1
|
Yang X, Han M, Wang X, Wang J, Sun X, Zhang C, Yan S, Huang L, Chen Y. Evaluation of the synergistic effects of epigallocatechin-3-gallate-loaded PEGylated-PLGA nanoparticles with nimodipine against neuronal injury after subarachnoid hemorrhage. Front Nutr 2023; 9:953326. [PMID: 36687668 PMCID: PMC9845867 DOI: 10.3389/fnut.2022.953326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 11/25/2022] [Indexed: 01/05/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) is a devastating subtype of stroke with high mortality and morbidity. Although serious side effects might occur, nimodipine, a second-generation 1,4-dihydropyridine calcium channel blocker, is clinically used to improve neurological outcomes after SAH. Recently, (-)-epigallocatechin-3-gallate (EGCG) has been reported to inhibit Ca2+ overloading-induced mitochondrial dysfunction, oxidative stress, and neuronal cell death after SAH; however, low bioavailability, instability, and cytotoxicity at a high dose limited the clinical application of EGCG. To overcome these limitations, PEGylated-PLGA EGCG nanoparticles (EGCG-NPs) were constructed to enhance the bioavailability by using the double-emulsion method. Antioxidative activity, cytotoxicity, behavioral, and immunohistochemistry studies were carried out to determine the neuroprotective effectiveness after cotreatment with EGCG-NPs (75 mg/kg/d preconditioning for 7 days before SAH) and nimodipine (10 mg/kg/d after 30 min of SAH) by using in vivo SAH models. The optimized EGCG-NPs with a Box-Behnken design showed a small particle size of 167 nm, a zeta potential value of -22.6 mV, an encapsulation efficiency of 86%, and a sustained-release profile up to 8 days in vitro. Furthermore, EGCG-NPs (75 mg/kg/d) had superior antioxidative activity to free EGCG (100 mg/kg/d). EGCG-NPs combined with nimodipine exhibited significant synergistic effects against neuronal cell death by suppressing oxidative stress, Ca2+ overloading, mitochondrial dysfunction, and autophagy after SAH. These results suggest that cotreatment with EGCG-NPs and nimodipine may serve as a promising novel strategy for the treatment of SAH.
Collapse
Affiliation(s)
- Xianguang Yang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Mengguo Han
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Xue Wang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Jian Wang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Xiaoxue Sun
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Chunyan Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Shuaiguo Yan
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Liyong Huang
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Henan, China,Henan Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Henan, China,Liyong Huang ✉
| | - Ying Chen
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China,*Correspondence: Ying Chen ✉
| |
Collapse
|
2
|
Chen M, Zhao J, Ding X, Qin Y, Wu X, Li X, Wang L, Jiang G. Ketogenic diet and calorie-restricted diet attenuate ischemic brain injury via UBR4 and downstream CamkⅡ/TAK1/JNK signaling. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
3
|
Yu J, Xie X, Ma Y, Yang Y, Wang C, Xia G, Ding X, Liu X. Effects and potential mechanism of Ca 2+/calmodulin‑dependent protein kinase II pathway inhibitor KN93 on the development of ovarian follicle. Int J Mol Med 2022; 50:121. [PMID: 35929517 PMCID: PMC9387563 DOI: 10.3892/ijmm.2022.5177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/11/2022] [Indexed: 11/09/2022] Open
Abstract
Adequate regulation of the speed of follicular development has been reported to prolong the reproductive life of the ovary. The aim of the present study was to assess the potential effects and mechanism of the Ca2+/calmodulin-dependent protein kinase II (CaMKII) pathway on the development of ovarian follicle. In the present study, the expression of CaMKII was measured in the ovary of mice at different developmental stages by immunofluorescence, confirming that CaMKII has a role in follicular development. Subsequently, the 17.5 days post-coitus (dpc) embryonic ovaries were collected and cultured with KN93 for 4 days in vitro. It was revealed that KN93 inhibited the development of follicles, where it reduced the expression levels of oocyte and granulosa cell markers DEAD-box helicase 4 (DDX4) and forkhead box L2 (FOXL2). These results suggested that KN93 could delay follicular development. Proteomics technology was then used to find that 262 proteins of KN93 treated 17.5 dpc embryonic ovaries were significantly altered after in vitro culture. Bioinformatics analysis was used to analyze these altered proteins. In total, four important Kyoto Encyclopedia of Genes and Genome pathways, namely steroid biosynthesis, p53 signaling pathway and retinol metabolism and metabolic pathways, were particularly enriched. Further analysis revealed that the upregulated proteins NADP-dependent steroid dehydrogenase-like (Nsdhl), lanosterol synthase (Lss), farnesyl-diphosphate farnesyltransferase 1 (Fdft1), cytochrome P450 family 51 family A member 1 (Cyp51a1), hydroxymethylglutaryl-CoA synthase 1 (Hmgcs1), fatty acid synthase (Fasn) and dimethylallyltranstransferase (Fdps) were directly interacting with each other in the four enriched pathways. In summary, the potential mechanism of KN93 in slowing down follicular development most likely lies in its inhibitory effects on CaMKII, which upregulated the expression of Nsdhl, Lss, Fdft1, Cyp51a1, Hmgcs1, Fasn and Fdps. This downregulated the expression of oocyte and granulosa cell markers DDX4 and FOXL2 in the follicles, thereby delaying follicular development. Overall, these results provide novel insight into the potential mechanism by which KN93 and CaMKII can delay follicular development.
