1
|
Wu TK, Fu Q, Liotta JL, Bowman DD. Proteomic analysis of extracellular vesicles and extracellular vesicle-depleted excretory-secretory products of Toxocara canis and Toxocara cati larval cultures. Vet Parasitol 2024; 332:110331. [PMID: 39426022 DOI: 10.1016/j.vetpar.2024.110331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
Toxocara canis and Toxocara cati are parasitic nematodes in the order Ascaridida, which inhabit the small intestines of dogs and cats, respectively, as adults. Although often nonpathogenic as adults, nematodes within this genus are capable of causing widespread disease throughout the host while in a larval stage, during which time larvae migrate throughout the body in a process termed larva migrans. Larvae are also capable of surviving within host tissues in an encysted arrested stage, without immune clearance by the host. The ability of larvae to survive within host tissues during migration and encystment may be attributed to immunomodulatory molecules released by the excretory cells of larvae in excretory-secretory (ES) products. ES products of parasites contain a variety of molecules, including proteins, lipids, and extracellular vesicles (EVs). Toxocara excretory-secretory (TES) products have been studied to some degree, with proteomic analysis of TES proteins described previously; however, investigation of the EVs within TES is lacking, despite the suggested role for these molecules in host interaction and potential immunomodulation. To further characterize the protein cargo within EVs in TES, EVs were isolated from larval cultures of T. canis and T. cati via ultrafiltration, with concurrent collection of EV-depleted TES filtrate for additional study. Isolated EVs and EV-depleted TES from both T. canis and T. cati were submitted for proteomic analysis by liquid chromatography tandem mass spectrometry (LC-MS/MS). Proteomic identification results revealed 140 proteins across all samples, with 16 shared by all samples, and 76 total proteins shared between T. canis and T. cati, present within EVs and EV-depleted TES. There were 17 proteins shared exclusively by EV samples, and 15 were shared exclusively between EV-depleted TES samples. Many shared proteins were associated with the host immune response. Several proteins were specific to either T. canis or T. cati, highlighting the potential use of these proteins as diagnostic tools in the differentiation of etiologic agents in cases of toxocariasis. The results of this study build upon previously reported proteomic evaluations of TES, contributing new information in regards to newly identified proteins, EV protein cargo within TES, and potential immunomodulatory functions of these proteins.
Collapse
Affiliation(s)
- Timothy K Wu
- Cornell University, Department of Microbiology and Immunology, Ithaca, NY 14853, United States.
| | - Qin Fu
- Cornell University, Proteomics and Metabolomics Facility, Institute of Biotechnology, Ithaca, NY 14850, United States
| | - Janice L Liotta
- Cornell University, Department of Microbiology and Immunology, Ithaca, NY 14853, United States
| | - Dwight D Bowman
- Cornell University, Department of Microbiology and Immunology, Ithaca, NY 14853, United States
| |
Collapse
|
2
|
Elgendy DI, Elmahy RA, Amer AIM, Ibrahim HA, Eltantawy AF, Mansour FR, Salama AM. Efficacy of artemether against toxocariasis in mice: parasitological and immunopathological changes in brain, liver, and lung. Pathog Glob Health 2024; 118:47-64. [PMID: 37978995 PMCID: PMC10769145 DOI: 10.1080/20477724.2023.2285182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Toxocariasis is a zoonosis that represents a serious threat to public health particularly in tropical and subtropical areas. Currently, albendazole, the most effective drug for treating visceral toxocariasis, shows moderate efficacy against the larvae in tissues and has some adverse effects. Artemether is an antiparasitic drug mainly used in the treatment of malaria and showed effectiveness against numerous helminthic infections. Besides, it possesses potent anti-inflammatory, antiapoptotic, antifibrotic, and neuroprotective properties. Thus, the study's aim was to investigate artemether's effects in comparison with albendazole on the therapeutic outcome of experimental toxocariasis. For this aim, 140 laboratory-bred mice were divided into four main groups: uninfected control, treatment control, albendazole-treated, and artemether-treated groups. The treatment regimens were started at the 15th dpi (early treatment), and at the 35th dpi (late treatment). The effectiveness of treatment was determined by brain larval count, histopathological, immunohistochemical, and biochemical examination. Artemether showed more effectiveness than albendazole in reducing brain larval counts, markers of brain injury including NF-κB, GFAP, and caspase-3, the diameter and number of hepatic granulomas, hepatic oxidative stress, hepatic IL-6, and TG2 mRNA, and pulmonary inflammation and fibrosis. The efficacy of artemether was the same when administered early or late in the infection. Finally, our findings illustrated that artemether might be a promising therapy for T. canis infection and it could be a good substitution for albendazole in toxocariasis treatment.
