | - Ieva Didrihsone
- Department of Neurology, Hermann-Josef-Krankenhaus, Erkelenz, Germany
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Klemens Ruprecht
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lars Komorowski
- Institute for Experimental Immunology, affiliated to EUROIMMUN AG, Lübeck, Germany
| | - Sven Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
6
|
Klötzsch C, Böhmert M, Hermann R, Teegen B, Rentzsch K, Till A. Anti-Homer-3 antibodies in cerebrospinal fluid and serum samples from a 58-year-old woman with subacute cerebellar degeneration and diffuse breast adenocarcinoma. Neurol Res Pract 2022; 4:29. [PMID: 35871640 PMCID: PMC9310468 DOI: 10.1186/s42466-022-00194-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/28/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Subacute cerebellar ataxia combined with cerebrospinal fluid (CSF) pleocytosis is the result of an immune response that can occur due to viral infections, paraneoplastic diseases or autoimmune-mediated mechanisms. In the following we present the first description of a patient with anti-Homer-3 antibodies in serum and CSF who has been diagnosed with paraneoplastic subacute cerebellar degeneration due to a papillary adenocarcinoma of the breast. Case presentation A 58-year-old female was admitted to our clinical department because of increasing gait and visual disturbances starting nine months ago. The neurological examination revealed a downbeat nystagmus, oscillopsia, a severe standing and gait ataxia and a slight dysarthria. Cranial MRI showed no pathological findings. Examination of CSF showed a lymphocytic pleocytosis of 11 cells/µl and an intrathecal IgG synthesis of 26%. Initially, standard serological testing in serum and CSF did not indicate any autoimmune or paraneoplastic aetiology. However, an antigen-specific indirect immunofluorescence test (IIFT) revealed the presence of anti-Homer-3 antibodies (IgG) with a serum titer of 1: 32,000 and a titer of 1: 100 in CSF. Subsequent histological examination of a right axillary lymph node mass showed papillary adenocarcinoma cells. Breast MRI detected multiple bilateral lesions as a diffuse tumour manifestation indicative of adenocarcinoma of the breast. Treatment with high-dose methylprednisolone followed by five plasmaphereses and treatment with 4-aminopyridine resulted in a moderate decrease of the downbeat nystagmus and she was able to move independently with a wheeled walker after 3 weeks. The patient was subsequently treated with chemotherapy (epirubicin, cyclophosphamide) and two series of immunoglobulins (5 × 30 g each). This resulted in a moderate improvement of the cerebellar symptoms with a decrease of ataxia and disappearance of the downbeat nystagmus. Conclusion The presented case of anti-Homer-3 antibody-associated cerebellar degeneration is the first that is clearly associated with the detection of a tumour. Interestingly, the Homer-3 protein interaction partner metabotropic glutamate receptor subtype 1A (mGluR1A) is predominantly expressed in Purkinje cells where its function is essential for motor coordination and motor learning. Based on our findings, in subacute cerebellar degeneration, we recommend considering serological testing for anti-Homer-3 antibodies in serum and cerebrospinal fluid together with tumor screening.
Collapse
|
7
|
Muñiz-Castrillo S, Vogrig A, Ciano-Petersen NL, Villagrán-García M, Joubert B, Honnorat J. Novelties in Autoimmune and Paraneoplastic Cerebellar Ataxias: Twenty Years of Progresses. CEREBELLUM (LONDON, ENGLAND) 2022; 21:573-591. [PMID: 35020135 DOI: 10.1007/s12311-021-01363-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Major advances in our knowledge concerning autoimmune and paraneoplastic cerebellar ataxias have occurred in the last 20 years. The discovery of several neural antibodies represents an undeniable contribution to this field, especially those serving as good biomarkers of paraneoplastic neurological syndromes and those showing direct pathogenic effects. Yet, many patients still lack detectable or known antibodies, and also many antibodies have only been reported in few patients, which makes it difficult to define in detail their clinical value. Nevertheless, a notable progress has additionally been made in the clinical characterization of patients with the main neural antibodies, which, although typically present with a subacute pancerebellar syndrome, may also show either hyperacute or chronic onsets that complicate the differential diagnoses. However, prodromal and transient features could be useful clues for an early recognition, and extracerebellar involvement may also be highly indicative of the associated antibody. Moreover, important advances in our understanding of the pathogenesis of cerebellar ataxias include the description of antibody effects, especially those targeting cell-surface antigens, and first attempts to isolate antigen-specific T-cells. Furthermore, genetic predisposition seems relevant, although differently involved according to cancer association, with particular HLA observed in non-paraneoplastic cases and genetic abnormalities in the tumor cells in paraneoplastic ones. Finally, immune checkpoint inhibitors used as cancer immunotherapy may rarely induce cerebellar ataxias, but even this undesirable effect may in turn serve to shed some light on their physiopathology. Herein, we review the principal novelties of the last 20 years regarding autoimmune and paraneoplastic cerebellar ataxias.
Collapse
Affiliation(s)
- Sergio Muñiz-Castrillo
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, 59 Boulevard Pinel, 69677, Bron Cedex, France
- SynatAc Team, Institut NeuroMyoGène, INSERM U1217, CNRS, UMR 5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Alberto Vogrig
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, 59 Boulevard Pinel, 69677, Bron Cedex, France
- SynatAc Team, Institut NeuroMyoGène, INSERM U1217, CNRS, UMR 5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Nicolás Lundahl Ciano-Petersen
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, 59 Boulevard Pinel, 69677, Bron Cedex, France
- SynatAc Team, Institut NeuroMyoGène, INSERM U1217, CNRS, UMR 5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Macarena Villagrán-García
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, 59 Boulevard Pinel, 69677, Bron Cedex, France
- SynatAc Team, Institut NeuroMyoGène, INSERM U1217, CNRS, UMR 5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Bastien Joubert
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, 59 Boulevard Pinel, 69677, Bron Cedex, France
- SynatAc Team, Institut NeuroMyoGène, INSERM U1217, CNRS, UMR 5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Jérôme Honnorat
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, 59 Boulevard Pinel, 69677, Bron Cedex, France.
- SynatAc Team, Institut NeuroMyoGène, INSERM U1217, CNRS, UMR 5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France.
| |
Collapse
|
8
|
Jarius S, Bräuninger S, Chung HY, Geis C, Haas J, Komorowski L, Wildemann B, Roth C. Inositol 1,4,5-trisphosphate receptor type 1 autoantibody (ITPR1-IgG/anti-Sj)-associated autoimmune cerebellar ataxia, encephalitis and peripheral neuropathy: review of the literature. J Neuroinflammation 2022; 19:196. [PMID: 35907972 PMCID: PMC9338677 DOI: 10.1186/s12974-022-02545-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/23/2022] [Indexed: 11/10/2022] Open
Abstract
Background In 2014, we first described novel autoantibodies to the inositol 1,4,5-trisphosphate receptor type 1 (ITPR1-IgG/anti-Sj) in patients with autoimmune cerebellar ataxia (ACA) in this journal. Here, we provide a review of the available literature on ITPR1-IgG/anti-Sj, covering clinical and paraclinical presentation, tumour association, serological findings, and immunopathogenesis. Methods Review of the peer-reviewed and PubMed-listed English language literature on ITPR1-IgG/anti-Sj. In addition, we provide an illustrative report on a new patient with ITPR1-IgG-associated encephalitis with cognitive decline and psychosis. Results So far, at least 31 patients with serum ITPR1-IgG/anti-Sj have been identified (clinical information available for 21). The most common manifestations were ACA, encephalopathy with seizures, myelopathy, and (radiculo)neuropathy, including autonomic neuropathy. In 45% of cases, an underlying tumour was present, making the condition a facultative paraneoplastic neurological disorder. The neurological syndrome preceded tumour diagnosis in all but one case. In most cases, immunotherapy had only moderate or no effect. The association of ITPR1-IgG/anti-Sj with manifestations other than ACA is corroborated by the case of a 48-year-old woman with high-titre ITPR1-IgG/anti-Sj antibodies and rapid cognitive decline, affecting memory, attention and executive function, and psychotic manifestations, including hallucinations, investigated here in detail. FDG-PET revealed right-temporal glucose hypermetabolism compatible with limbic encephalitis. Interestingly, ITPR1-IgG/anti-Sj mainly belonged to the IgG2 subclass in both serum and cerebrospinal fluid (CSF) in this and further patients, while it was predominantly IgG1 in other patients, including those with more severe outcome, and remained detectable over the entire course of disease. Immunotherapy with intravenous methylprednisolone, plasma exchange, and intravenous immunoglobulins, was repeatedly followed by partial or complete recovery. Long-term treatment with cyclophosphamide was paralleled by relative stabilization, although the patient noted clinical worsening at the end of each treatment cycle. Conclusions The spectrum of neurological manifestations associated with ITPR1 autoimmunity is broader than initially thought. Immunotherapy may be effective in some cases. Studies evaluating the frequency of ITPR1-IgG/anti-Sj in patients with cognitive decline and/or psychosis of unknown aetiology are warranted. Tumour screening is essential in patients presenting with ITPR1-IgG/anti-Sj.
Collapse
Affiliation(s)
- Sven Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany.
| | | | - Ha-Yeun Chung
- Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena, Germany
| | - Christian Geis
- Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena, Germany
| | - Jürgen Haas
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Lars Komorowski
- Institute for Experimental Immunology, affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Lübeck, Germany
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Christian Roth
- Department of Neurology, DRK-Kliniken Nordhessen, Kassel, Germany.
| |
Collapse
|
9
|
Update on Paraneoplastic Cerebellar Degeneration. Brain Sci 2021; 11:brainsci11111414. [PMID: 34827413 PMCID: PMC8615604 DOI: 10.3390/brainsci11111414] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/16/2022] Open
Abstract
Purpose of review: To provide an update on paraneoplastic cerebellar degeneration (PCD), the involved antibodies and tumors, as well as management strategies. Recent findings: PCD represents the second most common presentation of the recently established class of immune mediated cerebellar ataxias (IMCAs). Although rare in general, PCD is one of the most frequent paraneoplastic presentations and characterized clinically by a rapidly progressive cerebellar syndrome. In recent years, several antibodies have been described in association with the clinical syndrome related to PCD; their clinical significance, however, has yet to be determined. The 2021 updated diagnostic criteria for paraneoplastic neurologic symptoms help to establish the diagnosis of PCD, direct cancer screening, and to evaluate the presence of these newly identified antibodies. Recognition of the clinical syndrome and prompt identification of a specific antibody are essential for early detection of an underlying malignancy and initiation of an appropriate treatment, which represents the best opportunity to modulate the course of the disease. As clinical symptoms can precede tumor diagnosis by years, co-occurrence of specific symptoms and antibodies should prompt continuous surveillance of the patient. Summary: We provide an in-depth overview on PCD, summarize recent findings related to PCD, and highlight the transformed diagnostic approach.