Collapse
Affiliation(s)
- Jianjie Yu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life Science, Ningxia University, Yinchuan, Ningxia Hui Autonomous Region 750021, P.R. China
| | - Xianguo Xie
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life Science, Ningxia University, Yinchuan, Ningxia Hui Autonomous Region 750021, P.R. China
| | - Yabo Ma
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life Science, Ningxia University, Yinchuan, Ningxia Hui Autonomous Region 750021, P.R. China
| | - Yi Yang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life Science, Ningxia University, Yinchuan, Ningxia Hui Autonomous Region 750021, P.R. China
| | - Chao Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life Science, Ningxia University, Yinchuan, Ningxia Hui Autonomous Region 750021, P.R.China
| | - Guoliang Xia
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life Science, Ningxia University, Yinchuan, Ningxia Hui Autonomous Region 750021, P.R. China
| | - Xiangbin Ding
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, P.R. China
| | - Xinfeng Liu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life Science, Ningxia University, Yinchuan, Ningxia Hui Autonomous Region 750021, P.R. China
| |
Collapse
|
4
|
CaMK II Inhibition Attenuates ROS Dependent Necroptosis in Acinar Cells and Protects against Acute Pancreatitis in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4187398. [PMID: 34840668 PMCID: PMC8612788 DOI: 10.1155/2021/4187398] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/08/2021] [Indexed: 12/27/2022]
Abstract
As a calcium-regulated protein, CaMK II is closely related to cell death, and it participates in the development of pathological processes such as reperfusion injury, myocardial infarction, and oligodendrocyte death. The function of CaMK II activation in acute pancreatitis (AP) remains unclear. In our study, we confirmed that the expression of p-CaMK II was increased significantly and consistently in injured pancreatic tissues after caerulein-induced AP. Then, we found that KN93, an inhibitor of CaMK II, could mitigate the histopathological manifestations in pancreatic tissues, reduce serum levels of enzymology, and decrease oxidative stress products. Accordingly, we elucidated the effect of KN93 in vitro and found that KN93 had a protective effect on the pancreatic acinar cell necroptosis pathway by inhibiting the production of ROS and decreasing the expression of RIP3 and p-MLKL. In addition, we identified the protective effect of KN93 on AP through another mouse model induced by pancreatic duct ligation (PDL). Together, these data demonstrated that CaMK II participates in the development of AP and that inhibiting CaMK II activation could protect against AP by reducing acinar cell necroptosis, which may provide a new idea target for the prevention and treatment of AP in the clinic.