Collapse
Affiliation(s)
- Dina I. Elgendy
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Rasha A. Elmahy
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | | | - Hoda A. Ibrahim
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Asmaa Fawzy Eltantawy
- Medical Pharmacology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Fotouh Rashed Mansour
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Amina M. Salama
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
3
|
Song G, Yang C, Qu Z, Lin X, Liu M, Wang Y. Association between seropositivity for toxocariasis and cognitive functioning in older adults: an analysis of cross-sectional data from the US National Health and Nutrition Examination Survey (NHANES), 2011-2014. BMJ Open 2023; 13:e068974. [PMID: 36858467 PMCID: PMC9980365 DOI: 10.1136/bmjopen-2022-068974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
OBJECTIVES This study sought to examine the relationship between seropositivity for toxocariasis and cognitive functioning in a nationally representative sample of US older adults. DESIGN A cross-sectional study. SETTING National Health and Nutrition Examination Survey (NHANES) data collection took place in the US at participants' homes and mobile examination centres with specialised equipment. PARTICIPANTS The study population consisted of 3188 community-dwelling US older adults aged 60 and above from the NHANES 2011 to 2014. OUTCOME MEASURES IgG antibody against Toxocara spp was tested by a Luminex assay using recombinant rTc-CTL-1 antigen. A value >23.1 mean fluorescence intensity (MFI) indicated positive for toxocariasis and a value ≤23.1 MFI as negative for toxocariasis. The Consortium to Establish a Registry for Alzheimer's Disease Word Learning subtest immediate and delayed memory, the Animal Fluency test and the Digit Symbol Substitution Test (DSST) were used to assess cognitive functioning. Cognitive test-specific and global cognitive z scores were computed using sample means and SD. RESULTS The study population consisted of 3188 participants who represented a total of 111 896 309 civilian citizens in the USA. The mean age of the participants was 69.6 years (standard deviation 6.8). The prevalence of toxocariasis in this population was 7.3% (95% confidence interval [CI] 6.1% to 8.5%). The survey-weighted linear regression model showed that compared with participants who were toxocariasis seronegative, those who were seropositive had lower DSST z score (beta [β] = -0.12, 95% CI -0.22 to -0.01) and global cognition z score (β=-0.11, 95% CI -0.22 to -0.01), after controlling for age, sex, race/ethnicity, education, depressive symptoms, smoking status, body mass index, prevalent coronary heart disease, prevalent stroke, and systolic blood pressure, physical activity, and total cholesterol. CONCLUSIONS In our study, seropositive toxocariasis was independently and significantly associated with worse working memory, sustained attention, processing speed and global cognition in older adults. If this association is causal, public health measures to prevent human toxocariasis might help protect older adults' cognitive function.
Collapse
Affiliation(s)
- Ge Song
- Department of Natural Sciences, University of Houston-Downtown, Houston, Texas, USA
| | - Chao Yang
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zhe Qu
- School of Nursing, Xu Zhou Medical College, Xuzhou, Jiangsu, China
| | - Xuechun Lin
- Department of Nutrition and Food hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minhui Liu
- Central South University Xiangya School of Nursing, Changsha, Hunan Sheng, China
| | - Yanhong Wang
- School of Nursing, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
4
|
Abou-El-Naga IF, Mogahed NMFH. Potential roles of Toxocara canis larval excretory secretory molecules in immunomodulation and immune evasion. Acta Trop 2023; 238:106784. [PMID: 36502886 DOI: 10.1016/j.actatropica.2022.106784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/15/2022] [Accepted: 11/27/2022] [Indexed: 12/13/2022]
Abstract
Toxocara canis larvae invade various tissues of different vertebrate species without developing into adults in paratenic host. The long-term survival of the larvae despite exposure to the well-armed immune response is a notable achievement. The larvae modulate the immune response to help the survival of both the host and the larvae. They skew the immune response to type 2/regulatory phenotype. The outstanding ability of the larvae to modulate the host immune response and to evade the immune arms is attributed to the secretion of Toxocara excretory-secretory products (TESPs). TESPs are complex mixture of differing molecules. The present review deals with the molecular composition of the TESPs, their interaction with the host molecules, their effect on the innate immune response, the receptor recognition, the downstream signals the adaptive immunity and the repair of tissues. This review also addresses the role of TESPs molecules in the immune evasion strategy and the potential effect of the induced immunomodulation in some diseases. Identification of parasite components that influence the nematode-host interactions could enhance understanding the molecular basis of nematode pathogenicity. Furthermore, the identification of helminths molecules with immunomodulatory potential could be used in immunotherapies for some diseases.