Collapse
|
10
|
Cirkel A, Wandinger KP, Ditz C, Leppert J, Hanker L, Cirkel C, Neumann A, Brocke J, Höftberger R, Komorowski L, Perner S, Leypoldt F, Wagner-Altendorf T, Münte TF, Royl G. Paraneoplastic encephalomyeloradiculits with multiple autoantibodies against ITPR-1, GFAP and MOG: case report and literature review. Neurol Res Pract 2021; 3:48. [PMID: 34635185 PMCID: PMC8504129 DOI: 10.1186/s42466-021-00145-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/23/2021] [Indexed: 11/12/2022] Open
Abstract
Background Recently, antibodies against the alpha isoform of the glial-fibrillary-acidic-protein (GFAPα) were identified in a small series of patients with encephalomyelitis. Coexisting autoantibodies (NMDA receptor, GAD65 antibodies) have been described in a few of these patients. We describe a patient with rapidly progressive encephalomyeloradiculitis and a combination of anti-ITPR1, anti-GFAP and anti-MOG antibodies. Case presentation and literature review A 44-year old caucasian woman with a flu-like prodrome presented with meningism, progressive cerebellar signs and autonomic symptoms, areflexia, quadriplegia and respiratory insufficiency. MRI showed diffuse bilateral T2w-hyperintense brain lesions in the cortex, white matter, the corpus callosum as well as a longitudinal lesion of the medulla oblongata and the entire spinal cord. Anti-ITPR1, anti-GFAP and anti-MOG antibodies were detected in cerebrospinal fluid along with lymphocytic pleocytosis. Borderline tumor of the ovary was diagnosed. Thus, the disease of the patient was deemed to be paraneoplastic. The patient was treated by surgical removal of tumor, steroids, immunoglobulins, plasma exchange and rituximab. Four months after presentation, the patient was still tetraplegic, reacted with mimic expressions to pain or touch and could phonate solitary vowels. An extensive literature research was performed. Conclusion Our case and the literature review illustrate that multiple glial and neuronal autoantibodies can co-occur, that points to a paraneoplastic etiology, above all ovarian teratoma or thymoma. Clinical manifestation can be a mixture of typically associated syndromes, e.g. ataxia associated with anti-ITPR1 antibodies, encephalomyelitis with anti-GFAPα antibodies and longitudinal extensive myelitis with anti-MOG antibodies. Supplementary Information The online version contains supplementary material available at 10.1186/s42466-021-00145-w.
Collapse
Affiliation(s)
- Anna Cirkel
- Department of Neurology, University Hospital of Schleswig-Holstein Lübeck, Lübeck, Germany.
| | - Klaus-Peter Wandinger
- Department of Neurology, University Hospital of Schleswig-Holstein Lübeck, Lübeck, Germany.,Institute of Clinical Chemistry, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Claudia Ditz
- Department of Neurosurgery, University Hospital of Schleswig-Holstein Lübeck, Lübeck, Germany
| | - Jan Leppert
- Department of Neurosurgery, University Hospital of Schleswig-Holstein Lübeck, Lübeck, Germany
| | - Lars Hanker
- Department of Gynecology, University Hospital of Schleswig-Holstein Lübeck, Lübeck, Germany
| | - Christoph Cirkel
- Department of Gynecology, University Hospital of Schleswig-Holstein Lübeck, Lübeck, Germany
| | - Alexander Neumann
- Department of Neuroradiology, University Hospital of Schleswig-Holstein Lübeck, Lübeck, Germany
| | - Jan Brocke
- Neurological Rehabilitation Center, Segeberger Kliniken, Bad Segeberg, Germany
| | | | - Lars Komorowski
- Institute of Experimental Immunology, Euroimmun AG, Lübeck, Germany
| | - Sven Perner
- Department of Pathology, University Hospital of Schleswig-Holstein Lübeck, Lübeck, Germany.,Research Center Borstel, Leibniz Lung Center, 23538 Lübeck and, 23845, Borstel, Germany
| | - Frank Leypoldt
- Department of Neurosurgery, University Hospital of Schleswig-Holstein Lübeck, Lübeck, Germany.,Department of Neurology, University Hospital of Schleswig-Holstein Kiel, Kiel, Germany
| | | | - Thomas F Münte
- Department of Neurology, University Hospital of Schleswig-Holstein Lübeck, Lübeck, Germany.,Institute of Psychology II, University Hospital of Schleswig-Holstein, Lübeck, Germany
| | - Georg Royl
- Department of Neurology, University Hospital of Schleswig-Holstein Lübeck, Lübeck, Germany
| |
Collapse
|
11
|
Schiff JR, Fiorillo BP, Sadjadi R, Henry TL, Gruen JK, Gensler LM. Confabulation, amnesia and motor memory loss as a presentation of apparent ITPR1 antibody autoimmune encephalitis. BMJ Case Rep 2021; 14:e244316. [PMID: 34531236 PMCID: PMC8449935 DOI: 10.1136/bcr-2021-244316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2021] [Indexed: 12/16/2022] Open
Abstract
A 59-year-old woman presented to the hospital with acute, hypoactive altered mental status. Her symptoms had begun 3 days prior when she developed hallucinations, urinary and faecal incontinence, and somnolence. She also exhibited confabulations, amnesia, motor memory loss and a wide-based gait. Medical, psychiatric and neurological evaluations including imaging and laboratory workup were unrevealing. Treatment for possible Wernicke encephalopathy and psychosis with high-dose intravenous thiamine and antipsychotic medications did not lead to improvement. After discharge, a send-out cerebrospinal fluid autoimmune encephalitis panel resulted positive for the newly identified neuronal inositol triphosphate receptor one (ITPR1) antibody. This prompted readmission for intravenous steroids, plasmapheresis and intravenous immunoglobulin, which yielded mild clinical improvement. Here, we describe confabulations and psychiatric symptoms as novel manifestations of the primary presentation of anti-ITPR1 encephalitis in an effort to promote faster recognition of this disease and early initiation of treatment in suspected cases.
Collapse
Affiliation(s)
- Julia R Schiff
- Department of Internal Medicine, Emory University, Atlanta, Georgia, USA
| | - Benjamin P Fiorillo
- Department of Anesthesia and Critical Care, Emory University, Atlanta, Georgia, USA
| | - Raha Sadjadi
- Department of Internal Medicine, Emory University, Atlanta, Georgia, USA
| | - Tracey L Henry
- Department of Internal Medicine, Emory University, Atlanta, Georgia, USA
| | - Judah K Gruen
- Department of Internal Medicine, Emory University, Atlanta, Georgia, USA
| | - Lauren M Gensler
- Department of Internal Medicine, Psychiatry, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
12
|
Garza M, Piquet AL. Update in Autoimmune Movement Disorders: Newly Described Antigen Targets in Autoimmune and Paraneoplastic Cerebellar Ataxia. Front Neurol 2021; 12:683048. [PMID: 34489848 PMCID: PMC8416494 DOI: 10.3389/fneur.2021.683048] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/28/2021] [Indexed: 12/29/2022] Open
Abstract
Movement disorders are a common feature of many antibody-associated neurological disorders. In fact, cerebellar ataxia is one of the most common manifestations of autoimmune neurological diseases. Some of the first autoantibodies identified against antigen targets include anti-neuronal nuclear antibody type 1 (ANNA-1 or anti-Hu) and Purkinje cell cytoplasmic antibody (PCA-1) also known as anti-Yo have been identified in paraneoplastic cerebellar degeneration. Historically these antibodies have been associated with an underlying malignancy; however, recently discovered antibodies can occur in the absence of cancer as well, resulting in the clinical syndrome of autoimmune cerebellar ataxia. The pace of discovery of new antibodies associated with autoimmune or paraneoplastic cerebellar ataxia has increased rapidly over the last few years, and pathogenesis and potential treatment options remains to be explored. Here we will review the literature on recently discovered antibodies associated with autoimmune and paraneoplastic cerebellar ataxia including adaptor protein-3B2 (AP3B2); inositol 1,4,5-trisphophate receptor type 1 (ITPR1); tripartite motif-containing (TRIM) proteins 9, 67, and 46; neurochondrin; neuronal intermediate filament light chain (NIF); septin 5; metabotropic glutamate receptor 2 (mGluR2); seizure-related 6 homolog like 2 (SEZ6L2) and homer-3 antibodies. We will review their clinical characteristics, imaging and CSF findings and treatment response. In addition, we will discuss two clinical case examples of autoimmune cerebellar ataxia.
Collapse
Affiliation(s)
- Madeline Garza
- Department of Neurology, University of Colorado, Aurora, CO, United States
| | - Amanda L Piquet
- Department of Neurology, University of Colorado, Aurora, CO, United States
| |
Collapse
|
13
|
Guo L, Ren H, Fan S, Guan H, Wang J. Autoantibody against the Rab6A/Rab6B in primary autoimmune cerebellar ataxia associated with Sjogren's syndrome: A case report. J Neuroimmunol 2021; 359:577667. [PMID: 34332492 DOI: 10.1016/j.jneuroim.2021.577667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 12/31/2022]
Abstract
In the current study we report a novel autoantibody against Purkinje cells in a patient with primary autoimmune cerebellar ataxia (PACA) associated with Sjogren's syndrome (SS). Tissue-based indirect immunofluorescence assay (TBA) of the patient's serum and cerebrospinal fluid (CSF) revealed IgG antibody to Purkinje cells and the granular layer of the rat cerebellum. Rab6A was identified as autoantigen by mass spectrometry (MS) and Western blotting, and the interactions between Rab6A or its homologous Rab6B and autoantibody in patient serum were verified by recombinant cell-based assay (CBA) and neutralization experiments. This autoantibody may represent a novel biomarker in the diagnosis of PACA.
Collapse
Affiliation(s)
- Liyuan Guo
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haitao Ren
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Siyuan Fan
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongzhi Guan
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jing Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
14
|
West N, Matiasek K, Rusbridge C. Olivopontocerebellar degeneration associated with 3-hydroxy-3-methylglutaric aciduria in a domestic shorthair cat. JFMS Open Rep 2021; 7:20551169211037899. [PMID: 34646570 PMCID: PMC8504233 DOI: 10.1177/20551169211037899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
CASE SUMMARY A rescue charity-owned 6-month-old neutered female domestic shorthair cat was presented with progressive tetraparesis, increased extensor muscle tone and signs of spinocerebellar ataxia, including hypermetria. The cat's male sibling, with similar progressive neurological signs, had been euthanased 2 months previously. An inherited metabolic disorder was suspected. Urine for determination of organic acid concentration was obtained and the cat was prescribed carnitine and taurine supplementation. The cat was euthanased 3 months later following progressive neurological signs, including ataxia, tetraparesis, tendency to fall, bilateral absent menace response and intention tremor. A selective post-mortem examination was obtained, taking samples from the brain, cervical spinal cord, tibial branch of the sciatic nerve, muscle, liver and kidneys. Organic acid analysis results received after euthanasia revealed a marked elevation of 3-hydroxy-3-methylglutaric acid (45 mmol/mol creatine [normal range 0-2]) and isovalerylglycine (27 mmol/mol creatinine [normal range 0-2]). 3-Hydroxy-3-methylglutaric acid was deemed clinically relevant as it is a metabolite of 3-hydroxy-3-methylglutaryl-CoA lyase, the enzyme involved in the final step of leucine degradation. Post-mortem examination revealed diffuse, chronic-active, severe olivoponto-(spino)-cerebellar degeneration. RELEVANCE AND NOVEL INFORMATION This is the first report of 3-hydroxy-3-methylglutaric aciduria in the veterinary literature and the first description of the neuropathology of this disorder in any species. 3-Hydroxy-3-methylglutaric aciduria in humans occurs rarely and is due to a deficiency in 3-hydroxy-3-methylglutaryl-coenzyme A lyase.