Collapse
|
5
|
Zhang X, Connelly J, Levitan ES, Sun D, Wang JQ. Calcium/Calmodulin-Dependent Protein Kinase II in Cerebrovascular Diseases. Transl Stroke Res 2021; 12:513-529. [PMID: 33713030 PMCID: PMC8213567 DOI: 10.1007/s12975-021-00901-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/20/2020] [Accepted: 02/17/2021] [Indexed: 12/11/2022]
Abstract
Cerebrovascular disease is the most common life-threatening and debilitating condition that often leads to stroke. The multifunctional calcium/calmodulin-dependent protein kinase II (CaMKII) is a key Ca2+ sensor and an important signaling protein in a variety of biological systems within the brain, heart, and vasculature. In the brain, past stroke-related studies have been mainly focused on the role of CaMKII in ischemic stroke in neurons and established CaMKII as a major mediator of neuronal cell death induced by glutamate excitotoxicity and oxidative stress following ischemic stroke. However, with growing understanding of the importance of neurovascular interactions in cerebrovascular diseases, there are clearly gaps in our understanding of how CaMKII functions in the complex neurovascular biological processes and its contributions to cerebrovascular diseases. Additionally, emerging evidence demonstrates novel regulatory mechanisms of CaMKII and potential roles of the less-studied CaMKII isoforms in the ischemic brain, which has sparked renewed interests in this dynamic kinase family. This review discusses past findings and emerging evidence on CaMKII in several major cerebrovascular dysfunctions including ischemic stroke, hemorrhagic stroke, and vascular dementia, focusing on the unique roles played by CaMKII in the underlying biological processes of neuronal cell death, neuroinflammation, and endothelial barrier dysfunction triggered by stroke. We also highlight exciting new findings, promising therapeutic agents, and future perspectives for CaMKII in cerebrovascular systems.
Collapse
Affiliation(s)
- Xuejing Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, E1354 BST, Pittsburgh, PA, USA
| | - Jaclyn Connelly
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, E1354 BST, Pittsburgh, PA, USA
| | - Edwin S Levitan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, E1354 BST, Pittsburgh, PA, USA
| | - Dandan Sun
- Department of Neurology, Pittsburgh Institute For Neurodegenerative Diseases, University of Pittsburgh, 7016 Biomedical Science Tower-3, 3501 Fifth Ave., Pittsburgh, PA, 15260, USA.
| | - Jane Q Wang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, E1354 BST, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
ET AR silencing ameliorated neurovascular injury after SAH in rats through ERK/KLF4-mediated phenotypic transformation of smooth muscle cells. Exp Neurol 2021; 337:113596. [PMID: 33417892 DOI: 10.1016/j.expneurol.2021.113596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/16/2020] [Accepted: 12/30/2020] [Indexed: 12/29/2022]
Abstract
Subarachnoid haemorrhage (SAH) is a devastating cerebrovascular disease which has a high morbidity and mortality. The phenotypic transformation of smooth muscle cells (SMCs) lead to neurovascular injury after SAH. However, the underlying mechanism remains unclear. In the present study, we aimed to investigate the potential role of ET-1/ETAR on the phenotypic transformation of SMCs after SAH. The models of SAH were established in vivo and vitro. We observed ET-1 secretion by endothelial cells was increased, and the phenotypic transformation of SMCs was aggravated after SAH. Knocking down ETAR inhibited the phenotypic transformation of SMCs, decreased the migration ability of SMCs in vitro. Moreover, Knocking down ETAR ameliorated cerebral ischaemia and alleviated dysfunction of neurological function in vivo. In addition, Exogenous ET-1 increased the migration ability of SMCs and aggravated the phenotypic transformation of SMCs in vitro, which were partly reversed by the antagonist of Erk1/2 - SCH772984. Taken together, our results demonstrated that endothelial ET-1 aggravated the phenotypic transformation of SMCs after SAH. Knocking down ETAR inhibited the phenotypic transformation of SMCs through ERK/KLF4 thus ameliorating neurovascular injury after SAH. We also revealed that ET-1/ETAR is a potential therapeutic target after SAH.