Collapse
Affiliation(s)
- Iman F Abou-El-Naga
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, 12 Abdel Hamid El Deeb Street, Tharwat, Alexandria, Egypt.
| | - Nermine M F H Mogahed
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, 12 Abdel Hamid El Deeb Street, Tharwat, Alexandria, Egypt
| |
Collapse
|
5
|
Vojtechova I, Machacek T, Kristofikova Z, Stuchlik A, Petrasek T. Infectious origin of Alzheimer’s disease: Amyloid beta as a component of brain antimicrobial immunity. PLoS Pathog 2022; 18:e1010929. [PMCID: PMC9671327 DOI: 10.1371/journal.ppat.1010929] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The amyloid cascade hypothesis, focusing on pathological proteins aggregation, has so far failed to uncover the root cause of Alzheimer’s disease (AD), or to provide an effective therapy. This traditional paradigm essentially explains a mechanism involved in the development of sporadic AD rather than its cause. The failure of an overwhelming majority of clinical studies (99.6%) demonstrates that a breakthrough in therapy would be difficult if not impossible without understanding the etiology of AD. It becomes more and more apparent that the AD pathology might originate from brain infection. In this review, we discuss a potential role of bacteria, viruses, fungi, and eukaryotic parasites as triggers of AD pathology. We show evidence from the current literature that amyloid beta, traditionally viewed as pathological, actually acts as an antimicrobial peptide, protecting the brain against pathogens. However, in case of a prolonged or excessive activation of a senescent immune system, amyloid beta accumulation and aggregation becomes damaging and supports runaway neurodegenerative processes in AD. This is paralleled by the recent study by Alam and colleagues (2022) who showed that alpha-synuclein, the protein accumulating in synucleinopathies, also plays a critical physiological role in immune reactions and inflammation, showing an unforeseen link between the 2 unrelated classes of neurodegenerative disorders. The multiplication of the amyloid precursor protein gene, recently described by Lee and collegues (2018), and possible reactivation of human endogenous retroviruses by pathogens fits well into the same picture. We discuss these new findings from the viewpoint of the infection hypothesis of AD and offer suggestions for future research. More than a century after its discovery, Alzheimer’s disease (AD) remains incurable and mysterious. The dominant hypothesis of amyloid cascade has succeeded in explaining the key pathological mechanism, but not its trigger. Amyloid beta has been traditionally considered a pathological peptide, and its physiological functions remain poorly known. These knowledge gaps have contributed to repeated failures of clinical studies. The emerging infectious hypothesis of AD considers central nervous system (CNS) infection the primary trigger of sporadic AD. A closely connected hypothesis claims that amyloid beta is an antimicrobial peptide. In this review, we discuss the available evidence for the involvement of infections in AD, coming from epidemiological studies, post mortem analyses of brain tissue, and experiments in vitro and in vivo. We argue there is no unique “Alzheimer’s germ,” instead, AD is a general reaction of the CNS to chronic infections, in the milieu of an aged immune system. The pathology may become self-sustained even without continuous presence of microbes in the brain. Importantly, the infectious hypothesis leads to testable predictions. Targeting amyloid beta should be ineffective, unless the triggering pathogen and inflammatory response are addressed as well. Meticulous control of selected infections might be the best near-term strategy for AD prevention.
Collapse
Affiliation(s)
- Iveta Vojtechova
- National Institute of Mental Health, Klecany, Czech Republic
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- * E-mail: , (IV); , (TP)
| | - Tomas Machacek
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | | | - Ales Stuchlik
- National Institute of Mental Health, Klecany, Czech Republic
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomas Petrasek
- National Institute of Mental Health, Klecany, Czech Republic
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- * E-mail: , (IV); , (TP)
| |
Collapse
|
6
|
Novák J, Macháček T, Majer M, Kostelanská M, Skulinová K, Černý V, Kolářová L, Hrdý J, Horák P. Toxocara canis infection worsens the course of experimental autoimmune encephalomyelitis in mice. Parasitology 2022; 149:1720-1728. [PMID: 36050813 PMCID: PMC11010483 DOI: 10.1017/s0031182022001238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/22/2022] [Accepted: 08/21/2022] [Indexed: 12/14/2022]
Abstract
Toxocara canis, a gastrointestinal parasite of canids, is also highly prevalent in many paratenic hosts, such as mice and humans. As with many other helminths, the infection is associated with immunomodulatory effects, which could affect other inflammatory conditions including autoimmune and allergic diseases. Here, we investigated the effect of T. canis infection on the course of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. Mice infected with 2 doses of 100 T. canis L3 larvae 5 weeks prior to EAE induction (the Tc+EAE group) showed higher EAE clinical scores and greater weight loss compared to the non-infected group with induced EAE (the EAE group). Elevated concentrations of all measured serum cytokines (IL-1α, IL-2, IL-4, IL-6, IL-10, IL-17A, IFN-γ and TNF-α) were observed in the Tc+EAE group compared to the EAE group. In the CNS, the similar number of regulatory T cells (Tregs; CD4+FoxP3+Helios+) but their decreased proportion from total CD4+ cells was found in the Tc+EAE group compared to the EAE group. This could indicate that the group Tc+EAE harboured significantly more CD4+ T cells of non-Treg phenotype within the affected CNS. Altogether, our results demonstrate that infection of mice with T. canis worsens the course of subsequently induced EAE. Further studies are, therefore, urgently needed to reveal the underlying pathological mechanisms and to investigate possible risks for the human population, in which exposure to T. canis is frequent.