Collapse
Affiliation(s)
| | - Kaspar Matiasek
- Section of Clinical and Comparative Neuropathology, Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Clare Rusbridge
- School of Veterinary Medicine, Faculty of Health and Medical Science, Guildford, UK
| |
Collapse
|
15
|
Xu L, Xian W, Li J, Yao X, Long Y. Purkinje cell (PC) antibody positivity in a patient with autoimmune glial fibrillary acidic protein (GFAP) astrocytopathy. Int J Neurosci 2020; 132:1043-1048. [PMID: 33287611 DOI: 10.1080/00207454.2020.1860965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE This case report is the first to describe the detection of antibodies against inositol 1,4,5-trisphosphate receptor 1 (ITPR1, I3PR) in a patient diagnosed with autoimmune glial fibrillary acidic protein (GFAP) astrocytopathy. ITPR1 is known as one of the Purkinje cell antibodies present in autoimmune cerebellar ataxia (ACA). Here, we described the association between autoimmune GFAP astrocytopathy and autoimmune cerebellar disease (ACD). MATERIALS AND METHODS Demographic features, clinical characteristics, cerebrospinal fluid (CSF) parameters and neuroimaging findings were collected from this patient. Specifically, antibodies against GFAP and other proteins associated with neurological disorders were measured by immunofluorescence staining in both serum and CSF samples. RESULTS A 52-year-old woman was diagnosed with autoimmune inflammatory meningoencephalitis. She presented with cognitive dysfunction, psychiatric/behavioral abnormalities and serious insomnia with subacute onset. Brain magnetic resonance imaging (MRI) showed bilateral hyperintensity in the semioval centers on axial images and perivascular linear enhancement oriented radially to the ventricles on sagittal images. GFAP-IgG, oligoclonal bands (OBs), N-methyl-D-aspartate receptor (NMDAR)-IgG and ITPR1-IgG co-existed in her CSF. She responded well to immunoglobulin and steroid treatments. CONCLUSION Here, we describe the case of a patient with autoimmune GFAP astrocytopathy whose CSF was positive for ITPR1-IgG; however, she did not show typical ataxia manifestations or cerebellar lesions on her MRI scan. This suggests that ITPR1-IgG is not pathogenic, and the positivity of this antibody in CSF is probably associated with the presence of autoimmune inflammation.
Collapse
Affiliation(s)
- Li Xu
- Department of Neurology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China.,Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong Province, China
| | - Wenbiao Xian
- Department of Neurology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Jin Li
- Department of Neurology, Zhuzhou 331 Hospital, Zhuzhou, Hunan Province, China
| | - Xiaoli Yao
- Department of Neurology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Youming Long
- Department of Neurology, The Second Affiliated Hospital of GuangZhou Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
16
|
Yshii L, Bost C, Liblau R. Immunological Bases of Paraneoplastic Cerebellar Degeneration and Therapeutic Implications. Front Immunol 2020; 11:991. [PMID: 32655545 PMCID: PMC7326021 DOI: 10.3389/fimmu.2020.00991] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Paraneoplastic cerebellar degeneration (PCD) is a rare immune-mediated disease that develops mostly in the setting of neoplasia and offers a unique prospect to explore the interplay between tumor immunity and autoimmunity. In PCD, the deleterious adaptive immune response targets self-antigens aberrantly expressed by tumor cells, mostly gynecological cancers, and physiologically expressed by the Purkinje neurons of the cerebellum. Highly specific anti-neuronal antibodies in the serum and cerebrospinal fluid represent key diagnostic biomarkers of PCD. Some anti-neuronal antibodies such as anti-Yo autoantibodies (recognizing the CDR2/CDR2L proteins) are only associated with PCD. Other anti-neuronal antibodies, such as anti-Hu, anti-Ri, and anti-Ma2, are detected in patients with PCD or other types of paraneoplastic neurological manifestations. Importantly, these autoantibodies cannot transfer disease and evidence for a pathogenic role of autoreactive T cells is accumulating. However, the precise mechanisms responsible for disruption of self-tolerance to neuronal self-antigens in the cancer setting and the pathways involved in pathogenesis within the cerebellum remain to be fully deciphered. Although the occurrence of PCD is rare, the risk for such severe complication may increase with wider use of cancer immunotherapy, notably immune checkpoint blockade. Here, we review recent literature pertaining to the pathophysiology of PCD and propose an immune scheme underlying this disabling disease. Additionally, based on observations from patients' samples and on the pre-clinical model we recently developed, we discuss potential therapeutic strategies that could blunt this cerebellum-specific autoimmune disease.
Collapse
Affiliation(s)
- Lidia Yshii
- INSERM U1043, CNRS UMR 5282, Université Toulouse III, Center for Pathophysiology Toulouse Purpan, Toulouse, France
| | - Chloé Bost
- INSERM U1043, CNRS UMR 5282, Université Toulouse III, Center for Pathophysiology Toulouse Purpan, Toulouse, France.,Department of Immunology, Purpan University Hospital Toulouse, Toulouse, France
| | - Roland Liblau
- INSERM U1043, CNRS UMR 5282, Université Toulouse III, Center for Pathophysiology Toulouse Purpan, Toulouse, France.,Department of Immunology, Purpan University Hospital Toulouse, Toulouse, France
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW The current review develops the clinical presentations of nonparaneoplastic autoimmune cerebellar ataxia (ACA) and analyzes the association with autoantibodies. RECENT FINDINGS Emerging evidence suggests that autoimmunity is involved in a significant proportion of sporadic ataxia cases. Moreover, numerous autoantibodies have recently been described in association with sporadic cerebellar ataxia, improving diagnosis and patient categorization. SUMMARY Nonparaneoplastic ACA encompasses postinfectious acute cerebellar ataxia, opsoclonus-myoclonus-ataxia syndrome, and pure cerebellar ataxia with or without autoantibodies. There is still confusion about how to diagnose and classify the patients, and retrospective data suggest that these very rare entities are in fact largely underrecognized. Numerous autoantibodies have been found associated with sporadic ataxia, improving diagnosis accuracy, and patient categorization. However, although anti-glutamate decarboxylase isotype 65 (GAD65), anti-contactin-associated protein 2 (CASPR2), and anti metabotropic glutamate receptor (mGluR1) antibodies are well recognized biomarkers, many other autoantibodies have been described in very small numbers of patients and their specificity is unknown. Efficient biomarkers for ACA are still lacking and in many cases the diagnosis has to rely on a body of converging evidence.
Collapse
|
18
|
Shelly S, Kryzer TJ, Komorowski L, Miske R, Anderson MD, Flanagan EP, Hinson SR, Lennon VA, Pittock SJ, McKeon A. Neurochondrin neurological autoimmunity. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2019; 6:6/6/e612. [PMID: 31511329 PMCID: PMC6745726 DOI: 10.1212/nxi.0000000000000612] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 07/30/2019] [Indexed: 11/19/2022]
Abstract
Objectives To describe the neurologic spectrum and treatment outcomes for neurochondrin-IgG positive cases identified serologically in the Mayo Clinic Neuroimmunology Laboratory. Methods Archived serum and CSF specimens previously scored positive for IgGs that stained mouse hippocampal tissue in a nonuniform synaptic pattern by immunofluorescence assay (89 among 616,025 screened, 1993–2019) were reevaluated. Antibody characterization experiments revealed specificity for neurochondrin, confirmed by recombinant protein assays. Results IgG in serum (9) or CSF (4) from 8 patients yielded identical neuron-restricted CNS patterns, most pronounced in hippocampus (stratum lucidum in particular), cerebellum (Purkinje cells and molecular layer), and amygdala. All were neurochondrin-IgG positive. Five were women; median symptom onset age was 43 years (range, 30–69). Of 7 with clinical data, 6 presented with rapidly progressive cerebellar ataxia, brainstem signs, or both; 1 had isolated unexplained psychosis 1 year prior. Five of 6 had cerebellar signs, 4 with additional brainstem symptoms or signs (eye movement abnormalities, 3; dysphagia, 2; nausea and vomiting, 1). One patient with brainstem signs (vocal cord paralysis and VII nerve palsy) had accompanying myelopathy (longitudinally extensive abnormality on MRI; aquaporin-4-IgG and myelin oligodendrocyte glycoprotein-IgG negative). The 7th patient had small fiber neuropathy only. Just 1 of 7 had contemporaneous cancer (uterine). Six patients with ataxia or brainstem signs received immunotherapy, but just 1 remained ambulatory. At last follow-up, 5 had MRI evidence of severe cerebellar atrophy. Conclusion In our series, neurochondrin autoimmunity was usually accompanied by a nonparaneoplastic rapidly progressive rhombencephalitis with poor neurologic outcomes. Other phenotypes and occasional paraneoplastic causes may occur.