Collapse
|
7
|
Menet R, Lecordier S, ElAli A. Wnt Pathway: An Emerging Player in Vascular and Traumatic Mediated Brain Injuries. Front Physiol 2020; 11:565667. [PMID: 33071819 PMCID: PMC7530281 DOI: 10.3389/fphys.2020.565667] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
The Wnt pathway, which comprises the canonical and non-canonical pathways, is an evolutionarily conserved mechanism that regulates crucial biological aspects throughout the development and adulthood. Emergence and patterning of the nervous and vascular systems are intimately coordinated, a process in which Wnt pathway plays particularly important roles. In the brain, Wnt ligands activate a cell-specific surface receptor complex to induce intracellular signaling cascades regulating neurogenesis, synaptogenesis, neuronal plasticity, synaptic plasticity, angiogenesis, vascular stabilization, and inflammation. The Wnt pathway is tightly regulated in the adult brain to maintain neurovascular functions. Historically, research in neuroscience has emphasized essentially on investigating the pathway in neurodegenerative disorders. Nonetheless, emerging findings have demonstrated that the pathway is deregulated in vascular- and traumatic-mediated brain injuries. These findings are suggesting that the pathway constitutes a promising target for the development of novel therapeutic protective and restorative interventions. Yet, targeting a complex multifunctional signal transduction pathway remains a major challenge. The review aims to summarize the current knowledge regarding the implication of Wnt pathway in the pathobiology of ischemic and hemorrhagic stroke, as well as traumatic brain injury (TBI). Furthermore, the review will present the strategies used so far to manipulate the pathway for therapeutic purposes as to highlight potential future directions.
Collapse
Affiliation(s)
- Romain Menet
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Sarah Lecordier
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Ayman ElAli
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
8
|
Wang C, Jia Q, Sun C, Jing C. Calcium sensing receptor contribute to early brain injury through the CaMKII/NLRP3 pathway after subarachnoid hemorrhage in mice. Biochem Biophys Res Commun 2020; 530:651-657. [PMID: 32768195 DOI: 10.1016/j.bbrc.2020.07.081] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/17/2020] [Indexed: 12/26/2022]
Abstract
The subversive role of Calcium sensing receptor (CaSR) in cerebral ischemia and traumatic brain injury has been recently reported. Nevertheless, the role of CaSR in early brain injury (EBI) after subarachnoid hemorrhage (SAH) remains unexplored. Using the endovascular perforation model in mice, this study was aimed at investigating the role and potential mechanism of CaSR in EBI after SAH. Gadolinium trichloride (GdCI3), an agonist of CaSR, and NPS-2143, an inhibitor of CaSR, were administered intraperitoneally. The CaMKII inhibitor KN-93 was injected to intracerebroventricular. We found that CaSR expression was increased and widely expressed in neurons, astrocytes, and microglia after SAH. GdCI3 further deteriorated neurological function, brain edema, neurodegeneration, which were alleviated by NPS-2143. Also, GdCI3 increased the level of CaMKII phosphorylation, and upregulated expression of NLRP3, cleaved caspase-1, and IL-1β, which were attenuated by NPS-2143. Besides, CaMKII inhibitor KN-93 down-regulated the upregulated expression of NLRP3, cleaved caspase-1, and IL-1β induced by GdCI3. In conclusion, CaSR activation promotes early brain injury, which may be related to the CaMKII/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Chun Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qingbin Jia
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Chenjun Sun
- Department of Neurosurgery, Shaoxing Central Hospital, Shaoxing, Zhejiang, China
| | - Chaohui Jing
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
Endothelial Cell Dysfunction and Injury in Subarachnoid Hemorrhage. Mol Neurobiol 2018; 56:1992-2006. [DOI: 10.1007/s12035-018-1213-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/27/2018] [Indexed: 01/15/2023]
|
10
|
Ghantous CM, Azrak Z, Rahman FA, Itani HA, Zeidan A. Assessment of Basilar Artery Reactivity in Stroke and Subarachnoid Hemorrhage Using Wire Myograph. Methods Mol Biol 2018; 1462:625-43. [PMID: 27604742 DOI: 10.1007/978-1-4939-3816-2_34] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Blood flow regulation of normal cerebral arteries is a critical and important factor to supply the brain tissue with nutrients and oxygen. Stroke insult results in a disruption or reduction in cerebral arteries' blood flow with subsequent brain tissue damage. Hemorrhagic stroke is one type of stroke and accounts for about 13 % of all of stroke insults. In this type of stroke, the cerebral artery breaks open and causes bleeding in or surrounding the brain. Subsequently, this bleeding causes blood vessels to constrict in a process called vasospasm, in which the vessels narrow and impede the blood flow to brain tissue. Hemorrhagic stroke is the major cause of prolonged constriction of cerebral arteries. This leads to partial brain damage and sometimes death in patients with aneurysmal subarachnoid hemorrhage. Among the key delicate techniques to assess small blood vessel functionality is the wire myograph, which can be utilized in several cerebral injury models including stroke. The wire myograph is a device that provides information about the reactivity, stiffness, and elasticity of small blood vessels under isometric conditions. In this book chapter, we describe the techniques involved in wire myography assessment and the different measures and parameters recorded; we describe the utility of this technique in evaluating the effects of subarachnoid hemorrhage on basilar artery sensitivity to different agonists.