Collapse
Affiliation(s)
- Jan Novák
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 7, 128 00, Praha 2, Czechia
| | - Tomáš Macháček
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Praha 2, Czechia
| | - Martin Majer
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Praha 2, Czechia
| | - Marie Kostelanská
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 7, 128 00, Praha 2, Czechia
| | - Kateřina Skulinová
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 7, 128 00, Praha 2, Czechia
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Praha 2, Czechia
| | - Viktor Černý
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 7, 128 00, Praha 2, Czechia
| | - Libuše Kolářová
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 7, 128 00, Praha 2, Czechia
- National Reference Laboratory for Tissue Helminthoses, General University Hospital in Prague, Studničkova 7, 128 00, Praha 2, Czechia
| | - Jiří Hrdý
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 7, 128 00, Praha 2, Czechia
| | - Petr Horák
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Praha 2, Czechia
| |
Collapse
|
7
|
Kraemer L, McKay DM, Russo RC, Fujiwara RT. Chemokines and chemokine receptors: insights from human disease and experimental models of helminthiasis. Cytokine Growth Factor Rev 2022; 66:38-52. [DOI: 10.1016/j.cytogfr.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/03/2022]
|
8
|
Zhang X, Yang Y, Zheng Y, Hu Y, Rao Y, Li J, Zhao P, Li J. The Value of the Antibody Detection in the Diagnosis of Ocular Toxocariasis and the Aqueous Cytokine Profile Associated With the Condition. Front Med (Lausanne) 2022; 9:838800. [PMID: 35419376 PMCID: PMC9000971 DOI: 10.3389/fmed.2022.838800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction To evaluate and compare the specificity of Toxocara canis-specific antibody detection in the serum and aqueous samples for the diagnosis of ocular toxocariasis (OT) and explore the cytokine profiles associated with the condition in children. Materials and Methods This is a prospective cohort study. The inclusion criteria were the clinical presentations of OT, which included unilateral vision reduction, typical peripheral or posterior pole granuloma with variable degrees of vitritis, and exclusion of other diagnoses. The titer of antibody against the excretory-secretory antigen of Toxocara canis [T-immunoglobulin G (IgG)] was measured in serum and aqueous samples that were taken from the affected eyes. The diagnosis of OT was made upon positive detection of T-IgG either in the serum or aqueous. The rest with typical clinical presentations as described above but a positive serum or aqueous T-IgG could not be confirmed were diagnosed as suspected OT. Cytokines were measured using multiplexed cytometric bead array system. Results Two hundred and eleven eyes of 211 patients had participated in the study. One hundred and twenty-eight eyes were diagnosed as OT. The median age of the cohort was 7.7 years with a male to female ratio of 2.5:1. Major initial symptoms were decreased vision (74%) and strabismus (22%). The percentages of eyes with peripheral granuloma, posterior granuloma, and endophthalmitis were 40, 18, and 41%, respectively. Vitritis (100%), vitreous strands (64%), retinal fibrotic bands (57%), and retinal detachment (42%) were the most common signs. T-IgG was positive in 66.7% of the aqueous and 57.2% of the serum samples. Forty-four patients were diagnosed T-IgG negative in both serum and aqueous of the affected eyes. Interleukin (IL)-6, monocyte chemoattractant protein (MCP)-1, IL-8, eosinophil chemotactic protein (Eotaxin), MCP-1β, and vascular endothelial growth factor (VEGF) were higher in T-IgG negative eyes when compared to controls and further increased in T-IgG positive eyes. However, only T-IgG positive eyes showed increased IL-5, IL-13, and IL-10. IL-1β, tumor necrosis factor-alpha (TNF-α), IL-12, IL-2, interferon-gamma (IFN-γ), and IL-4 were undetectable in all eyes. Conclusions Pediatric OT is often present with severe retinal complications. Polarized intraocular Th2 response was only found in aqueous T-IgG positive eyes. Our results supported an aqueous sample-based antibody test for the more specific diagnosis of OT.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Yang
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zheng
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiqian Hu
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuqing Rao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiakai Li
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Li
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Macháček T, Leontovyč R, Šmídová B, Majer M, Vondráček O, Vojtěchová I, Petrásek T, Horák P. Mechanisms of the host immune response and helminth-induced pathology during Trichobilharzia regenti (Schistosomatidae) neuroinvasion in mice. PLoS Pathog 2022; 18:e1010302. [PMID: 35120185 PMCID: PMC8849443 DOI: 10.1371/journal.ppat.1010302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/16/2022] [Accepted: 01/24/2022] [Indexed: 12/17/2022] Open
Abstract