Collapse
Affiliation(s)
- Shahar Shelly
- Department of Laboratory Medicine and Pathology (S.S., T.J.K., E.P.F., S.R.H., V.A.L., S.J.P., A.M.), Department of Neurology (E.P.F., V.A.L., S.J.P., A.M.), and Department of Immunology (V.A.L.), College of Medicine, Mayo Clinic; Euroimmun AG (L.K., R.M.), Lubeck, Germany; and Department of Neurology (M.D.A.), University of Mississippi Medical Center, Jackson, MS
| | - Thomas J Kryzer
- Department of Laboratory Medicine and Pathology (S.S., T.J.K., E.P.F., S.R.H., V.A.L., S.J.P., A.M.), Department of Neurology (E.P.F., V.A.L., S.J.P., A.M.), and Department of Immunology (V.A.L.), College of Medicine, Mayo Clinic; Euroimmun AG (L.K., R.M.), Lubeck, Germany; and Department of Neurology (M.D.A.), University of Mississippi Medical Center, Jackson, MS
| | - Lars Komorowski
- Department of Laboratory Medicine and Pathology (S.S., T.J.K., E.P.F., S.R.H., V.A.L., S.J.P., A.M.), Department of Neurology (E.P.F., V.A.L., S.J.P., A.M.), and Department of Immunology (V.A.L.), College of Medicine, Mayo Clinic; Euroimmun AG (L.K., R.M.), Lubeck, Germany; and Department of Neurology (M.D.A.), University of Mississippi Medical Center, Jackson, MS
| | - Ramona Miske
- Department of Laboratory Medicine and Pathology (S.S., T.J.K., E.P.F., S.R.H., V.A.L., S.J.P., A.M.), Department of Neurology (E.P.F., V.A.L., S.J.P., A.M.), and Department of Immunology (V.A.L.), College of Medicine, Mayo Clinic; Euroimmun AG (L.K., R.M.), Lubeck, Germany; and Department of Neurology (M.D.A.), University of Mississippi Medical Center, Jackson, MS
| | - Mark D Anderson
- Department of Laboratory Medicine and Pathology (S.S., T.J.K., E.P.F., S.R.H., V.A.L., S.J.P., A.M.), Department of Neurology (E.P.F., V.A.L., S.J.P., A.M.), and Department of Immunology (V.A.L.), College of Medicine, Mayo Clinic; Euroimmun AG (L.K., R.M.), Lubeck, Germany; and Department of Neurology (M.D.A.), University of Mississippi Medical Center, Jackson, MS
| | - Eoin P Flanagan
- Department of Laboratory Medicine and Pathology (S.S., T.J.K., E.P.F., S.R.H., V.A.L., S.J.P., A.M.), Department of Neurology (E.P.F., V.A.L., S.J.P., A.M.), and Department of Immunology (V.A.L.), College of Medicine, Mayo Clinic; Euroimmun AG (L.K., R.M.), Lubeck, Germany; and Department of Neurology (M.D.A.), University of Mississippi Medical Center, Jackson, MS
| | - Shannon R Hinson
- Department of Laboratory Medicine and Pathology (S.S., T.J.K., E.P.F., S.R.H., V.A.L., S.J.P., A.M.), Department of Neurology (E.P.F., V.A.L., S.J.P., A.M.), and Department of Immunology (V.A.L.), College of Medicine, Mayo Clinic; Euroimmun AG (L.K., R.M.), Lubeck, Germany; and Department of Neurology (M.D.A.), University of Mississippi Medical Center, Jackson, MS
| | - Vanda A Lennon
- Department of Laboratory Medicine and Pathology (S.S., T.J.K., E.P.F., S.R.H., V.A.L., S.J.P., A.M.), Department of Neurology (E.P.F., V.A.L., S.J.P., A.M.), and Department of Immunology (V.A.L.), College of Medicine, Mayo Clinic; Euroimmun AG (L.K., R.M.), Lubeck, Germany; and Department of Neurology (M.D.A.), University of Mississippi Medical Center, Jackson, MS
| | - Sean J Pittock
- Department of Laboratory Medicine and Pathology (S.S., T.J.K., E.P.F., S.R.H., V.A.L., S.J.P., A.M.), Department of Neurology (E.P.F., V.A.L., S.J.P., A.M.), and Department of Immunology (V.A.L.), College of Medicine, Mayo Clinic; Euroimmun AG (L.K., R.M.), Lubeck, Germany; and Department of Neurology (M.D.A.), University of Mississippi Medical Center, Jackson, MS
| | - Andrew McKeon
- Department of Laboratory Medicine and Pathology (S.S., T.J.K., E.P.F., S.R.H., V.A.L., S.J.P., A.M.), Department of Neurology (E.P.F., V.A.L., S.J.P., A.M.), and Department of Immunology (V.A.L.), College of Medicine, Mayo Clinic; Euroimmun AG (L.K., R.M.), Lubeck, Germany; and Department of Neurology (M.D.A.), University of Mississippi Medical Center, Jackson, MS.
| |
Collapse
|
19
|
|
20
|
Scharf M, Miske R, Kade S, Hahn S, Denno Y, Begemann N, Rochow N, Radzimski C, Brakopp S, Probst C, Teegen B, Stöcker W, Komorowski L. A Spectrum of Neural Autoantigens, Newly Identified by Histo-Immunoprecipitation, Mass Spectrometry, and Recombinant Cell-Based Indirect Immunofluorescence. Front Immunol 2018; 9:1447. [PMID: 30038610 PMCID: PMC6046535 DOI: 10.3389/fimmu.2018.01447] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 06/11/2018] [Indexed: 12/31/2022] Open
Abstract
Background A plurality of neurological syndromes is associated with autoantibodies against neural antigens relevant for diagnosis and therapy. Identification of these antigens is crucial to understand the pathogenesis and to develop specific immunoassays. Using an indirect immunofluorescence assay (IFA)-based approach and applying different immunoprecipitation (IP), chromatographic and mass spectrometric protocols was possible to isolate and identify a spectrum of autoantigens from brain tissue. Methods Sera and CSF of 320 patients suspected of suffering from an autoimmune neurological syndrome were comprehensively investigated for the presence of anti-neural IgG autoantibodies by IFA using mosaics of biochips with brain tissue cryosections and established cell-based recombinant antigen substrates as well as immunoblots. Samples containing unknown brain tissue-specific autoantibodies were subjected to IP with cryosections of cerebellum and hippocampus (rat, pig, and monkey) immobilized to glass slides or with lysates produced from homogenized tissue, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, tryptic digestion, and matrix-assisted laser desorption/ionization–time of flight mass spectrometry analysis. Identifications were confirmed by IFA with recombinant HEK293 cells and by neutralizing the patients’ autoantibodies with the respective recombinantly expressed antigens in the tissue-based immunofluorescence test. Results Most samples used in this study produced speckled, granular, or homogenous stainings of the hippocampal and cerebellar molecular and/or granular layers. Others exclusively stained the Purkinje cells. Up to now, more than 20 different autoantigens could be identified by this approach, among them ATP1A3, CPT1C, Flotillin1/2, ITPR1, NBCe1, NCDN, RGS8, ROCK2, and Syntaxin-1B as novel autoantigens. Discussion The presented antigen identification strategy offers an opportunity for identifying up to now unknown neural autoantigens. Recombinant cell substrates containing the newly identified antigens can be used in serology and the clinical relevance of the autoantibodies can be rapidly evaluated in cohort studies.
Collapse
Affiliation(s)
- Madeleine Scharf
- Institute of Experimental Immunology, EUROIMMUN AG, Lübeck, Germany
| | - Ramona Miske
- Institute of Experimental Immunology, EUROIMMUN AG, Lübeck, Germany
| | - Stephanie Kade
- Institute of Experimental Immunology, EUROIMMUN AG, Lübeck, Germany
| | - Stefanie Hahn
- Institute of Experimental Immunology, EUROIMMUN AG, Lübeck, Germany
| | - Yvonne Denno
- Institute of Experimental Immunology, EUROIMMUN AG, Lübeck, Germany
| | - Nora Begemann
- Institute of Experimental Immunology, EUROIMMUN AG, Lübeck, Germany
| | - Nadine Rochow
- Institute of Experimental Immunology, EUROIMMUN AG, Lübeck, Germany
| | | | | | - Christian Probst
- Institute of Experimental Immunology, EUROIMMUN AG, Lübeck, Germany
| | - Bianca Teegen
- Institute of Experimental Immunology, EUROIMMUN AG, Lübeck, Germany
| | - Winfried Stöcker
- Institute of Experimental Immunology, EUROIMMUN AG, Lübeck, Germany
| | - Lars Komorowski
- Institute of Experimental Immunology, EUROIMMUN AG, Lübeck, Germany
| |
Collapse
|
21
|
Type 1 metabotropic glutamate receptor and its signaling molecules as therapeutic targets for the treatment of cerebellar disorders. Curr Opin Pharmacol 2018. [DOI: 10.1016/j.coph.2018.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
22
|
Egorova PA, Bezprozvanny IB. Inositol 1,4,5-trisphosphate receptors and neurodegenerative disorders. FEBS J 2018; 285:3547-3565. [PMID: 29253316 DOI: 10.1111/febs.14366] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/27/2017] [Accepted: 12/12/2017] [Indexed: 12/15/2022]
Abstract
The inositol 1,4,5-trisphosphate receptor (IP3 R) is an intracellular ion channel that mediates the release of calcium ions from the endoplasmic reticulum. It plays a role in basic biological functions, such as cell division, differentiation, fertilization and cell death, and is involved in developmental processes including learning, memory and behavior. Deregulation of neuronal calcium signaling results in disturbance of cell homeostasis, synaptic loss and dysfunction, eventually leading to cell death. Three IP3 R subtypes have been identified in mammalian cells and the predominant isoform in neurons is IP3 R type 1. Dysfunction of IP3 R type 1 may play a role in the pathogenesis of certain neurodegenerative diseases as enhanced activity of the IP3 R was observed in models of Huntington's disease, spinocerebellar ataxias and Alzheimer's disease. These results suggest that IP3 R-mediated signaling is a potential target for treatment of these disorders. In this review we discuss the structure, functions and regulation of the IP3 R in healthy neurons and in conditions of neurodegeneration.
Collapse
Affiliation(s)
- Polina A Egorova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St Petersburg, Russia
| | - Ilya B Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St Petersburg, Russia.,Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
23
|
Abstract
Immune-mediated cerebellar ataxia (CA) comprises a group of rare diseases that are still incompletely described, and are probably underdiagnosed. Both acute and progressive progressions are possible. Different syndromes have been identified, including CA associated with anti-GAD antibodies, the cerebellar type of Hashimoto encephalopathy, primary autoimmune CA, gluten ataxia, opsoclonus-myoclonus syndrome, and paraneoplastic cerebellar degenerations. Most of these syndromes are associated with autoantibodies targeting neuronal antigens. Additionally, autoimmune CA can be triggered by infections, especially in children, and in rare cases occur in the context of an autoimmune multisystem disease, such as systemic lupus erythematosus, sarcoidosis, or Behçet disease. A careful workup is needed to distinguish autoimmune CA from other causes. In adults, a paraneoplastic origin must be ruled out, especially in cases with subacute onset. Neurologic outcome in adults is frequently poor, and optimal therapeutic strategies remain ill defined. The outcome in children is in general good, but children with a poor recovery are on record. The precise pathophysiologic mechanisms even in the presence of detectable autoantibodies are still largely unknown. Further research is needed on both the clinical and mechanistic aspects of immune-mediated CA, and to determine optimal therapeutic strategies.