Collapse
Affiliation(s)
- Crystal M Ghantous
- Department of Anatomy, Cell biology and Physiology, American University of Beirut, DTS-255, 11-0236, Beirut, 1107-2020, Lebanon
| | - Zeina Azrak
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
| | - Farah Abdel Rahman
- Department of Anatomy, Cell biology and Physiology, American University of Beirut, DTS-255, 11-0236, Beirut, 1107-2020, Lebanon
| | - Hana A Itani
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Asad Zeidan
- Department of Anatomy, Cell biology and Physiology, American University of Beirut, DTS-255, 11-0236, Beirut, 1107-2020, Lebanon.
| |
Collapse
|
11
|
Zhou K, Enkhjargal B, Xie Z, Sun C, Wu L, Malaguit J, Chen S, Tang J, Zhang J, Zhang JH. Dihydrolipoic Acid Inhibits Lysosomal Rupture and NLRP3 Through Lysosome-Associated Membrane Protein-1/Calcium/Calmodulin-Dependent Protein Kinase II/TAK1 Pathways After Subarachnoid Hemorrhage in Rat. Stroke 2018; 49:175-183. [PMID: 29273596 PMCID: PMC5744882 DOI: 10.1161/strokeaha.117.018593] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/28/2017] [Accepted: 11/03/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND PURPOSE The NLRP3 (nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3) inflammasome is a crucial component of the inflammatory response in early brain injury after subarachnoid hemorrhage (SAH). In this study, we investigated a role of dihydrolipoic acid (DHLA) in lysosomal rupture, NLRP3 activation, and determined the underlying pathway. METHODS SAH was induced by endovascular perforation in male Sprague-Dawley rats. DHLA was administered intraperitoneally 1 hour after SAH. Small interfering RNA for lysosome-associated membrane protein-1 and CaMKIIα (calcium/calmodulin-dependent protein kinase II α) was administered through intracerebroventricular 48 hours before SAH induction. SAH grade evaluation, short- and long-term neurological function testing, Western blot, and immunofluorescence staining experiments were performed. RESULTS DHLA treatment increased the expression of lysosome-associated membrane protein-1 and decreased phosphorylated CaMKIIα and NLRP3 inflammasome, thereby alleviating neurological deficits after SAH. Lysosome-associated membrane protein-1 small interfering RNA abolished the neuroprotective effects of DHLA and increased the level of phosphorylated CaMKIIα, p-TAK1 (phosphorylated transforming growth factor-β-activated kinase), p-JNK (phosphorylated c-Jun-N-terminal kinase), and NLRP3 inflammasome. CaMKIIα small interfering RNA downregulated the expression of p-TAK1, p-JNK, and NLRP3 and improved the neurobehavior after SAH. CONCLUSIONS DHLA treatment improved neurofunction and alleviated inflammation through the lysosome-associated membrane protein-1/CaMKII/TAK1 pathway in early brain injury after SAH. DHLA may provide a promising treatment to alleviate early brain injury after SAH.
Collapse
Affiliation(s)
- Keren Zhou
- From the Department of Neurosurgery, Second Affiliated Hospital, School of Medicine (K.Z., S.C., J.Z.), Brain research institute (K.Z., S.C., J.Z.), and Collaborative Innovation Center for Brain Science (K.Z., S.C., J.Z.), Zhejiang University, Hangzhou, China; and Department of Physiology and Pharmacology, Loma Linda University, CA (K.Z., B.E., Z.X.,C.S., L.W., J.M., J.T., J.H.Z.)
| | - Budbazar Enkhjargal
- From the Department of Neurosurgery, Second Affiliated Hospital, School of Medicine (K.Z., S.C., J.Z.), Brain research institute (K.Z., S.C., J.Z.), and Collaborative Innovation Center for Brain Science (K.Z., S.C., J.Z.), Zhejiang University, Hangzhou, China; and Department of Physiology and Pharmacology, Loma Linda University, CA (K.Z., B.E., Z.X.,C.S., L.W., J.M., J.T., J.H.Z.)