Helminth neuroinfections represent serious medical conditions, but the diversity of the host-parasite interplay within the nervous tissue often remains poorly understood, partially due to the lack of laboratory models. Here, we investigated the neuroinvasion of the mouse spinal cord by Trichobilharzia regenti (Schistosomatidae). Active migration of T. regenti schistosomula through the mouse spinal cord induced motor deficits in hindlimbs but did not affect the general locomotion or working memory. Histological examination of the infected spinal cord revealed eosinophilic meningomyelitis with eosinophil-rich infiltrates entrapping the schistosomula. Flow cytometry and transcriptomic analysis of the spinal cord confirmed massive activation of the host immune response. Of note, we recorded striking upregulation of the major histocompatibility complex II pathway and M2-associated markers, such as arginase or chitinase-like 3. Arginase also dominated the proteins found in the microdissected tissue from the close vicinity of the migrating schistosomula, which unselectively fed on the host nervous tissue. Next, we evaluated the pathological sequelae of T. regenti neuroinvasion. While no demyelination or blood-brain barrier alterations were noticed, our transcriptomic data revealed a remarkable disruption of neurophysiological functions not yet recorded in helminth neuroinfections. We also detected DNA fragmentation at the host-schistosomulum interface, but schistosomula antigens did not affect the viability of neurons and glial cells in vitro. Collectively, altered locomotion, significant disruption of neurophysiological functions, and strong M2 polarization were the most prominent features of T. regenti neuroinvasion, making it a promising candidate for further neuroinfection research. Indeed, understanding the diversity of pathogen-related neuroinflammatory processes is a prerequisite for developing better protective measures, treatment strategies, and diagnostic tools.
Collapse
Affiliation(s)
- Tomáš Macháček
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Roman Leontovyč
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Barbora Šmídová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Martin Majer
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Oldřich Vondráček
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Iveta Vojtěchová
- National Institute of Mental Health, Klecany, Czechia
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Tomáš Petrásek
- National Institute of Mental Health, Klecany, Czechia
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Petr Horák
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
10
|
Waindok P, Janecek-Erfurth E, Lindenwald DL, Wilk E, Schughart K, Geffers R, Strube C. Toxocara canis- and Toxocara cati-Induced Neurotoxocarosis Is Associated with Comprehensive Brain Transcriptomic Alterations. Microorganisms 2022; 10:microorganisms10010177. [PMID: 35056627 PMCID: PMC8779660 DOI: 10.3390/microorganisms10010177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/27/2022] Open
Abstract
Toxocara canis and Toxocara cati are globally occurring zoonotic roundworms of dogs and cats. Migration and persistence of Toxocara larvae in the central nervous system of paratenic hosts including humans may cause clinical signs of neurotoxocarosis (NT). As pathomechanisms of NT and host responses against Toxocara larvae are mostly unknown, whole-genome microarray transcription analysis was performed in cerebra and cerebella of experimentally infected C57Bl/6J mice as paratenic host model at days 14, 28, 70, 98, and 120 post-infection. Neuroinvasion of T. cati evoked 220 cerebral and 215 cerebellar differentially transcribed genes (DTGs), but no particular PANTHER (Protein ANalysis THrough Evolutionary Relationships) pathway was affected. In T. canis-infected mice, 1039 cerebral and 2073 cerebellar DTGs were identified. Statistically significant dysregulations occurred in various pathways, including cholesterol biosynthesis, apoptosis signaling, and the Slit/Robo mediated axon guidance as well as different pathways associated with the immune and defense response. Observed dysregulations of the cholesterol biosynthesis, as well as the Alzheimer disease-amyloid secretase pathway in conjunction with previous histopathological neurodegenerative findings, may promote the discussion of T. canis as a causative agent for dementia and/or Alzheimer’s disease. Furthermore, results contribute to a deeper understanding of the largely unknown pathogenesis and host-parasite interactions during NT, and may provide the basis for prospective investigations evaluating pathogenic mechanisms or designing novel diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Patrick Waindok
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, 30559 Hanover, Germany; (P.W.); (E.J.-E.); (D.L.L.)
| | - Elisabeth Janecek-Erfurth
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, 30559 Hanover, Germany; (P.W.); (E.J.-E.); (D.L.L.)
| | - Dimitri L. Lindenwald
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, 30559 Hanover, Germany; (P.W.); (E.J.-E.); (D.L.L.)
| | - Esther Wilk
- Department of Infection Genetics, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (E.W.); (K.S.)
| | - Klaus Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (E.W.); (K.S.)