Collapse
Affiliation(s)
- Bastien Joubert
- French Reference Centre for Paraneoplastic Neurological Syndromes, Lyon Neurological Hospital, Lyon, France; Institut NeuroMyoGene, Université Claude Bernard Lyon 1, Lyon, France
| | - Kevin Rostásy
- Department of Pediatric Neurology, Witten/Herdecke University, Children's Hospital Datteln, Datteln, Germany
| | - Jérôme Honnorat
- French Reference Centre for Paraneoplastic Neurological Syndromes, Lyon Neurological Hospital, Lyon, France; Institut NeuroMyoGene, Université Claude Bernard Lyon 1, Lyon, France.
| |
Collapse
|
24
|
Alfugham N, Gadoth A, Lennon VA, Komorowski L, Scharf M, Hinson S, McKeon A, Pittock SJ. ITPR1 autoimmunity: Frequency, neurologic phenotype, and cancer association. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2017; 5:e418. [PMID: 29379822 PMCID: PMC5778826 DOI: 10.1212/nxi.0000000000000418] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 09/29/2017] [Indexed: 12/02/2022]
Affiliation(s)
- Nora Alfugham
- Department of Laboratory Medicine and Pathology (N.A., A.G., V.A.L., S.H., A.M., S.J.P.), Department of Neurology (V.A.L., A.M., S.J.P.), and Department of Immunology (V.A.L.), Mayo Clinic, Rochester, MN; and Institute for Experimental Immunology (L.K., M.S.), Affiliated to Euroimmun AG, Luebeck, Germany
| | - Avi Gadoth
- Department of Laboratory Medicine and Pathology (N.A., A.G., V.A.L., S.H., A.M., S.J.P.), Department of Neurology (V.A.L., A.M., S.J.P.), and Department of Immunology (V.A.L.), Mayo Clinic, Rochester, MN; and Institute for Experimental Immunology (L.K., M.S.), Affiliated to Euroimmun AG, Luebeck, Germany
| | - Vanda A Lennon
- Department of Laboratory Medicine and Pathology (N.A., A.G., V.A.L., S.H., A.M., S.J.P.), Department of Neurology (V.A.L., A.M., S.J.P.), and Department of Immunology (V.A.L.), Mayo Clinic, Rochester, MN; and Institute for Experimental Immunology (L.K., M.S.), Affiliated to Euroimmun AG, Luebeck, Germany
| | - Lars Komorowski
- Department of Laboratory Medicine and Pathology (N.A., A.G., V.A.L., S.H., A.M., S.J.P.), Department of Neurology (V.A.L., A.M., S.J.P.), and Department of Immunology (V.A.L.), Mayo Clinic, Rochester, MN; and Institute for Experimental Immunology (L.K., M.S.), Affiliated to Euroimmun AG, Luebeck, Germany
| | - Madeleine Scharf
- Department of Laboratory Medicine and Pathology (N.A., A.G., V.A.L., S.H., A.M., S.J.P.), Department of Neurology (V.A.L., A.M., S.J.P.), and Department of Immunology (V.A.L.), Mayo Clinic, Rochester, MN; and Institute for Experimental Immunology (L.K., M.S.), Affiliated to Euroimmun AG, Luebeck, Germany
| | - Shannon Hinson
- Department of Laboratory Medicine and Pathology (N.A., A.G., V.A.L., S.H., A.M., S.J.P.), Department of Neurology (V.A.L., A.M., S.J.P.), and Department of Immunology (V.A.L.), Mayo Clinic, Rochester, MN; and Institute for Experimental Immunology (L.K., M.S.), Affiliated to Euroimmun AG, Luebeck, Germany
| | - Andrew McKeon
- Department of Laboratory Medicine and Pathology (N.A., A.G., V.A.L., S.H., A.M., S.J.P.), Department of Neurology (V.A.L., A.M., S.J.P.), and Department of Immunology (V.A.L.), Mayo Clinic, Rochester, MN; and Institute for Experimental Immunology (L.K., M.S.), Affiliated to Euroimmun AG, Luebeck, Germany
| | - Sean J Pittock
- Department of Laboratory Medicine and Pathology (N.A., A.G., V.A.L., S.H., A.M., S.J.P.), Department of Neurology (V.A.L., A.M., S.J.P.), and Department of Immunology (V.A.L.), Mayo Clinic, Rochester, MN; and Institute for Experimental Immunology (L.K., M.S.), Affiliated to Euroimmun AG, Luebeck, Germany
| |
Collapse
|
25
|
Hsiao CT, Liu YT, Liao YC, Hsu TY, Lee YC, Soong BW. Mutational analysis of ITPR1 in a Taiwanese cohort with cerebellar ataxias. PLoS One 2017; 12:e0187503. [PMID: 29186133 PMCID: PMC5706750 DOI: 10.1371/journal.pone.0187503] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 10/20/2017] [Indexed: 12/13/2022] Open
Abstract
Background The inositol 1,4,5-triphosphate (IP3) receptor type 1 gene (ITPR1) encodes the IP3 receptor type 1 (IP3R1), which modulates intracellular calcium homeostasis and signaling. Mutations in ITPR1 have been implicated in inherited cerebellar ataxias. The aim of this study was to investigate the role of ITPR1 mutations, including both large segmental deletion and single nucleotide mutations, in a Han Chinese cohort with inherited cerebellar ataxias in Taiwan. Methodology and principal findings Ninety-three unrelated individuals with molecularly unassigned spinocerebellar ataxia selected from 585 pedigrees with autosomal dominant cerebellar ataxias, were recruited into the study with elaborate clinical evaluations. The quantitative PCR technique was used to survey large segmental deletion of ITPR1 and a targeted sequencing approach was applied to sequence all of the 61 exons and the flanking regions of ITPR1. A novel ITPR1 mutation, c.7721T>C (p.V2574A), was identified in a family with dominantly inherited cerebellar ataxia. The proband has an adult-onset non-progressive pure cerebellar ataxia and her daughter is afflicted with a childhood onset cerebellar ataxia with intellectual sub-normalities. Conclusion ITPR1 mutation is an uncommon cause of inherited cerebellar ataxia, accounting for 0.2% (1/585) of patients with dominantly inherited cerebellar ataxias in Taiwan. This study broadens the mutational spectrum of ITPR1 and also emphasizes the importance of considering ITPR1 mutations as a potential cause of inherited cerebellar ataxias.
Collapse
Affiliation(s)
- Cheng-Tsung Hsiao
- Division of Neurology, Department of Internal Medicine, Taipei Veterans General Hospital Taoyuan Branch, Taoyuan, Taiwan, Republic of China
- Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan, Republic of China
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Yo-Tsen Liu
- Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan, Republic of China
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
| | - Yi-Chu Liao
- Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan, Republic of China
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
| | - Ting-Yi Hsu
- Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan, Republic of China
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
| | - Yi-Chung Lee
- Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan, Republic of China
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Bing-Wen Soong
- Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan, Republic of China
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan, Republic of China
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
26
|
From dizziness to severe ataxia and dysarthria: New cases of anti-Ca/ARHGAP26 autoantibody-associated cerebellar ataxia suggest a broad clinical spectrum. J Neuroimmunol 2017; 309:77-81. [DOI: 10.1016/j.jneuroim.2017.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/12/2017] [Accepted: 05/20/2017] [Indexed: 11/18/2022]
|
27
|
Gadoth A, Kryzer TJ, Fryer J, McKeon A, Lennon VA, Pittock SJ. Microtubule-associated protein 1B: Novel paraneoplastic biomarker. Ann Neurol 2017; 81:266-277. [DOI: 10.1002/ana.24872] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 02/04/2023]
Affiliation(s)
- Avi Gadoth
- Departments of Laboratory Medicine and Pathology
| | | | - Jim Fryer
- Departments of Laboratory Medicine and Pathology
| | - Andrew McKeon
- Departments of Laboratory Medicine and Pathology
- Neurology
| | - Vanda A. Lennon
- Departments of Laboratory Medicine and Pathology
- Neurology
- Immunology, Mayo Clinic; Rochester MN
| | | |
Collapse
|
28
|
Berzero G, Hacohen Y, Komorowski L, Scharf M, Dehais C, Leclercq D, Fourchotte V, Buecher B, Honnorat J, Graus F, Delattre JY, Psimaras D. Paraneoplastic cerebellar degeneration associated with anti-ITPR1 antibodies. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2017; 4:e326. [PMID: 28203616 PMCID: PMC5292928 DOI: 10.1212/nxi.0000000000000326] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/08/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Giulia Berzero
- AP-HP Pitié-Salpêtrière (G.B., C.D., J.-Y.D., D.P.), Service de Neurologie Mazarin, Paris, France; Neuroscience Consortium (G.B.), University of Pavia, Monza Policlinico and Pavia Mondino, Italy; Nuffield Department of Clinical Neurosciences (Y.H.), John Radcliffe Hospital, University of Oxford, United Kingdom; Institute of Experimental Immunology (L.K., M.S.), affiliated to Euroimmun AG, Lübeck, Germany; AP-HP Pitié-Salpêtrière (D.L.), Service de Neuroradiologie; Département de Chirurgie Oncologique (V.F.); Département de Biologie des Tumeurs (B.B.), Service Génétique, Institut Curie, Paris; Centre National de Référence pour les Syndromes Neurologiques Paranéoplasiques (J.H.), Hospices Civils de Lyon, Institut NeuroMyoGene INSERM U1217/CNRS UMR 5310, Université de Lyon, France; and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) (F.G.), Service of Neurology, Hospital Clinic, Barcelona, Spain
| | - Yael Hacohen
- AP-HP Pitié-Salpêtrière (G.B., C.D., J.-Y.D., D.P.), Service de Neurologie Mazarin, Paris, France; Neuroscience Consortium (G.B.), University of Pavia, Monza Policlinico and Pavia Mondino, Italy; Nuffield Department of Clinical Neurosciences (Y.H.), John Radcliffe Hospital, University of Oxford, United Kingdom; Institute of Experimental Immunology (L.K., M.S.), affiliated to Euroimmun AG, Lübeck, Germany; AP-HP Pitié-Salpêtrière (D.L.), Service de Neuroradiologie; Département de Chirurgie Oncologique (V.F.); Département de Biologie des Tumeurs (B.B.), Service Génétique, Institut Curie, Paris; Centre National de Référence pour les Syndromes Neurologiques Paranéoplasiques (J.H.), Hospices Civils de Lyon, Institut NeuroMyoGene INSERM U1217/CNRS UMR 5310, Université de Lyon, France; and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) (F.G.), Service of Neurology, Hospital Clinic, Barcelona, Spain
| | - Lars Komorowski
- AP-HP Pitié-Salpêtrière (G.B., C.D., J.-Y.D., D.P.), Service de Neurologie Mazarin, Paris, France; Neuroscience Consortium (G.B.), University of Pavia, Monza Policlinico and Pavia Mondino, Italy; Nuffield Department of Clinical Neurosciences (Y.H.), John Radcliffe Hospital, University of Oxford, United Kingdom; Institute of Experimental Immunology (L.K., M.S.), affiliated to Euroimmun AG, Lübeck, Germany; AP-HP Pitié-Salpêtrière (D.L.), Service de Neuroradiologie; Département de Chirurgie Oncologique (V.F.); Département de Biologie des Tumeurs (B.B.), Service Génétique, Institut Curie, Paris; Centre National de Référence pour les Syndromes Neurologiques Paranéoplasiques (J.H.), Hospices Civils de Lyon, Institut NeuroMyoGene INSERM U1217/CNRS UMR 5310, Université de Lyon, France; and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) (F.G.), Service of Neurology, Hospital Clinic, Barcelona, Spain