| | - Zhiyi Xie
- From the Department of Neurosurgery, Second Affiliated Hospital, School of Medicine (K.Z., S.C., J.Z.), Brain research institute (K.Z., S.C., J.Z.), and Collaborative Innovation Center for Brain Science (K.Z., S.C., J.Z.), Zhejiang University, Hangzhou, China; and Department of Physiology and Pharmacology, Loma Linda University, CA (K.Z., B.E., Z.X.,C.S., L.W., J.M., J.T., J.H.Z.)
| | - Chengmei Sun
- From the Department of Neurosurgery, Second Affiliated Hospital, School of Medicine (K.Z., S.C., J.Z.), Brain research institute (K.Z., S.C., J.Z.), and Collaborative Innovation Center for Brain Science (K.Z., S.C., J.Z.), Zhejiang University, Hangzhou, China; and Department of Physiology and Pharmacology, Loma Linda University, CA (K.Z., B.E., Z.X.,C.S., L.W., J.M., J.T., J.H.Z.)
| | - Lingyun Wu
- From the Department of Neurosurgery, Second Affiliated Hospital, School of Medicine (K.Z., S.C., J.Z.), Brain research institute (K.Z., S.C., J.Z.), and Collaborative Innovation Center for Brain Science (K.Z., S.C., J.Z.), Zhejiang University, Hangzhou, China; and Department of Physiology and Pharmacology, Loma Linda University, CA (K.Z., B.E., Z.X.,C.S., L.W., J.M., J.T., J.H.Z.)
| | - Jay Malaguit
- From the Department of Neurosurgery, Second Affiliated Hospital, School of Medicine (K.Z., S.C., J.Z.), Brain research institute (K.Z., S.C., J.Z.), and Collaborative Innovation Center for Brain Science (K.Z., S.C., J.Z.), Zhejiang University, Hangzhou, China; and Department of Physiology and Pharmacology, Loma Linda University, CA (K.Z., B.E., Z.X.,C.S., L.W., J.M., J.T., J.H.Z.)
| | - Sheng Chen
- From the Department of Neurosurgery, Second Affiliated Hospital, School of Medicine (K.Z., S.C., J.Z.), Brain research institute (K.Z., S.C., J.Z.), and Collaborative Innovation Center for Brain Science (K.Z., S.C., J.Z.), Zhejiang University, Hangzhou, China; and Department of Physiology and Pharmacology, Loma Linda University, CA (K.Z., B.E., Z.X.,C.S., L.W., J.M., J.T., J.H.Z.)
| | - Jiping Tang
- From the Department of Neurosurgery, Second Affiliated Hospital, School of Medicine (K.Z., S.C., J.Z.), Brain research institute (K.Z., S.C., J.Z.), and Collaborative Innovation Center for Brain Science (K.Z., S.C., J.Z.), Zhejiang University, Hangzhou, China; and Department of Physiology and Pharmacology, Loma Linda University, CA (K.Z., B.E., Z.X.,C.S., L.W., J.M., J.T., J.H.Z.)
| | - Jianmin Zhang
- From the Department of Neurosurgery, Second Affiliated Hospital, School of Medicine (K.Z., S.C., J.Z.), Brain research institute (K.Z., S.C., J.Z.), and Collaborative Innovation Center for Brain Science (K.Z., S.C., J.Z.), Zhejiang University, Hangzhou, China; and Department of Physiology and Pharmacology, Loma Linda University, CA (K.Z., B.E., Z.X.,C.S., L.W., J.M., J.T., J.H.Z.).
| | - John H Zhang
- From the Department of Neurosurgery, Second Affiliated Hospital, School of Medicine (K.Z., S.C., J.Z.), Brain research institute (K.Z., S.C., J.Z.), and Collaborative Innovation Center for Brain Science (K.Z., S.C., J.Z.), Zhejiang University, Hangzhou, China; and Department of Physiology and Pharmacology, Loma Linda University, CA (K.Z., B.E., Z.X.,C.S., L.W., J.M., J.T., J.H.Z.).
| |
Collapse
|