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Centre, Memphis, TN 38163, USA
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, 30559 Hanover, Germany
| | - Robert Geffers
- Research Group Genome Analytics, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, 30559 Hanover, Germany; (P.W.); (E.J.-E.); (D.L.L.)
- Correspondence: ; Tel.: +49-511-953-8711
| |
Collapse
|
11
|
Identification of Toxocara canis Antigen-Interacting Partners by Yeast Two-Hybrid Assay and a Putative Mechanism of These Host-Parasite Interactions. Pathogens 2021; 10:pathogens10080949. [PMID: 34451413 PMCID: PMC8398310 DOI: 10.3390/pathogens10080949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 01/11/2023] Open
Abstract
Toxocara canis is a zoonotic roundworm that infects humans and dogs all over the world. Upon infection, larvae migrate to various tissues leading to different clinical syndromes. The host–parasite interactions underlying the process of infection remain poorly understood. Here, we describe the application of a yeast two-hybrid assay to screen a human cDNA library and analyse the interactome of T. canis larval molecules. Our data identifies 16 human proteins that putatively interact with the parasite. These molecules were associated with major biological processes, such as protein processing, transport, cellular component organisation, immune response and cell signalling. Some of these identified interactions are associated with the development of a Th2 response, neutrophil activity and signalling in immune cells. Other interactions may be linked to neurodegenerative processes observed during neurotoxocariasis, and some are associated with lung pathology found in infected hosts. Our results should open new areas of research and provide further data to enable a better understanding of this complex and underestimated disease.
Collapse
|
12
|
Toxocara canis and Toxocara cati Somatic and Excretory-Secretory Antigens Are Recognised by C-Type Lectin Receptors. Pathogens 2021; 10:pathogens10030321. [PMID: 33803269 PMCID: PMC8001263 DOI: 10.3390/pathogens10030321] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/28/2022] Open
Abstract
Toxocara canis and Toxocara cati, the worldwide occurring intestinal roundworms of canids and felids, represent an important public health threat due to various disease manifestations in humans. Host recognition of pathogens is mediated by pattern recognition receptors (PRRs). Myeloid C-type lectin receptors (CLRs) are PRRs and recognise carbohydrate structures of various pathogens. As Toxocara excretory-secretory products (TES) are predominantly composed of glycoconjugates, they represent suitable targets for CLRs. However, the range of host-derived CLRs recognising Toxocara spp. is still unknown. Using a CLR-hFc fusion protein library, T. canis and T. cati L3 somatic antigens (TSOM) were bound by a variety of CLRs in enzyme-linked immunosorbent assay (ELISA), while their TES products interacted with macrophage galactose-type lectin-1 (MGL-1). Two prominent candidate CLRs, MGL-1 and macrophage C-type lectin (MCL), were selected for further binding studies. Immunofluorescence microscopy revealed binding of MGL-1 to the oral aperture of L3. Immunoblot experiments identified distinct protein fractions representing potential ligands for MGL-1 and MCL. To evaluate how these interactions influence the host immune response, bone marrow-derived dendritic cell (BMDC) assays were performed, showing MCL-dependent T. cati-mediated cytokine production. In conclusion, MGL-1 and MCL are promising candidates for immune modulation during Toxocara infection, deserving further investigation in the future.
Collapse
|
13
|
Gale SD, Hedges DW. Neurocognitive and neuropsychiatric effects of toxocariasis. ADVANCES IN PARASITOLOGY 2020; 109:261-272. [PMID: 32381201 DOI: 10.1016/bs.apar.2020.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Caused by the neuroinvasive nematodes Toxocara canis and Toxocara cati, human toxocariasis has a worldwide distribution with seroprevalence in humans associated with low socioeconomic status and low educational attainment. Third-stage Toxocara larvae can invade human tissues, including the brain and spine, where they can result in encephalitis, meningitis, and inflammation. Toxocara infection in animal models has been associated with cognitive and behavioural changes. In humans, preliminary cross-sectional research suggests that Toxocara seropositivity is associated with worse cognitive function in children and adults. Additional preliminary cross-sectional findings suggest associations between Toxocara seropositivity and neuropsychiatric function, including schizophrenia and neurologic conditions such as epilepsy. Given the widespread distribution of human toxocariasis and early evidence suggesting that it can be associated with cognitive and neuropsychiatric function in humans, additional research regarding the effects of toxocariasis on the human brain is required.