| | - Madeleine Scharf
- AP-HP Pitié-Salpêtrière (G.B., C.D., J.-Y.D., D.P.), Service de Neurologie Mazarin, Paris, France; Neuroscience Consortium (G.B.), University of Pavia, Monza Policlinico and Pavia Mondino, Italy; Nuffield Department of Clinical Neurosciences (Y.H.), John Radcliffe Hospital, University of Oxford, United Kingdom; Institute of Experimental Immunology (L.K., M.S.), affiliated to Euroimmun AG, Lübeck, Germany; AP-HP Pitié-Salpêtrière (D.L.), Service de Neuroradiologie; Département de Chirurgie Oncologique (V.F.); Département de Biologie des Tumeurs (B.B.), Service Génétique, Institut Curie, Paris; Centre National de Référence pour les Syndromes Neurologiques Paranéoplasiques (J.H.), Hospices Civils de Lyon, Institut NeuroMyoGene INSERM U1217/CNRS UMR 5310, Université de Lyon, France; and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) (F.G.), Service of Neurology, Hospital Clinic, Barcelona, Spain
| | - Caroline Dehais
- AP-HP Pitié-Salpêtrière (G.B., C.D., J.-Y.D., D.P.), Service de Neurologie Mazarin, Paris, France; Neuroscience Consortium (G.B.), University of Pavia, Monza Policlinico and Pavia Mondino, Italy; Nuffield Department of Clinical Neurosciences (Y.H.), John Radcliffe Hospital, University of Oxford, United Kingdom; Institute of Experimental Immunology (L.K., M.S.), affiliated to Euroimmun AG, Lübeck, Germany; AP-HP Pitié-Salpêtrière (D.L.), Service de Neuroradiologie; Département de Chirurgie Oncologique (V.F.); Département de Biologie des Tumeurs (B.B.), Service Génétique, Institut Curie, Paris; Centre National de Référence pour les Syndromes Neurologiques Paranéoplasiques (J.H.), Hospices Civils de Lyon, Institut NeuroMyoGene INSERM U1217/CNRS UMR 5310, Université de Lyon, France; and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) (F.G.), Service of Neurology, Hospital Clinic, Barcelona, Spain
| | - Delphine Leclercq
- AP-HP Pitié-Salpêtrière (G.B., C.D., J.-Y.D., D.P.), Service de Neurologie Mazarin, Paris, France; Neuroscience Consortium (G.B.), University of Pavia, Monza Policlinico and Pavia Mondino, Italy; Nuffield Department of Clinical Neurosciences (Y.H.), John Radcliffe Hospital, University of Oxford, United Kingdom; Institute of Experimental Immunology (L.K., M.S.), affiliated to Euroimmun AG, Lübeck, Germany; AP-HP Pitié-Salpêtrière (D.L.), Service de Neuroradiologie; Département de Chirurgie Oncologique (V.F.); Département de Biologie des Tumeurs (B.B.), Service Génétique, Institut Curie, Paris; Centre National de Référence pour les Syndromes Neurologiques Paranéoplasiques (J.H.), Hospices Civils de Lyon, Institut NeuroMyoGene INSERM U1217/CNRS UMR 5310, Université de Lyon, France; and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) (F.G.), Service of Neurology, Hospital Clinic, Barcelona, Spain
| | - Virginie Fourchotte
- AP-HP Pitié-Salpêtrière (G.B., C.D., J.-Y.D., D.P.), Service de Neurologie Mazarin, Paris, France; Neuroscience Consortium (G.B.), University of Pavia, Monza Policlinico and Pavia Mondino, Italy; Nuffield Department of Clinical Neurosciences (Y.H.), John Radcliffe Hospital, University of Oxford, United Kingdom; Institute of Experimental Immunology (L.K., M.S.), affiliated to Euroimmun AG, Lübeck, Germany; AP-HP Pitié-Salpêtrière (D.L.), Service de Neuroradiologie; Département de Chirurgie Oncologique (V.F.); Département de Biologie des Tumeurs (B.B.), Service Génétique, Institut Curie, Paris; Centre National de Référence pour les Syndromes Neurologiques Paranéoplasiques (J.H.), Hospices Civils de Lyon, Institut NeuroMyoGene INSERM U1217/CNRS UMR 5310, Université de Lyon, France; and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) (F.G.), Service of Neurology, Hospital Clinic, Barcelona, Spain
| | - Bruno Buecher
- AP-HP Pitié-Salpêtrière (G.B., C.D., J.-Y.D., D.P.), Service de Neurologie Mazarin, Paris, France; Neuroscience Consortium (G.B.), University of Pavia, Monza Policlinico and Pavia Mondino, Italy; Nuffield Department of Clinical Neurosciences (Y.H.), John Radcliffe Hospital, University of Oxford, United Kingdom; Institute of Experimental Immunology (L.K., M.S.), affiliated to Euroimmun AG, Lübeck, Germany; AP-HP Pitié-Salpêtrière (D.L.), Service de Neuroradiologie; Département de Chirurgie Oncologique (V.F.); Département de Biologie des Tumeurs (B.B.), Service Génétique, Institut Curie, Paris; Centre National de Référence pour les Syndromes Neurologiques Paranéoplasiques (J.H.), Hospices Civils de Lyon, Institut NeuroMyoGene INSERM U1217/CNRS UMR 5310, Université de Lyon, France; and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) (F.G.), Service of Neurology, Hospital Clinic, Barcelona, Spain
| | - Jérôme Honnorat
- AP-HP Pitié-Salpêtrière (G.B., C.D., J.-Y.D., D.P.), Service de Neurologie Mazarin, Paris, France; Neuroscience Consortium (G.B.), University of Pavia, Monza Policlinico and Pavia Mondino, Italy; Nuffield Department of Clinical Neurosciences (Y.H.), John Radcliffe Hospital, University of Oxford, United Kingdom; Institute of Experimental Immunology (L.K., M.S.), affiliated to Euroimmun AG, Lübeck, Germany; AP-HP Pitié-Salpêtrière (D.L.), Service de Neuroradiologie; Département de Chirurgie Oncologique (V.F.); Département de Biologie des Tumeurs (B.B.), Service Génétique, Institut Curie, Paris; Centre National de Référence pour les Syndromes Neurologiques Paranéoplasiques (J.H.), Hospices Civils de Lyon, Institut NeuroMyoGene INSERM U1217/CNRS UMR 5310, Université de Lyon, France; and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) (F.G.), Service of Neurology, Hospital Clinic, Barcelona, Spain
| | - Francesc Graus
- AP-HP Pitié-Salpêtrière (G.B., C.D., J.-Y.D., D.P.), Service de Neurologie Mazarin, Paris, France; Neuroscience Consortium (G.B.), University of Pavia, Monza Policlinico and Pavia Mondino, Italy; Nuffield Department of Clinical Neurosciences (Y.H.), John Radcliffe Hospital, University of Oxford, United Kingdom; Institute of Experimental Immunology (L.K., M.S.), affiliated to Euroimmun AG, Lübeck, Germany; AP-HP Pitié-Salpêtrière (D.L.), Service de Neuroradiologie; Département de Chirurgie Oncologique (V.F.); Département de Biologie des Tumeurs (B.B.), Service Génétique, Institut Curie, Paris; Centre National de Référence pour les Syndromes Neurologiques Paranéoplasiques (J.H.), Hospices Civils de Lyon, Institut NeuroMyoGene INSERM U1217/CNRS UMR 5310, Université de Lyon, France; and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) (F.G.), Service of Neurology, Hospital Clinic, Barcelona, Spain
| | - Jean-Yves Delattre
- AP-HP Pitié-Salpêtrière (G.B., C.D., J.-Y.D., D.P.), Service de Neurologie Mazarin, Paris, France; Neuroscience Consortium (G.B.), University of Pavia, Monza Policlinico and Pavia Mondino, Italy; Nuffield Department of Clinical Neurosciences (Y.H.), John Radcliffe Hospital, University of Oxford, United Kingdom; Institute of Experimental Immunology (L.K., M.S.), affiliated to Euroimmun AG, Lübeck, Germany; AP-HP Pitié-Salpêtrière (D.L.), Service de Neuroradiologie; Département de Chirurgie Oncologique (V.F.); Département de Biologie des Tumeurs (B.B.), Service Génétique, Institut Curie, Paris; Centre National de Référence pour les Syndromes Neurologiques Paranéoplasiques (J.H.), Hospices Civils de Lyon, Institut NeuroMyoGene INSERM U1217/CNRS UMR 5310, Université de Lyon, France; and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) (F.G.), Service of Neurology, Hospital Clinic, Barcelona, Spain
| | - Dimitri Psimaras
- AP-HP Pitié-Salpêtrière (G.B., C.D., J.-Y.D., D.P.), Service de Neurologie Mazarin, Paris, France; Neuroscience Consortium (G.B.), University of Pavia, Monza Policlinico and Pavia Mondino, Italy; Nuffield Department of Clinical Neurosciences (Y.H.), John Radcliffe Hospital, University of Oxford, United Kingdom; Institute of Experimental Immunology (L.K., M.S.), affiliated to Euroimmun AG, Lübeck, Germany; AP-HP Pitié-Salpêtrière (D.L.), Service de Neuroradiologie; Département de Chirurgie Oncologique (V.F.); Département de Biologie des Tumeurs (B.B.), Service Génétique, Institut Curie, Paris; Centre National de Référence pour les Syndromes Neurologiques Paranéoplasiques (J.H.), Hospices Civils de Lyon, Institut NeuroMyoGene INSERM U1217/CNRS UMR 5310, Université de Lyon, France; and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) (F.G.), Service of Neurology, Hospital Clinic, Barcelona, Spain
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW This review highlights the recent developments in immune-mediated movement disorders and how they reflect on clinical practice and our understanding of the underlying pathophysiological mechanisms. RECENT FINDINGS The antibody spectrum associated with stiff person syndrome and related disorders (SPSD) has broadened and, apart from the classic glutamic acid decarboxylase (GAD)- and amphiphysin-antibodies, includes now also antibodies against dipeptidyl-peptidase-like protein-6 (DPPX), gamma-aminobutyric acid type A receptor (GABAAR), glycine receptor (GlyR) and glycine transporter 2 (GlyT2). The field of movement disorders with neuronal antibodies keeps expanding with the discovery for example of antibodies against leucine rich glioma inactivated protein 1 (LGI1) and contactin associated protein 2 (Caspr2) in chorea, or antibodies targeting ARHGAP26- or Na/K ATPase alpha 3 subunit (ATP1A3) in cerebellar ataxia. Moreover, neuronal antibodies may partly account for movement disorders attributed for example to Sydenham's chorea, coeliac disease, or steroid responsive encephalopathy with thyroid antibodies. Lastly, there is an interface of immunology, genetics and neurodegeneration, e.g. in Aicardi-Goutières syndrome or the tauopathy with IgLON5-antibodies. SUMMARY Clinicians should be aware of new antibodies such as dipeptidyl-peptidase-like protein-6, gamma-aminobutyric acid type A receptor and glycine transporter 2 in stiff person syndrome and related disorders, as well as of the expanding spectrum of immune-mediated movement disorders.
Collapse
|
30
|
Fouka P, Alexopoulos H, Chatzi I, Dedos SG, Samiotaki M, Panayotou G, Politis P, Tzioufas A, Dalakas MC. Antibodies to inositol 1,4,5-triphosphate receptor 1 in patients with cerebellar disease. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2016; 4:e306. [PMID: 27957507 PMCID: PMC5141524 DOI: 10.1212/nxi.0000000000000306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/10/2016] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To describe newly identified autoantibodies associated with cerebellar disorders. DESIGN/METHODS We first screened the sera of 15 patients with cerebellar ataxia, without any known associated autoantibodies, with immunocytochemistry on mouse brain. After characterization and validation of a newly identified antibody, 85 additional patients with suspected autoimmune cerebellar disease were screened using a cell-based assay. RESULTS Immunoglobulin G from one of the first 15 patients demonstrated a distinct staining pattern on Purkinje neurons. This autoantibody, as characterized further by immunoprecipitation and mass spectrometry, was binding inositol 1,4,5-triphosphate receptor 1 (IP3R1), an intracellular channel that mediates the release of Ca2+ from intracellular stores. Anti-IP3R1 specificity was then validated with a cell-based assay. On this basis, screening of 85 other patients with cerebellar disease revealed 2 additional IP3R1-positive patients. All 3 patients presented with cerebellar ataxia; the first was eventually diagnosed with primary progressive multiple sclerosis, the second had a homozygous CAG insertion at the gene TBP, and the third was thought to have a neurodegenerative disease. CONCLUSIONS We independently identified an autoantibody against IP3R1, a protein highly expressed in Purkinje neurons, confirming an earlier report. Because a mouse knockout model for IP3R1 exhibits ataxia and epilepsy, this autoantibody may have a functional role. The heterogeneity of the antibody-positive patients suggests that this antibody may either have a direct involvement in disease pathogenesis or it is a surrogate marker secondary to cerebellar injury. Anti-IP3R1 antibodies should be further explored in various ataxic and epileptic syndromes as they may denote a marker of response to immunotherapies.
Collapse
Affiliation(s)
- Penelope Fouka
- Neuroimmunology Unit, Department of Pathophysiology, Faculty of Medicine (P.F., H.A., I.C., A.T., M.C.D.), and Department of Biology (S.G.D.), National and Kapodistrian University of Athens; Department of Molecular Oncology (M.S., G.P.), B.S.R.C. "Alexander Fleming," Athens; and Center of Basic Research (P.P.), Biomedical Research Foundation of the Academy of Athens, Greece
| | - Harry Alexopoulos
- Neuroimmunology Unit, Department of Pathophysiology, Faculty of Medicine (P.F., H.A., I.C., A.T., M.C.D.), and Department of Biology (S.G.D.), National and Kapodistrian University of Athens; Department of Molecular Oncology (M.S., G.P.), B.S.R.C. "Alexander Fleming," Athens; and Center of Basic Research (P.P.), Biomedical Research Foundation of the Academy of Athens, Greece
| | - Ioanna Chatzi
- Neuroimmunology Unit, Department of Pathophysiology, Faculty of Medicine (P.F., H.A., I.C., A.T., M.C.D.), and Department of Biology (S.G.D.), National and Kapodistrian University of Athens; Department of Molecular Oncology (M.S., G.P.), B.S.R.C. "Alexander Fleming," Athens; and Center of Basic Research (P.P.), Biomedical Research Foundation of the Academy of Athens, Greece
| | - Skarlatos G Dedos
- Neuroimmunology Unit, Department of Pathophysiology, Faculty of Medicine (P.F., H.A., I.C., A.T., M.C.D.), and Department of Biology (S.G.D.), National and Kapodistrian University of Athens; Department of Molecular Oncology (M.S., G.P.), B.S.R.C. "Alexander Fleming," Athens; and Center of Basic Research (P.P.), Biomedical Research Foundation of the Academy of Athens, Greece
| | - Martina Samiotaki
- Neuroimmunology Unit, Department of Pathophysiology, Faculty of Medicine (P.F., H.A., I.C., A.T., M.C.D.), and Department of Biology (S.G.D.), National and Kapodistrian University of Athens; Department of Molecular Oncology (M.S., G.P.), B.S.R.C. "Alexander Fleming," Athens; and Center of Basic Research (P.P.), Biomedical Research Foundation of the Academy of Athens, Greece
| | - George Panayotou
- Neuroimmunology Unit, Department of Pathophysiology, Faculty of Medicine (P.F., H.A., I.C., A.T., M.C.D.), and Department of Biology (S.G.D.), National and Kapodistrian University of Athens; Department of Molecular Oncology (M.S., G.P.), B.S.R.C. "Alexander Fleming," Athens; and Center of Basic Research (P.P.), Biomedical Research Foundation of the Academy of Athens, Greece
| | - Panagiotis Politis
- Neuroimmunology Unit, Department of Pathophysiology, Faculty of Medicine (P.F., H.A., I.C., A.T., M.C.D.), and Department of Biology (S.G.D.), National and Kapodistrian University of Athens; Department of Molecular Oncology (M.S., G.P.), B.S.R.C. "Alexander Fleming," Athens; and Center of Basic Research (P.P.), Biomedical Research Foundation of the Academy of Athens, Greece
| | - Athanasios Tzioufas
- Neuroimmunology Unit, Department of Pathophysiology, Faculty of Medicine (P.F., H.A., I.C., A.T., M.C.D.), and Department of Biology (S.G.D.), National and Kapodistrian University of Athens; Department of Molecular Oncology (M.S., G.P.), B.S.R.C. "Alexander Fleming," Athens; and Center of Basic Research (P.P.), Biomedical Research Foundation of the Academy of Athens, Greece
| | - Marinos C Dalakas
- Neuroimmunology Unit, Department of Pathophysiology, Faculty of Medicine (P.F., H.A., I.C., A.T., M.C.D.), and Department of Biology (S.G.D.), National and Kapodistrian University of Athens; Department of Molecular Oncology (M.S., G.P.), B.S.R.C. "Alexander Fleming," Athens; and Center of Basic Research (P.P.), Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
31
|
Jarius S, Ringelstein M, Haas J, Serysheva II, Komorowski L, Fechner K, Wandinger KP, Albrecht P, Hefter H, Moser A, Neuen-Jacob E, Hartung HP, Wildemann B, Aktas O. Inositol 1,4,5-trisphosphate receptor type 1 autoantibodies in paraneoplastic and non-paraneoplastic peripheral neuropathy. J Neuroinflammation 2016; 13:278. [PMID: 27776522 PMCID: PMC5078930 DOI: 10.1186/s12974-016-0737-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/28/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recently, we described a novel autoantibody, anti-Sj/ITPR1-IgG, that targets the inositol 1,4,5-trisphosphate receptor type 1 (ITPR1) in patients with cerebellar ataxia. However, ITPR1 is expressed not only by Purkinje cells but also in the anterior horn of the spinal cord, in the substantia gelatinosa and in the motor, sensory (including the dorsal root ganglia) and autonomic peripheral nervous system, suggesting that the clinical spectrum associated with autoimmunity to ITPR1 may be broader than initially thought. Here we report on serum autoantibodies to ITPR1 (up to 1:15,000) in three patients with (radiculo)polyneuropathy, which in two cases was associated with cancer (ITPR1-expressing adenocarcinoma of the lung, multiple myeloma), suggesting a paraneoplastic aetiology. METHODS Serological and other immunological studies, and retrospective analysis of patient records. RESULTS The clinical findings comprised motor, sensory (including severe pain) and autonomic symptoms. While one patient presented with subacute symptoms mimicking Guillain-Barré syndrome (GBS), the symptoms progressed slowly in two other patients. Electrophysiology revealed delayed F waves; a decrease in motor and sensory action potentials and conduction velocities; delayed motor latencies; signs of denervation, indicating sensorimotor radiculopolyneuropathy of the mixed type; and no conduction blocks. ITPR1-IgG belonged to the complement-activating IgG1 subclass in the severely affected patient but exclusively to the IgG2 subclass in the two more mildly affected patients. Cerebrospinal fluid ITPR1-IgG was found to be of predominantly extrathecal origin. A 3H-thymidine-based proliferation assay confirmed the presence of ITPR1-reactive lymphocytes among peripheral blood mononuclear cells (PBMCs). Immunophenotypic profiling of PBMCs protein demonstrated predominant proliferation of B cells, CD4 T cells and CD8 memory T cells following stimulation with purified ITPR1 protein. Patient ITPR1-IgG bound both to peripheral nervous tissue and to lung tumour tissue. A nerve biopsy showed lymphocyte infiltration (including cytotoxic CD8 cells), oedema, marked axonal loss and myelin-positive macrophages, indicating florid inflammation. ITPR1-IgG serum titres declined following tumour removal, paralleled by clinical stabilization. CONCLUSIONS Our findings expand the spectrum of clinical syndromes associated with ITPR1-IgG and suggest that autoimmunity to ITPR1 may underlie peripheral nervous system diseases (including GBS) in some patients and may be of paraneoplastic origin in a subset of cases.
Collapse
Affiliation(s)
- Sven Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University Hospital Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, 69120, Heidelberg, Germany.
| | - Marius Ringelstein
- Department of Neurology, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Jürgen Haas
- Molecular Neuroimmunology Group, Department of Neurology, University Hospital Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, 69120, Heidelberg, Germany
| | - Irina I Serysheva
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Lars Komorowski
- Institute of Experimental Immunology, affiliated to Euroimmun AG, Seekamp 31, 23560, Lübeck, Germany
| | - Kai Fechner
- Institute of Experimental Immunology, affiliated to Euroimmun AG, Seekamp 31, 23560, Lübeck, Germany
| | - Klaus-Peter Wandinger
- Department of Neurology, University of Schleswig Holstein, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Philipp Albrecht
- Department of Neurology, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Harald Hefter
- Department of Neurology, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Andreas Moser
- Department of Neurology, University of Schleswig Holstein, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Eva Neuen-Jacob
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University Hospital Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, 69120, Heidelberg, Germany
| | - Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany.
| |
Collapse
|
32
|
Mitoma H, Adhikari K, Aeschlimann D, Chattopadhyay P, Hadjivassiliou M, Hampe CS, Honnorat J, Joubert B, Kakei S, Lee J, Manto M, Matsunaga A, Mizusawa H, Nanri K, Shanmugarajah P, Yoneda M, Yuki N. Consensus Paper: Neuroimmune Mechanisms of Cerebellar Ataxias. CEREBELLUM (LONDON, ENGLAND) 2016; 15:213-32. [PMID: 25823827 PMCID: PMC4591117 DOI: 10.1007/s12311-015-0664-x] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the last few years, a lot of publications suggested that disabling cerebellar ataxias may develop through immune-mediated mechanisms. In this consensus paper, we discuss the clinical features of the main described immune-mediated cerebellar ataxias and address their presumed pathogenesis. Immune-mediated cerebellar ataxias include cerebellar ataxia associated with anti-GAD antibodies, the cerebellar type of Hashimoto's encephalopathy, primary autoimmune cerebellar ataxia, gluten ataxia, Miller Fisher syndrome, ataxia associated with systemic lupus erythematosus, and paraneoplastic cerebellar degeneration. Humoral mechanisms, cell-mediated immunity, inflammation, and vascular injuries contribute to the cerebellar deficits in immune-mediated cerebellar ataxias.