Collapse
Affiliation(s)
- Shawn D Gale
- Department of Psychology, Brigham Young University, Provo, UT, United States; The Neuroscience Centre, Brigham Young University, Provo, UT, United States.
| | - Dawson W Hedges
- Department of Psychology, Brigham Young University, Provo, UT, United States; The Neuroscience Centre, Brigham Young University, Provo, UT, United States
| |
Collapse
|
14
|
Strube C, Waindok P, Raulf MK, Springer A. Toxocara-induced neural larva migrans (neurotoxocarosis) in rodent model hosts. ADVANCES IN PARASITOLOGY 2020; 109:189-218. [PMID: 32381198 DOI: 10.1016/bs.apar.2020.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Neural larva migrans (NLM), or neurotoxocarosis, induced by Toxocara canis or Toxocara cati results from migrating and persisting larvae in the central nervous system of paratenic hosts, including humans. As the diagnosis of NLM in humans is not straightforward, most knowledge on the disease is derived from only a few published clinical cases. To improve our understanding of human NLM, studies on the pathogenesis and clinical symptoms in laboratory animal model systems are indispensable, and rodents have been accepted as the most appropriate model organisms for NLM. As research has mostly focused on neuroinvasive T. canis-larvae, information regarding the pathogenesis of T. cati-induced NLM remains scarce. This review summarises the current state of knowledge on neuroinvasion by both T. canis and T. cati in different rodent model hosts, the resulting behavioural changes, and histopathological alterations during the course of NLM as well as the potential molecular pathogenic mechanisms.
Collapse
Affiliation(s)
- Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hanover, Germany.
| | - Patrick Waindok
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Marie-Kristin Raulf
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hanover, Germany; Immunology Unit & Research Centre for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Andrea Springer
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hanover, Germany
| |
Collapse
|
15
|
Fan CK. Pathogenesis of cerebral toxocariasis and neurodegenerative diseases. ADVANCES IN PARASITOLOGY 2020; 109:233-259. [PMID: 32381200 DOI: 10.1016/bs.apar.2020.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Toxocara canis belongs to one of zoonotic parasites that commonly infects canines worldwide, and its eggs in host faeces may contaminate the food, water, soil and their fur as well as the larvae entrapped in the granuloma can infect paratenic hosts including mice and humans. Survivability of T. canis embryonated eggs under moist, cool conditions may be as long as 2-4 years or more. In paratenic hosts such as mice and humans, T. canis L3 larvae neither moult, grow, nor replicate and will wander through a number of internal organs in humans so as to cause Th2-dominant pathology in various internal organs as leading to neurotoxocariasis (NT), ocular toxocariasis (OT), or visceral larva migrans (VLM). Although the systemic immune response to T. canis has been widely reported, the immune response in the brain has received little attention. Differential cytokine expression and other brain injury-associated biomarkers or neurodegeneration-associated factors have been observed in infected versus uninfected outbred and inbred mice. Preliminary data have also suggested a possible link between significant memory impairment and cytokine production associated with T. canis infection in the hippocampus which has been long recognised as being responsible for learning and memory functions. Notably, it remains an enigma concerning cerebral invasion by T. canis larvae rarely induces a recognisable neurological syndrome or its involvement in neuropathological disorders in humans. Exploration of the relationship between host and parasite in the brain may elucidate the cryptic symptoms of human cerebral toxocariasis, with patients presenting with mental retardation, epilepsy, neurodegeneration and other central nervous system (CNS) disorders.