Collapse
Affiliation(s)
- Hiroshi Mitoma
- Department of Medical Education, Tokyo Medical University, Tokyo, Japan.
| | - Keya Adhikari
- Department of Haematology, Nil Ratan Sircar Medical College, 138 A J C Bose Road, Kolkata, 700014, West Bengal, India
| | - Daniel Aeschlimann
- Matrix Biology &Tissue Repair Research Unit, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, Wales, UK
| | - Partha Chattopadhyay
- Department of General Medicine, College of Medicine & Sagore Dutta Hospital, 578 B T Road, Kamarhati-Kolkata, 700056, West Bengal, India
| | | | - Christiane S Hampe
- School of Medicine, University of Washington, 850 Republication, Seattle, WA, 98109, USA
| | - Jérôme Honnorat
- University Lyon 1, University Lyon, Rue Guillaume Paradin, 69372, Lyon Cedex 08, France
- INSERM, UMR-S1028, CNRS, UMR-5292, Neuro-Oncology and Neuro-Inflammation Team, 7, Lyon Neuroscience Research Center, Rue Guillaume Paradin, 69372, Lyon Cedex 08, France
- National Reference Centre for Paraneoplastic Neurological Diseases, Hospices Civils de Lyon, Hôpital Neurologique, 69677, Bron, France
- Hospices Civils de Lyon, Neuro-oncology, Hôpital Neurologique, 69677, Bron, France
| | - Bastien Joubert
- University Lyon 1, University Lyon, Rue Guillaume Paradin, 69372, Lyon Cedex 08, France
- INSERM, UMR-S1028, CNRS, UMR-5292, Neuro-Oncology and Neuro-Inflammation Team, 7, Lyon Neuroscience Research Center, Rue Guillaume Paradin, 69372, Lyon Cedex 08, France
| | - Shinji Kakei
- Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Jongho Lee
- Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Mario Manto
- Unité d'Etude du Mouvement, FNRS, Neurologie ULB-Erasme, 808 Route de Lennik, 1070, Brussels, Belgium
| | - Akiko Matsunaga
- Department of Neurology, University of Fukui Hospital, Fukui, Japan
| | | | - Kazunori Nanri
- Department of Neurology, Tokyo Medical University Hachioji Medical Center, Tokyo, Japan
| | - Priya Shanmugarajah
- Academic Department of Neurosciences, Royal Hallamshire Hospital, Sheffield, UK
| | - Makoto Yoneda
- Faculty of Nursing and Social Welfare Sciences, Fukui Prefectural University, Fukui, Japan
| | - Nobuhiro Yuki
- Departments of Medicine and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
33
|
Jarius S, Metz I, König FB, Ruprecht K, Reindl M, Paul F, Brück W, Wildemann B. Screening for MOG-IgG and 27 other anti-glial and anti-neuronal autoantibodies in 'pattern II multiple sclerosis' and brain biopsy findings in a MOG-IgG-positive case. Mult Scler 2016; 22:1541-1549. [PMID: 26869529 DOI: 10.1177/1352458515622986] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 11/17/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND Histopathological studies have revealed four different immunopathological patterns of lesion pathology in early multiple sclerosis (MS). Pattern II MS is characterised by immunoglobulin and complement deposition in addition to T-cell and macrophage infiltration and is more likely to respond to plasma exchange therapy, suggesting a contribution of autoantibodies. OBJECTIVE To assess the frequency of anti-myelin oligodendrocyte glycoprotein (MOG), anti-M1-aquaporin-4 (AQP4), anti-M23-AQP4, anti-N-methyl-d-aspartate-type glutamate receptors (NMDAR) and 25 other anti-neural antibodies in pattern II MS. METHODS Thirty-nine serum samples from patients with MS who had undergone brain biopsy (n = 24; including 13 from patients with pattern II MS) and from histopathologically non-classified MS patients (n = 15) were tested for anti-MOG, anti-M1-AQP4, anti-M23-AQP4, anti-NMDAR, anti-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-type glutamate receptors (AMPAR), anti-gamma-aminobutyric acid receptors (GABABR), anti-leucine-rich, glioma-activated protein 1 (LGI1), anti-contactin-associated protein 2 (CASPR2), anti-dipeptidyl-peptidase-like protein-6 (DPPX), anti-Tr/Delta/notch-like epidermal growth factor-related receptor (DNER), anti-Hu, anti-Yo, anti-Ri, anti-Ma1/Ma2, anti-CV2/collapsin response mediator protein 5 (CRMP5), anti-glutamic acid decarboxylase (GAD), anti-amphiphysin, anti-Ca/RhoGTPase-activating protein 26 (ARHGAP26), anti-Sj/inositol-1,4,5-trisphosphate receptor 1 (ITPR1), anti-Homer3, anti-carbonic anhydrase-related protein (CARPVIII), anti-protein kinase gamma (PKCgamma), anti-glutamate receptor delta 2 (GluRdelta2), anti-metabotropic glutamate receptor 1 (mGluR1) and anti-mGluR5, as well as for anti-glial nuclei antibodies (AGNA) and Purkinje cell antibody 2 (PCA2). RESULTS Antibodies to MOG belonging to the complement-activating immunoglobulin G1 (IgG1) subclass were detected in a patient with pattern II MS. Detailed brain biopsy findings are shown. CONCLUSION This is the largest study on established anti-neural antibodies performed in MS so far. MOG-IgG may play a role in a small percentage of patients diagnosed with pattern II MS.
Collapse
Affiliation(s)
- Sven Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Imke Metz
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Fatima Barbara König
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Klemens Ruprecht
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Markus Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Friedemann Paul
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; NeuroCure Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center, Berlin, Germany
| | - Wolfgang Brück
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
34
|
Jarius S, Wildemann B. 'Medusa-head ataxia': the expanding spectrum of Purkinje cell antibodies in autoimmune cerebellar ataxia. Part 1: Anti-mGluR1, anti-Homer-3, anti-Sj/ITPR1 and anti-CARP VIII. J Neuroinflammation 2015; 12:166. [PMID: 26377085 PMCID: PMC4574226 DOI: 10.1186/s12974-015-0356-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/02/2015] [Indexed: 01/09/2023] Open
Abstract
Serological testing for anti-neural autoantibodies is important in patients presenting with idiopathic cerebellar ataxia, since these autoantibodies may indicate cancer, determine treatment and predict prognosis. While some of them target nuclear antigens present in all or most CNS neurons (e.g. anti-Hu, anti-Ri), others more specifically target antigens present in the cytoplasm or plasma membrane of Purkinje cells (PC). In this series of articles, we provide a detailed review of the clinical and paraclinical features, oncological, therapeutic and prognostic implications, pathogenetic relevance, and differential laboratory diagnosis of the 12 most common PC autoantibodies (often referred to as 'Medusa-head antibodies' due to their characteristic somatodendritic binding pattern when tested by immunohistochemistry). To assist immunologists and neurologists in diagnosing these disorders, typical high-resolution immunohistochemical images of all 12 reactivities are presented, diagnostic pitfalls discussed and all currently available assays reviewed. Of note, most of these antibodies target antigens involved in the mGluR1/calcium pathway essential for PC function and survival. Many of the antigens also play a role in spinocerebellar ataxia. Part 1 focuses on anti-metabotropic glutamate receptor 1-, anti-Homer protein homolog 3-, anti-Sj/inositol 1,4,5-trisphosphate receptor- and anti-carbonic anhydrase-related protein VIII-associated autoimmune cerebellar ataxia (ACA); part 2 covers anti-protein kinase C gamma-, anti-glutamate receptor delta-2-, anti-Ca/RhoGTPase-activating protein 26- and anti-voltage-gated calcium channel-associated ACA; and part 3 reviews the current knowledge on anti-Tr/delta notch-like epidermal growth factor-related receptor-, anti-Nb/AP3B2-, anti-Yo/cerebellar degeneration-related protein 2- and Purkinje cell antibody 2-associated ACA, discusses differential diagnostic aspects and provides a summary and outlook.
Collapse
Affiliation(s)
- S Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, D-69120, Heidelberg, Germany.
| | - B Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, D-69120, Heidelberg, Germany.
| |
Collapse
|
35
|
Jarius S, Wildemann B. 'Medusa head ataxia': the expanding spectrum of Purkinje cell antibodies in autoimmune cerebellar ataxia. Part 3: Anti-Yo/CDR2, anti-Nb/AP3B2, PCA-2, anti-Tr/DNER, other antibodies, diagnostic pitfalls, summary and outlook. J Neuroinflammation 2015; 12:168. [PMID: 26377319 PMCID: PMC4573944 DOI: 10.1186/s12974-015-0358-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/02/2015] [Indexed: 01/23/2023] Open
Abstract
Serological testing for anti-neural autoantibodies is important in patients presenting with idiopathic cerebellar ataxia, since these autoantibodies may indicate cancer, determine treatment and predict prognosis. While some of them target nuclear antigens present in all or most CNS neurons (e.g. anti-Hu, anti-Ri), others more specifically target antigens present in the cytoplasm or plasma membrane of Purkinje cells (PC). In this series of articles, we provide a detailed review of the clinical and paraclinical features, oncological, therapeutic and prognostic implications, pathogenetic relevance, and differential laboratory diagnosis of the 12 most common PC autoantibodies (often referred to as 'Medusa head antibodies' due to their characteristic somatodendritic binding pattern when tested by immunohistochemistry). To assist immunologists and neurologists in diagnosing these disorders, typical high-resolution immunohistochemical images of all 12 reactivities are presented, diagnostic pitfalls discussed and all currently available assays reviewed. Of note, most of these antibodies target antigens involved in the mGluR1/calcium pathway essential for PC function and survival. Many of the antigens also play a role in spinocerebellar ataxia. Part 1 focuses on anti-metabotropic glutamate receptor 1-, anti-Homer protein homolog 3-, anti-Sj/inositol 1,4,5-trisphosphate receptor- and anti-carbonic anhydrase-related protein VIII-associated autoimmune cerebellar ataxia (ACA); part 2 covers anti-protein kinase C gamma-, anti-glutamate receptor delta-2-, anti-Ca/RhoGTPase-activating protein 26- and anti-voltage-gated calcium channel-associated ACA; and part 3 reviews the current knowledge on anti-Tr/delta notch-like epidermal growth factor-related receptor-, anti-Nb/AP3B2-, anti-Yo/cerebellar degeneration-related protein 2- and Purkinje cell antibody 2-associated ACA, discusses differential diagnostic aspects and provides a summary and outlook.
Collapse
Affiliation(s)
- S Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, D-69120, Heidelberg, Germany.
| | - B Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, D-69120, Heidelberg, Germany.
| |
Collapse
|
36
|
Jarius S, Wildemann B, Stöcker W, Moser A, Wandinger K. Psychotic syndrome associated with anti-Ca/ARHGAP26 and voltage-gated potassium channel antibodies. J Neuroimmunol 2015; 286:79-82. [DOI: 10.1016/j.jneuroim.2015.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/16/2015] [Accepted: 07/18/2015] [Indexed: 10/23/2022]
|