Collapse
Affiliation(s)
- Chia-Kwung Fan
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Research Center of International Tropical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Tropical Medicine Division, International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
16
|
Multiplex profiling of inflammation-related bioactive lipid mediators in Toxocara canis- and Toxocara cati-induced neurotoxocarosis. PLoS Negl Trop Dis 2019; 13:e0007706. [PMID: 31557153 PMCID: PMC6762062 DOI: 10.1371/journal.pntd.0007706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/14/2019] [Indexed: 12/18/2022] Open
Abstract
Background Somatic migration of Toxocara canis- and T. cati-larvae in humans may cause neurotoxocarosis (NT) when larvae accumulate and persist in the central nervous system (CNS). Host- or parasite-induced immunoregulatory processes contribute to the pathogenesis; however, detailed data on involvement of bioactive lipid mediators, e.g. oxylipins or eico-/docosanoids, which are involved in the complex molecular signalling network during infection and inflammation, are lacking. Methodology/Principal findings To elucidate if T. canis- and T. cati-induced NT affects the homeostasis of oxylipins during the course of infection, a comprehensive lipidomic profiling in brains (cerebra and cerebella) of experimentally infected C57BL/6J mice was conducted at six different time points post infection (pi) by liquid-chromatography coupled to electrospray tandem mass spectrometry (LC-ESI-MS/MS). Only minor changes were detected regarding pro-inflammatory prostaglandins (cyclooxygenase pathway). In contrast, a significant increase of metabolites resulting from lipoxygenase pathways was observed for both infection groups and brain regions, implicating a predominantly anti-inflammatory driven immune response. This observation was supported by a significantly increased 13-hydroxyoctadecadienoic acid (HODE)/9-HODE ratio during the subacute phase of infection, indicating an anti-inflammatory response to neuroinfection. Except for the specialised pro-resolving mediator (SPM) neuroprotectin D1 (NPD1), which was detected in mice infected with both pathogens during the subacute phase of infection, no other SPMs were detected. Conclusions/Significance The obtained results demonstrate the influence of Toxocara spp. on oxylipins as part of the immune response of the paratenic hosts. Furthermore, this study shows differences in the alteration of the oxylipin composition between T. canis- and T. cati-brain infection. Results contribute to a further understanding of the largely unknown pathogenesis and mechanisms of host-parasite interactions during NT. Neurotoxocarosis (NT) is induced by larvae of the zoonotic roundworms Toxocara canis and T. cati migrating and persisting in the central nervous system of paratenic hosts, and may be accompanied by severe neurological symptoms. Toxocara spp. are known to modulate the hosts’ immune response, but data concerning involvement of signalling molecules are lacking. An important class of mediators participating in the complex molecular signalling network during infection and inflammation are bioactive regulatory lipids, derived from arachidonic acid and other polyunsaturated fatty acids. For a better understanding of inflammatory processes in the brain during an infection with Toxocara spp., a comprehensive analysis of regulatory lipids was conducted. The infection was predominantly characterised by only minor changes in the pattern of pro-inflammatory oxylipins, while anti-inflammatory metabolites, derived from lipoxygenase pathways, were significantly elevated in the subacute phase as well as in the beginning of the chronic phase of infection. This trend was also reflected in the 13-HODE/9-HODE ratio, a biomarker for the immunological status of an active infection. Obtained data provide a valuable insight in the host’s immune reaction as response against neuroinvasive Toxocara spp.-larvae, contributing to the characterisation of the mostly unknown pathogenesis of NT.
Collapse
|
17
|
Histopathological characterization of Toxocara canis- and T. cati-induced neurotoxocarosis in the mouse model. Parasitol Res 2019; 118:2591-2600. [PMID: 31350619 DOI: 10.1007/s00436-019-06395-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/05/2019] [Indexed: 12/30/2022]
Abstract
Infective larvae of Toxocara canis and T. cati, the common roundworms of dogs and cats, may invade the central nervous system of paratenic hosts, including humans, causing neurotoxocarosis (NT). Previous studies on NT in the model organism "mouse" have indicated distinct differences between T. canis and T. cati regarding larval migration patterns as well as the severity of clinical symptoms and behavioural alterations. The objective of the present study was to provide an extensive characterization of the underlying histopathological alterations, comparing T. canis- and T. cati-induced changes in different brain areas over the course of murine infection. Four histological sections of five brains each of T. canis- and T. cati-infected as well as uninfected C57Bl/6 mice were investigated 7, 14, 28, 42, 70 and 98 days post infection (dpi), while brains of T. cati-infected and control mice were also available 120 and 150 dpi. In addition to haematoxylin-eosin and luxol fast blue-cresyl violet staining, immunohistochemistry was employed to study microglia/macrophage cell morphology and to detect accumulation of β-amyloid precursor protein (β-APP) as an indicator of axonal damage. Haemorrhages, eosinophilic vasculitis and activated microglia/macrophages were detected in both infection groups starting 7 dpi, followed by eosinophilic meningitis in cerebra as from 14 dpi. Overall, little differences in the proportion of animals affected by these alterations were found between the two infection groups. In contrast, the proportion of animals displaying β-APP accumulation was significantly higher in the T. canis than T. cati group as from 28 dpi regarding the cerebrum as well as at 98 dpi regarding the cerebellum. In T. canis-infected mice, myelinophagic microglia/macrophages ("gitter cells") appeared as from 14 dpi, whereas these were first observed at 70 dpi in T. cati-infected animals. The proportion of animals displaying demyelination and/or gitter cells in the cerebrum was significantly higher in the T. canis than T. cati group as from 28 dpi, and at 28 and 42 dpi regarding the cerebellum. Earlier and more severe neurodegeneration during T. canis- than T. cati-induced NT, especially in the cerebrum, may explain the differences in behavioural alterations observed in previous studies. In addition to differences in larval migration preferences, immunological processes may contribute to these patterns, which warrant further investigation.
Collapse
|